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On the number of representations of integers
as the sum of £ terms

by
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1. Introduction. Let N denote the set of positive integers. Let k > 2
be a fixed integer and let A = {ai,as,...} (a1 < az < ---) be an infinite
sequence of positive integers. For n = 1,2,... let Ri(n) denote the number
of solutions of a;, +---+a;, =n, a;; € A,...,a; € A For k=2, P. Erdés
and A. Sarkozy studied how regular the behaviour of the function Ra(n) can
be. In [2] they proved the following theorem:

THEOREM 1. If F(n) is an arithmetic function such that

F(n) — oo,
F(n+1)> F(n) forn > ng,

N

A(N) = (Ba(n) — F(n))*,

n=1

and we write

then
A(N) = o(NF(N))
cannot hold.
In [3] they showed that the above result is nearly best possible:
THEOREM 2. If F(n) is an arithmetic function satisfying
F(n) > 36logn  for n > ny,
and there exists a real function g(x), defined for 0 < x < oo, and real numbers

xo,n1 such that
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396 S. Z. Kiss
(i) ¢'(x) exists and it is continuous for 0 < x < oo,

(i) ¢'(x) <0 for x > xp,

(i) 0 < g(x) <1 for x > xo,

(iv) |F(n) —2 88/2 g(z)g(n — x) dz| < (F(n)logn)'/? for n > ny,

/

then there exists a sequence A such that
|Ry(n) — F(n)| < 8(F(n)logn)?  forn > ns.
In [6] G. Horvath extended Theorem 1 to any k > 2:
THEOREM 3. If F(n) is an arithmetic function such that
F(n) — oo,
F(n+1)>F(n) forn > ny,

N

AN) = S (Be(n) - F(n))?,

n=1

and we write

then
A(N) = o(NF(N))
cannot hold.
A. Sarkozy proposed to prove an analogue of Theorem 2 for k > 2 [8,
Problem 3|. In this paper my goal is to extend Theorem 2 to any k& > 2,

i.e., to show that Theorem 3 is nearly best possible. In fact, I will prove the
following theorem:

THEOREM 4. If k > 2 is a positive integer, cg is a constant large enough
in terms of k, F\(n) is an arithmetic function satisfying
F(n) > cglogn  forn > nyg,

and there exists a real function g(x), defined for 0 < x < 0o, and real numbers
xg,n1 and constants cy,cg such that

. log 2)1/*
(1) O<g(m)§m<lf0rm2xg,

(ii) |F(n)—k! Z g(z1) ... g(zp)| < cr(F(n)logn)Y? forn > nq,

T1++TE=n
1<z <<z <n

then there exists a sequence A such that

|Rp(n) — F(n)| < co(F(n)logn)'/?  for n > no.
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It is easy to see that the following functions satisfy the conditions of
Theorem 4: g(z) = c10((logz)?/z%), where cyg is a positive constant, o >
1—(k+1)/k* or a = 1— (k+1)/k* and 8 < 1/k. Tt follows that for
F(n) = n®(logn)Y with 0 < § < 1/k, or 0 < v < 1 there is a sequence
A for which Ry (n) satisfies the conclusion of the theorem. For k = 2 in [3]
P. Erdss and A. Sarkozy used the probabilistic method to construct A. In
the case k = 2, certain events in their paper were mutually independent.
For k > 2 the independence fails, thus to prove Theorem 4 we need deeper
probabilistic tools.

2. Probabilistic tools. The proof of Theorem 4 is based on the prob-
abilistic method due to Erdés and Rényi. There is an excellent summary of
this method in Halberstam and Roth’s book [5]. We use the notation and
terminology of that book. First we give a survey of the probabilistic tools
and notation we use in the proof of Theorem 4. Let {2 denote the set of
strictly increasing sequences of positive integers. In this paper we denote the
probability of an event E by P(E).

LEMMA 1. Let

<1) 1,09, ...
be real numbers satisfying
(2) 0<a,<1 (n=1,2,...).
Then there exists a probability space (12,5, P) with the following two prop-
erties:
(i) For every natural number n, the event E™ = {A € 2 :n € A} is
measurable, and P(E™) = a,.
(ii) The events EV, E@) . . are independent.
See [5, Theorem 13, p. 142]. We denote the characteristic function of the
event E™ by o(A,n):
1 ifneA,
Q(A7n) - { .
0 ifnd¢A

Furthermore, we denote the number of solutions of a;, +--- + a;, = n by
ri(n), where a;; € A,...,a;, € A, 1 <a; <--- <a; <n.Thus

(3) rp(n) = Z o(A,a1)...0(A, a).
(a1,..,ar)ENF
1<a1<--<ap<n
a1+--+ar=n
Let r}(n) denote the number of those representations n = a;, +--- + a;, in
which there are at least two equal terms. Thus

(4) Ri(n) = Eklrg(n) + ri(n).
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It is easy to see from (3) that ri(n) is a sum of random variables. However,
for k > 2 these variables are not independent because the same o(.A, a;) may
appear in many terms; therefore we need deeper probabilistic tools.

Our proof is based on a method of J. H. Kim and V. H. Vu. In the next
section we give a short survey of their method. The interested reader can find
more details in [7], [9], [10]. Assume that ti,...,t, are independent binary
(i.e., {0, 1}-valued) random variables. Consider a polynomial Y in t1,...,%,
of degree k. We say Y is positive if it can be written in the form Y = )" e, 15,
where the e;’s are positive and each I is a product of some t;’s. Given a
(multi-) set A, 94(Y) denotes the partial derivative of Y with respect to
the variables with indices in A. For instance, if Y = #¢3 and 4; = {1,2}
and Ay = {2,2} then 04,(Y) = 2t and 94Y = 2¢;. If A is empty then
04(Y) =Y. Let E4(Y) denote the expectation of d4(Y"). Furthermore, set

E;(Y)= &1&); Es(Y) forj=0,1,...,k,

so Eo(Y) = E(Y).

THEOREM 5 (Kim—Vu). For every positive integer k there are positive
constants dy and by, depending only on k such that for any positive polynomial
Y =Y(t1,...,tn) of degree k, where the t;’s are independent binary random
variables,

P(IY = E(Y)| > diN/Eo(Y)EL(Y)) < byeM4t+(k=1logn,
See [7] for the proof. Finally, we need the Borel-Cantelli lemma (see [5]):

LEMMA 2. Let {B;} be a sequence of events in a probability space. If
oo
Y P(B)) < x,
j=1
then with probability 1, at most a finite number of the events Bj can occur.

3. Proof of Theorem 4. Fix a number n and write
Sp =A{(a1,...,ax) eN:O<ai< - <ap<n, a4+ + ai =n}.
Define a sequence (1) of real numbers by
{g(n) if n > o,
Qn = .
0 otherwise,

and let (£2,5, P) be the probability space as in Lemma 1. Clearly the se-
quence «;, satisfies (2). Thus

re(n) = Z tay - tas

(alv---vak)esn



Representations of integers as the sum of k terms 399

where

ta, =

(3

{ 1 ifa; €A,
0 if a; gé A.
Then we have
A=E(re(n))= Y Pl €A).. . PlacA),
(a1,...,ax)ESR

where E((¢) denotes the expectation of the random variable ¢. To prove
Theorem 4 we will give an upper estimate for |Ri(n) — k!A,|. As Vu in [10],
we split ri(n) into two parts, as follows. Let a be a small positive constant,
say a < 1/2(k+ 1), and let S be the subset of all (a1,...,ar) € S, with
ap > n® and s :} Sn\ S We split 7(n) into the sum of two terms

and S,[f] , respectively:

ri(n) =l (n) + 1, (),

corresponding to 5’7[11

where
(5) = Yty ta,
(a1, ax)€SY]
and set
M = B ().

Clearly
(6) |Ri(n) — K\A\n| < |Rp(n) — Elrg(n)| + klre(n) — An|

= ri(n) + Kl (n) + 0 (n) — A — A

< ri(n) + Kl (n) = MY+ K (n) — A2
=ri(n)+ 1L + L.

The rest of the proof of Theorem 4 has four parts. In the first part we
estimate I1, in the second Iy, in the third r}(n), and in the last part we
complete the proof.

Estimating I,. We will apply Theorem 5 so we need an upper bound for
El(rl[j] (n)). To do this, it is clear from the definition of E; that we need the
following lemma, which guarantees that every partial derivative of r,[j] (n)
has small expectation.

LEMMA 3. For all non-empty multi-sets A of size at most k — 1,
B(9a(r) (n)) = O(n=*/**).

Proof. This can be proved similarly to Lemma 5.3 in [10]. For complete-
ness I will present the proof. Consider a multi-set A of k — [ elements and
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> zea® =mn —m. There exists a constant c(k) such that

oalrpi(m) < e(k) ST tay...ta.

n?<a;<---<aq
a1+---+a;=m

Asa; >m/land Y ", pl/k=1 ST 251 dz ~ mY* and using assumption
(i) of Theorem 4, we have

:o( Y PlacA.. (aleA)) ( > g(al)---g(az))

n*<ap<--<a nt<ai<--<a
a1+---+a;=m a1+--+a;=m
B (k+1)/k2-1 (k+1)/k>—1
= O(logn) E ay ca
n®<a;<--<aq

ail+--+a;=m

O(logn) ((Zxk+1)/k2 1) (m/l)(k+1)/k2—1>

= O(log n)O(mU e (m/1)E+D/RL)
= O(log n)()(m(l(kJrl)fl#)/kQ) _ O(nfa/2k2),
since k — 1 > [ and m > n®. The proof of Lemma 3 is complete.

By the definition of El(r,[j} (n)), and from Lemma 3, it is clear that
El(r,[cl] (n)) = maxjq> EA(T'LH(H)) < en~%2’ where ¢ is a constant. It
is clear from (5) that r,[j} (n) is a positive polynomial of degree k. Now we

apply Theorem 5 with A = (logn/E; (r,[j] (n)))Y/?. If n is large enough we
have

P(lrL”(n)—AEszk k’g” \/A[”E 2 )

< bkexp<— 2k 10[% + (k- 1)logn>
1V Ei(ry (n))

1 1
< by, exp(—4 Y f)ag/;; + (k—1)log n)

< exp(—2logn) =

—5-
n
Applying the above result we obtain

ZP(|T A > g/ ”1ogn) Z

1



Representations of integers as the sum of k terms 401

By the Borel-Cantelli lemma, with probability 1, there exists ng such that

(7) |7“,[€1}(n) — M| < dy A logn  for n > nyg.

FEstimating Is. We will prove similarly to the proof in [10] that for almost
every sequence A, there is a finite number ¢11(.A) such that r,[f] (n) <ci1(A)
for all sufficiently large n. Let r;(n) denote the number of representations of n
as the sum of [ distinct numbers from A. First we estimate E(r;(n)) similarly
to [4]. Fix 2 <1<k —1. As n/l < a;, by assumption (i) of Theorem 4, we
have

(8) E(r(n)) < >  PlacA.. PaecA

al+--+a;=n
1<a; <--<a<n

< Y gla)...g(w)

a1+---+a;=n
1<ai<--<aq<n

Z (logal)l/k (logal)l/k

I—(k+1) k2 1—(k+1)/k2
s T al (k+1)/ a) (k+1)/
1<a; <--<a<n

IN

1
— ne
o +Z+:a (@) R
1§111<"'<lal<n
1
< o) [ ) (k+1)/k>—=140(1)
- <n Z (al c al_l)l—(k+l)/k2

al+--+a;=n
1<a1 < <a;<n
< p(kHD)/R2 = 14o(1) 1
> E _ 2
(al o alfl)l (k+1)/k
1<a;<n
i=1,..0—1

-1
(k1) /K2 —1+0(1 1
=nt*D/ ( )< Z 1(k+1)/k2)

1<ai1<n 1
_ n(k+1)/k2—1+o(1)(n(k+1)/k2+o(1))l—1 _ n—1+l(k+1)/k2+o(1)'

Let le{al,...,ak}, TQZ{bl,...,bk}, Ty # T, T1,To C A and
al+-- +ap=b+--- +b, =n.

We say these representations are disjoint if they share no element in common.
Let fi(n) denote the maximum number of pairwise disjoint representations
of n as the sum of [ distinct numbers from A. We show that with probabil-
ity 1, fi(n) is bounded. We will apply the following result due to Erdés and
Tetali which is called the disjointness lemma. We say events Gy, ..., G, are
independent if for all subsets I C {1,...,n}, P((;c; Gi) = [L;ic; P(Gi).
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LEMMA 4. If Y. P(B;) < u, then

> P(Bin---NBy) <y,

(B1,-.,Br)
independent

Proof. This is Lemma 1 in [4]. Let
B=A{(a1,...,q1) e A" ;a1 4+ +a=n,1<a; <--- <aq <n}.

Let H(B) = {7 C B: all the K € 7 are pairwise disjoint} and ¢; be a
constant. It is clear that the pairwise disjointness of the sets implies the
independence of the associated events, i.e., if K1 and Ky are pairwise disjoint
representations, then the events K1 C A, K2 C A are independent. Thus by
(8) and Lemma 4 we have

© PUam>ea)<pP( J NEK)< X P(NK)

TCH( )KET TCH(B KeT
|T|= c1+1 |T|= cl+1

= Y PEN-NKyp)<

(K11~~-7Kc1+1)
pairwise
disjoint

o
- (Cl + 1)'

1

m (E(fl(”)))qJrl

(E(ry(n)))" ! < (c11+1)' —2+o(1)

if ¢; large enough. By the Borel-Cantelli lemma, with probability 1 for almost
every random sequence A there is a finite number ¢;(A) such that for any
I < k and all n, the maximal number of disjoint [-representations of n from
A is at most ¢1(A).

In the next step we estimate E (7",[62] (n)) as in Lemma 3. Using also the fact
that > al/k=t & (7 2V 4y ~ mb/% and a, > n/k, a < 1/(2(k + 1)),
and (i) of Theorem 4, we have

E(r,[f}(n)):E< S tal...tak)

(a1, ) €SY)

:o( 3 P(aleA)...P(akeA))

(al,...,ak)ES,[f]

= O(logn) Z agkﬂ)/kQ—l o aék—s—l)/k?—l

a1+--tap=n
a1 <n®
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O(logn) (Z (k+1)/k2— 1(Zxk+1)/k2 1) (n/k)(k:—i-l)/kQ—l)

— O(n(a(k—l—l) )/k2 logn) _ O(n_1/2k2).

Thus by Lemma 4 and the Borel-Cantelli lemma, with probability 1, there
is a constant co such that almost surely the maximum number of disjoint

2]

representations of n in 7.’ (n) is at most ¢y for all large n.

To finish the proof it suffices to show that 7“,[3] (n) is bounded by a con-

stant. The proof is purely combinatorial. We need the following well-known
result due to Erdés and Rado [1]. Let r be a positive integer, 7 > 3. A collec-
tion of sets Dy, ..., D, forms a A-system if the sets have pairwise the same
intersection.

LEMMA 5. If H is a collection of sets of size at most k and |H| >
(r — 1)FE! then H contains r sets forming a A-system.

Set C(A) = (max(c1(A), c2))*k! and assume that n is sufficiently large.
[2]

To each representation of n counted in 7" (n) we assign the set formed by
the k terms occurring in this representation. We will apply Lemma 5 with H
being the collection of these sets. It is clear that if 7“,[3] (n) > C(A), then by
Lemma 5, r[ ]( ) contains a A-system with cg = max(c1(A),cz) + 1 sets. If
the mtersectlon of these sets is empty, then they form a family of ¢3 disjoint
k-representations of n, which contradicts the definition of c¢3. Otherwise,
assume that the intersection of these sets is {y1,...,y;}, where 1 < j < k-1
and Zgzl y; = m. Removing the common intersection of these sets we can
find ¢1(A)+1 (k—j)-representations of n—m = n—3_7_, y;. These ¢;(A)+1
sets are disjoint due to the definition of the A-system. Therefore in both cases
we obtain a contradiction.

Estimating r;(n). If we collect the equal terms, we have
(10) uray + ugas + -+ + upap = n,
where the u;’s are positive integers, and
(11) up +ug + - +up =k

Thus 7} (n) denotes the number of representations (10) of n, where the a;’s

are different. It can be proved similarly to the estimate of 7",[3] (n) that 7 (n) is
also bounded by a constant. For completeness we sketch the proof leaving the
details to the reader. Fix 2 < h < k—1. For fixed w1, ..., uy let sp(n) denote
the number of representations (10) of n. We show that sp(n) is bounded by
a constant. (Note that we have already proved this when all u;’s are equal
to one, and h = k.) First we estimate E(sp(n)), with a calculation similar
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to (8). Using the definition of s,(n), and n/h < ap, we have
(12) E(sp(n)) < > P(a; € A)...P(ap € A)

uial+--+upap=n
1<a1<--<ap<n

= > g(a1)...g(an)

uira1+--+upap=n
1<a;<--<ap<n

(log al)l/k (log ah)l/k
> —(r)/R2 " 1-(kt1)/R2
a a,

ujal+---+upap=n 1
1<a1<--<ap<n

— (k1) /K2 +o(1)

IA

Let sj(n) denote the size of a maximal collection of pairwise disjoint rep-
resentations (10). The same argument as in (9) shows that almost always
there exists a constant v such that s (n) < v, for n large enough. In view
of (12), and applying Lemma 4, we have

P(s}(n) > vp) < n~ 2o

if vy, is large enough. Thus by the Borel-Cantelli lemma, with probability 1,
sy(n) < vy, for every large enough n. We say that an m-tuple (a1,...,am)
(m < h) is an m-representation of n in the form (10) if there is a permutation
mof {1,...,h} such that Y 77" urya; = n. For all m < h, let s, (n) denote
the size of a maximal collection of pairwise disjoint such representations
of n. The same argument as above shows that almost always there exists a
constant p,, such that s}, (n) < p,, for every large enough n.

In the last step we apply Lemma 5 to prove that sp(n) is bounded by a
constant. Let C' = (max(p,,h!,vy))"h!. Let H in Lemma 5 be the collection
of representations (10) of n. Clearly |H| = sp(n). If sp(n) > C, and n is
sufficiently large then by Lemma 5, H contains a A-system with C' + 1 sets.
If the intersection of these sets is empty, then they form a family of disjoint
h-representations (10). Otherwise, let the common intersection of the sets
be {y1,...,ys}, where 1 < s < h — 1. By the pigeon-hole principle there
exists a permutation 7 of {1,...,h} such that we can find p,, + 1 (k — s)-
representations of n" = n—3"7 | ur;)ys. These py, +1 sets are disjoint, thus
in both cases we obtain a contradiction. Since there are only a finite number
of partitions of k£ in the form (11), we conclude that r}(n) is bounded by a
constant, i.e., there exists a constant C3 such that 7} (n) < C3. Let c4, cs, c6
be constants. Thus by (6) and (7) we have

|Ri(n) — k!'\n| < |Rk(n) — klrg(n)| + Kl re(n) — Ay
< Cs+ k!l 4 20— A \[2])
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< Cs 4 kel — M) g2 — 2]

< O + dik! M Tog n 4 2kley < e5 + dik!/ A, log .

End of proof. We argue as in [3]. In view of the estimate above and
assumption (ii), for large n we have

[Ri(n) — F(n)| < |[Ri(n) — k| + |[kAn — F(n)]|
< 5 + dpk!( A, logn) /2 4 kA, — F(n)]

1/2
F(n) + % A, — F(n)|) logn> + kA, — F(n)|

1/2
7. (F(n)log n)1/2> log n> + ¢7(F(n)logn)'/?

! cs

A\
o
ot
+
o
(=2}

S/ N N N
/\/? N
=
3
_|_
=9

c )\ /2 1/2
B F(n)+ s F(n) il )> > log n> + ¢7(F(n)logn)'/?

1 c 1/2
=c5+ cG((k! + \/&)F(n) logn) + ¢7(F(n) logn)'/?

< co(F(n)logn)'/2.

The proof of Theorem 4 is complete.
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