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as the sum of k terms

by

Sándor Z. Kiss (Budapest)

1. Introduction. Let N denote the set of positive integers. Let k > 2
be a fixed integer and let A = {a1, a2, . . . } (a1 < a2 < · · · ) be an infinite
sequence of positive integers. For n = 1, 2, . . . let Rk(n) denote the number
of solutions of ai1 + · · ·+ aik = n, ai1 ∈ A, . . . , aik ∈ A. For k = 2, P. Erdős
and A. Sárközy studied how regular the behaviour of the function R2(n) can
be. In [2] they proved the following theorem:

Theorem 1. If F (n) is an arithmetic function such that

F (n)→∞,
F (n+ 1) ≥ F (n) for n ≥ n0,

F (n) = o

(
n

(log n)2

)
,

and we write

∆(N) =
N∑
n=1

(R2(n)− F (n))2,

then
∆(N) = o(NF (N))

cannot hold.

In [3] they showed that the above result is nearly best possible:

Theorem 2. If F (n) is an arithmetic function satisfying

F (n) > 36 log n for n > n0,

and there exists a real function g(x), defined for 0 < x <∞, and real numbers
x0, n1 such that
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(i) g′(x) exists and it is continuous for 0 < x <∞,
(ii) g′(x) ≤ 0 for x ≥ x0,
(iii) 0 < g(x) < 1 for x ≥ x0,
(iv) |F (n)− 2

	n/2
0 g(x)g(n− x) dx| < (F (n) log n)1/2 for n > n1,

then there exists a sequence A such that

|R2(n)− F (n)| < 8(F (n) log n)1/2 for n > n2.

In [6] G. Horváth extended Theorem 1 to any k > 2:

Theorem 3. If F (n) is an arithmetic function such that

F (n)→∞,
F (n+ 1) ≥ F (n) for n ≥ n0,

F (n) = o

(
n

(log n)2

)
,

and we write

∆(N) =
N∑
n=1

(Rk(n)− F (n))2,

then
∆(N) = o(NF (N))

cannot hold.

A. Sárközy proposed to prove an analogue of Theorem 2 for k > 2 [8,
Problem 3]. In this paper my goal is to extend Theorem 2 to any k > 2,
i.e., to show that Theorem 3 is nearly best possible. In fact, I will prove the
following theorem:

Theorem 4. If k > 2 is a positive integer , c8 is a constant large enough
in terms of k, F (n) is an arithmetic function satisfying

F (n) > c8 log n for n > n0,

and there exists a real function g(x), defined for 0 < x <∞, and real numbers
x0, n1 and constants c7, c9 such that

(i) 0 < g(x) ≤ (log x)1/k

x1−(k+1)/k2 < 1 for x ≥ x0,

(ii)
∣∣∣F (n)−k!

∑
x1+···+xk=n

1≤x1<···<xk<n

g(x1) . . . g(xk)
∣∣∣ < c7(F (n) log n)1/2 for n > n1,

then there exists a sequence A such that

|Rk(n)− F (n)| < c9(F (n) log n)1/2 for n > n2.
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It is easy to see that the following functions satisfy the conditions of
Theorem 4: g(x) = c10((log x)β/xα), where c10 is a positive constant, α >
1 − (k + 1)/k2, or α = 1 − (k + 1)/k2 and β ≤ 1/k. It follows that for
F (n) = nδ(log n)γ with 0 < δ ≤ 1/k, or 0 ≤ γ < 1 there is a sequence
A for which Rk(n) satisfies the conclusion of the theorem. For k = 2 in [3]
P. Erdős and A. Sárközy used the probabilistic method to construct A. In
the case k = 2, certain events in their paper were mutually independent.
For k > 2 the independence fails, thus to prove Theorem 4 we need deeper
probabilistic tools.

2. Probabilistic tools. The proof of Theorem 4 is based on the prob-
abilistic method due to Erdős and Rényi. There is an excellent summary of
this method in Halberstam and Roth’s book [5]. We use the notation and
terminology of that book. First we give a survey of the probabilistic tools
and notation we use in the proof of Theorem 4. Let Ω denote the set of
strictly increasing sequences of positive integers. In this paper we denote the
probability of an event E by P (E).

Lemma 1. Let

(1) α1, α2, . . .

be real numbers satisfying

(2) 0 ≤ αn ≤ 1 (n = 1, 2, . . . ).

Then there exists a probability space (Ω,S, P ) with the following two prop-
erties:

(i) For every natural number n, the event E(n) = {A ∈ Ω : n ∈ A} is
measurable, and P (E(n)) = αn.

(ii) The events E(1), E(2), . . . are independent.

See [5, Theorem 13, p. 142]. We denote the characteristic function of the
event E(n) by %(A, n):

%(A, n) =
{

1 if n ∈ A,
0 if n /∈ A.

Furthermore, we denote the number of solutions of ai1 + · · · + aik = n by
rk(n), where ai1 ∈ A, . . . , aik ∈ A, 1 ≤ ai1 < · · · < aik < n. Thus

(3) rk(n) =
∑

(a1,...,ak)∈Nk

1≤a1<···<ak<n
a1+···+ak=n

%(A, a1) . . . %(A, ak).

Let r∗k(n) denote the number of those representations n = ai1 + · · · + aik in
which there are at least two equal terms. Thus

(4) Rk(n) = k!rk(n) + r∗k(n).
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It is easy to see from (3) that rk(n) is a sum of random variables. However,
for k > 2 these variables are not independent because the same %(A, ai) may
appear in many terms; therefore we need deeper probabilistic tools.

Our proof is based on a method of J. H. Kim and V. H. Vu. In the next
section we give a short survey of their method. The interested reader can find
more details in [7], [9], [10]. Assume that t1, . . . , tn are independent binary
(i.e., {0, 1}-valued) random variables. Consider a polynomial Y in t1, . . . , tn
of degree k. We say Y is positive if it can be written in the form Y =

∑
i eiΓi,

where the ei’s are positive and each Γi is a product of some tj ’s. Given a
(multi-) set A, ∂A(Y ) denotes the partial derivative of Y with respect to
the variables with indices in A. For instance, if Y = t1t

2
2 and A1 = {1, 2}

and A2 = {2, 2} then ∂A1(Y ) = 2t2 and ∂AY = 2t1. If A is empty then
∂A(Y ) = Y . Let EA(Y ) denote the expectation of ∂A(Y ). Furthermore, set

Ej(Y ) = max
|A|≥j

EA(Y ) for j = 0, 1, . . . , k,

so E0(Y ) = E(Y ).

Theorem 5 (Kim–Vu). For every positive integer k there are positive
constants dk and bk depending only on k such that for any positive polynomial
Y = Y (t1, . . . , tn) of degree k, where the ti’s are independent binary random
variables,

P
(
|Y − E(Y )| ≥ dkλk

√
E0(Y )E1(Y )

)
≤ bke−λ/4+(k−1) logn.

See [7] for the proof. Finally, we need the Borel–Cantelli lemma (see [5]):

Lemma 2. Let {Bi} be a sequence of events in a probability space. If
∞∑
j=1

P (Bj) <∞,

then with probability 1, at most a finite number of the events Bj can occur.

3. Proof of Theorem 4. Fix a number n and write

Sn = {(a1, . . . , ak) ∈ Nk : 0 < a1 < · · · < ak < n, a1 + · · · + ak = n}.

Define a sequence (1) of real numbers by

αn =
{
g(n) if n ≥ x0,
0 otherwise,

and let (Ω,S, P ) be the probability space as in Lemma 1. Clearly the se-
quence αn satisfies (2). Thus

rk(n) =
∑

(a1,...,ak)∈Sn

ta1 . . . tak
,
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where

tai =
{

1 if ai ∈ A,
0 if ai /∈ A.

Then we have

λn = E(rk(n)) =
∑

(a1,...,ak)∈Sn

P (a1 ∈ A) . . . P (ak ∈ A),

where E(ζ) denotes the expectation of the random variable ζ. To prove
Theorem 4 we will give an upper estimate for |Rk(n)− k!λn|. As Vu in [10],
we split rk(n) into two parts, as follows. Let a be a small positive constant,
say a < 1/2(k + 1), and let S[1]

n be the subset of all (a1, . . . , ak) ∈ Sn with
a1 ≥ na, and S

[2]
n = Sn \ S[1]

n . We split rk(n) into the sum of two terms
corresponding to S[1]

n and S[2]
n , respectively:

rk(n) = r
[1]
k (n) + r

[2]
k (n),

where

(5) r
[j]
k (n) =

∑
(a1,...,ak)∈S[j]

n

ta1 . . . tak
,

and set
λ[j]
n = E(r[j]k (n)).

Clearly

|Rk(n)− k!λn| ≤ |Rk(n)− k!rk(n)|+ k!|rk(n)− λn|(6)

= r∗k(n) + k!|r[1]
k (n) + r

[2]
k (n)− λ[1]

n − λ[2]
n |

≤ r∗k(n) + k!|r[1]
k (n)− λ[1]

n |+ k!|r[2]
k (n)− λ[2]

n |
= r∗k(n) + I1 + I2.

The rest of the proof of Theorem 4 has four parts. In the first part we
estimate I1, in the second I2, in the third r∗k(n), and in the last part we
complete the proof.

Estimating I1. We will apply Theorem 5 so we need an upper bound for
E1(r[1]

k (n)). To do this, it is clear from the definition of E1 that we need the
following lemma, which guarantees that every partial derivative of r[1]

k (n)
has small expectation.

Lemma 3. For all non-empty multi-sets A of size at most k − 1,

E(∂A(r[1]
k (n))) = O(n−a/2k

2
).

Proof. This can be proved similarly to Lemma 5.3 in [10]. For complete-
ness I will present the proof. Consider a multi-set A of k − l elements and
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x∈A x = n−m. There exists a constant c(k) such that

∂A(r[1]
k (n)) ≤ c(k)

∑
na<a1<···<al
a1+···+al=m

ta1 . . . tal
.

As al ≥ m/l and
∑m

x=1 x
1/k−1 ≈

	m
1 z1/k−1 dz ≈ m1/k, and using assumption

(i) of Theorem 4, we have

E(∂A(r[1]
k (n)))

= O
( ∑
na<a1<···<al
a1+···+al=m

P (a1 ∈ A) . . . P (al ∈ A)
)

= O
( ∑
na<a1<···<al
a1+···+al=m

g(a1) . . . g(al)
)

= O(log n)
∑

na<a1<···<al
a1+···+al=m

a
(k+1)/k2−1
1 . . . a

(k+1)/k2−1
l

= O(log n)O
(( m∑

x=1

x(k+1)/k2−1
)l−1

(m/l)(k+1)/k2−1
)

= O(log n)O(m(l−1)(k+1)/k2
(m/l)(k+1)/k2−1)

= O(log n)O(m(l(k+1)−k2)/k2
) = O(n−a/2k

2
),

since k − 1 ≥ l and m ≥ na. The proof of Lemma 3 is complete.

By the definition of E1(r[1]
k (n)), and from Lemma 3, it is clear that

E1(r[1]
k (n)) = max|A|≥1EA(r[1]

k (n)) ≤ cn−a/2k
2 , where c is a constant. It

is clear from (5) that r[1]
k (n) is a positive polynomial of degree k. Now we

apply Theorem 5 with λ = (log n/E1(r[1]
k (n)))1/2k. If n is large enough we

have

P

(
|r[1]
k (n)− λ[1]

n | ≥ dk

√
log n

E1(r[1]
k (n))

√
λ

[1]
n E1(r[1]

k (n))
)

≤ bk exp
(
−1

4
2k

√
log n

E1(r[1]
k (n))

+ (k − 1) log n
)

≤ bk exp
(
−1

4
2k

√
log n
n−a/2k2 + (k − 1) log n

)
< exp(−2 log n) =

1
n2
.

Applying the above result we obtain
∞∑
n=1

P
(
|r[1]
k (n)− λ[1]

n | ≥ dk
√
λ

[1]
n log n

)
<

∞∑
n=1

1
n2

<∞.
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By the Borel–Cantelli lemma, with probability 1, there exists n0 such that

(7) |r[1]
k (n)− λ[1]

n | < dk

√
λ

[1]
n log n for n > n0.

Estimating I2. We will prove similarly to the proof in [10] that for almost
every sequence A, there is a finite number c11(A) such that r[2]

k (n) ≤ c11(A)
for all sufficiently large n. Let rl(n) denote the number of representations of n
as the sum of l distinct numbers from A. First we estimate E(rl(n)) similarly
to [4]. Fix 2 ≤ l ≤ k − 1. As n/l < al, by assumption (i) of Theorem 4, we
have

E(rl(n)) ≤
∑

a1+···+al=n
1≤a1<···<al<n

P (a1 ∈ A) . . . P (al ∈ A)(8)

<
∑

a1+···+al=n
1≤a1<···<al<n

g(a1) . . . g(al)

≤
∑

a1+···+al=n
1≤a1<···<al<n

(log a1)1/k

a
1−(k+1)/k2

1

· · · (log al)1/k

a
1−(k+1)/k2

l

= no(1)
∑

a1+···+al=n
1≤a1<···<al<n

1
(a1 . . . al)1−(k+1)/k2

≤ no(1)

(
n(k+1)/k2−1+o(1)

∑
a1+···+al=n

1≤a1<···<al<n

1
(a1 . . . al−1)1−(k+1)/k2

)

≤ n(k+1)/k2−1+o(1)
∑

1≤ai≤n
i=1,...,l−1

1
(a1 . . . al−1)1−(k+1)/k2

= n(k+1)/k2−1+o(1)

( ∑
1≤a1≤n

1

a
1−(k+1)/k2

1

)l−1

= n(k+1)/k2−1+o(1)(n(k+1)/k2+o(1))l−1 = n−1+l(k+1)/k2+o(1).

Let T1 = {a1, . . . , ak}, T2 = {b1, . . . , bk}, T1 6= T2, T1, T2 ⊂ A and

a1 + · · · + ak = b1 + · · · + bk = n.

We say these representations are disjoint if they share no element in common.
Let fl(n) denote the maximum number of pairwise disjoint representations
of n as the sum of l distinct numbers from A. We show that with probabil-
ity 1, fl(n) is bounded. We will apply the following result due to Erdős and
Tetali which is called the disjointness lemma. We say events G1, . . . , Gn are
independent if for all subsets I ⊆ {1, . . . , n}, P (

⋂
i∈I Gi) =

∏
i∈I P (Gi).
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Lemma 4. If
∑

i P (Bi) ≤ µ, then∑
(B1,...,Bl)

independent

P (B1 ∩ · · · ∩Bl) ≤ µl/l!.

Proof. This is Lemma 1 in [4]. Let

B = {(a1, . . . , al) ∈ An : a1 + · · · + al = n, 1 ≤ a1 < · · · < al < n}.

Let H(B) = {T ⊂ B: all the K ∈ T are pairwise disjoint} and c1 be a
constant. It is clear that the pairwise disjointness of the sets implies the
independence of the associated events, i.e., if K1 and K2 are pairwise disjoint
representations, then the events K1 ⊂ A, K2 ⊂ A are independent. Thus by
(8) and Lemma 4 we have

(9) P (fl(n) > c1) ≤ P
( ⋃
T ⊂H(B)
|T |=c1+1

⋂
K∈T

K
)
≤

∑
T ⊂H(B)
|T |=c1+1

P
( ⋂
K∈T

K
)

=
∑

(K1,...,Kc1+1)
pairwise
disjoint

P (K1 ∩ · · · ∩Kc1+1) ≤ 1
(c1 + 1)!

(E(fl(n)))c1+1

≤ 1
(c1 + 1)!

(E(rl(n)))c1+1 ≤ 1
(c1 + 1)!

n−2+o(1)

if c1 large enough. By the Borel–Cantelli lemma, with probability 1 for almost
every random sequence A there is a finite number c1(A) such that for any
l < k and all n, the maximal number of disjoint l-representations of n from
A is at most c1(A).

In the next step we estimate E(r[2]
k (n)) as in Lemma 3. Using also the fact

that
∑m

x=1 x
1/k−1 ≈

	m
1 z1/k−1 dz ≈ m1/k, and ak ≥ n/k, a < 1/(2(k + 1)),

and (i) of Theorem 4, we have

E(r[2]
k (n)) = E

( ∑
(a1,...,ak)∈S[2]

n

ta1 . . . tak

)

= O
( ∑

(a1,...,ak)∈S[2]
n

P (a1 ∈ A) . . . P (ak ∈ A)
)

= O(log n)
∑

a1+···+ak=n
a1≤na

a
(k+1)/k2−1
1 . . . a

(k+1)/k2−1
k
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= O(log n)O
( na∑
x=1

x(k+1)/k2−1
( n∑
x=1

x(k+1)/k2−1
)k−2

(n/k)(k+1)/k2−1
)

= O(n(a(k+1)−1)/k2
log n) = O(n−1/2k2

).

Thus by Lemma 4 and the Borel–Cantelli lemma, with probability 1, there
is a constant c2 such that almost surely the maximum number of disjoint
representations of n in r[2]

k (n) is at most c2 for all large n.
To finish the proof it suffices to show that r[2]

k (n) is bounded by a con-
stant. The proof is purely combinatorial. We need the following well-known
result due to Erdős and Rado [1]. Let r be a positive integer, r ≥ 3. A collec-
tion of sets D1, . . . , Dr forms a ∆-system if the sets have pairwise the same
intersection.

Lemma 5. If H is a collection of sets of size at most k and |H| >
(r − 1)kk! then H contains r sets forming a ∆-system.

Set C(A) = (max(c1(A), c2))kk! and assume that n is sufficiently large.
To each representation of n counted in r[2]

k (n) we assign the set formed by
the k terms occurring in this representation. We will apply Lemma 5 with H
being the collection of these sets. It is clear that if r[2]

k (n) > C(A), then by
Lemma 5, r[2]

k (n) contains a ∆-system with c3 = max(c1(A), c2) + 1 sets. If
the intersection of these sets is empty, then they form a family of c3 disjoint
k-representations of n, which contradicts the definition of c3. Otherwise,
assume that the intersection of these sets is {y1, . . . , yj}, where 1 ≤ j ≤ k−1
and

∑j
i=1 yi = m. Removing the common intersection of these sets we can

find c1(A)+1 (k−j)-representations of n−m = n−
∑j

i=1 yi. These c1(A)+1
sets are disjoint due to the definition of the ∆-system. Therefore in both cases
we obtain a contradiction.

Estimating r∗k(n). If we collect the equal terms, we have

(10) u1a1 + u2a2 + · · · + uhah = n,

where the ui’s are positive integers, and

(11) u1 + u2 + · · · + uh = k.

Thus r∗k(n) denotes the number of representations (10) of n, where the ai’s
are different. It can be proved similarly to the estimate of r[2]

k (n) that r∗k(n) is
also bounded by a constant. For completeness we sketch the proof leaving the
details to the reader. Fix 2 ≤ h ≤ k−1. For fixed u1, . . . , uh let sh(n) denote
the number of representations (10) of n. We show that sh(n) is bounded by
a constant. (Note that we have already proved this when all ui’s are equal
to one, and h = k.) First we estimate E(sh(n)), with a calculation similar
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to (8). Using the definition of sh(n), and n/h < ah, we have

E(sh(n)) ≤
∑

u1a1+···+uhah=n
1≤a1<···<ah<n

P (a1 ∈ A) . . . P (ah ∈ A)(12)

=
∑

u1a1+···+uhah=n
1≤a1<···<ah<n

g(a1) . . . g(ah)

≤
∑

u1a1+···+uhah=n
1≤a1<···<ah<n

(log a1)1/k

a
1−(k+1)/k2

1

. . .
(log ah)1/k

a
1−(k+1)/k2

h

= n−1+h(k+1)/k2+o(1).

Let s∗h(n) denote the size of a maximal collection of pairwise disjoint rep-
resentations (10). The same argument as in (9) shows that almost always
there exists a constant vh such that s∗h(n) < vh for n large enough. In view
of (12), and applying Lemma 4, we have

P (s∗h(n) > vh) < n−2+o(1)

if vh is large enough. Thus by the Borel–Cantelli lemma, with probability 1,
s∗h(n) < vh for every large enough n. We say that an m-tuple (a1, . . . , am)
(m ≤ h) is anm-representation of n in the form (10) if there is a permutation
π of {1, . . . , h} such that

∑m
i=1 uπ(i)ai = n. For all m < h, let s∗m(n) denote

the size of a maximal collection of pairwise disjoint such representations
of n. The same argument as above shows that almost always there exists a
constant pm such that s∗m(n) < pm for every large enough n.

In the last step we apply Lemma 5 to prove that sh(n) is bounded by a
constant. Let C = (max(pmh!, vh))hh!. Let H in Lemma 5 be the collection
of representations (10) of n. Clearly |H| = sh(n). If sh(n) > C, and n is
sufficiently large then by Lemma 5, H contains a ∆-system with C + 1 sets.
If the intersection of these sets is empty, then they form a family of disjoint
h-representations (10). Otherwise, let the common intersection of the sets
be {y1, . . . , ys}, where 1 ≤ s ≤ h − 1. By the pigeon-hole principle there
exists a permutation π of {1, . . . , h} such that we can find pm + 1 (k − s)-
representations of n′′ = n−

∑s
i=1 uπ(i)ys. These pm+1 sets are disjoint, thus

in both cases we obtain a contradiction. Since there are only a finite number
of partitions of k in the form (11), we conclude that r∗k(n) is bounded by a
constant, i.e., there exists a constant C3 such that r∗k(n) < C3. Let c4, c5, c6
be constants. Thus by (6) and (7) we have

|Rk(n)− k!λn| ≤ |Rk(n)− k!rk(n)|+ k!|rk(n)− λn|
< C3 + k!|r[1]

n + r[2]
n − λ[1]

n − λ[2]
n |
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≤ C3 + k!|r[1]
n − λ[1]

n |+ k!|r[2]
n − λ[2]

n |

≤ C3 + dkk!
√
λ

[1]
n log n+ 2k!c4 ≤ c5 + dkk!

√
λn log n.

End of proof. We argue as in [3]. In view of the estimate above and
assumption (ii), for large n we have

|Rk(n)− F (n)| ≤ |Rk(n)− k!λn|+ |k!λn − F (n)|

< c5 + dkk!(λn log n)1/2 + |k!λn − F (n)|

≤ c5 + c6

((
1
k!
F (n) +

1
k!
|k!λn − F (n)|

)
log n

)1/2

+ |k!λn − F (n)|

< c5 + c6

((
1
k!
F (n) +

c7
k!

(F (n) log n)1/2
)

log n
)1/2

+ c7(F (n) log n)1/2

< c5 + c6

((
1
k!
F (n) +

c7
k!

(
F (n)

F (n)
c8

)1/2)
log n

)1/2

+ c7(F (n) log n)1/2

= c5 + c6

((
1
k!

+
c7√
c8k!

)
F (n) log n

)1/2

+ c7(F (n) log n)1/2

< c9(F (n) log n)1/2.

The proof of Theorem 4 is complete.
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