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1. Real and integral geometric progressions. Let R denote the real
numbers. For t ∈ R, let R>t denote the set of all real numbers x > t. Let [x]
denote the integer part of the real number x. For real numbers u < v, we
define the intervals

(u, v] = {x ∈ R : u < x ≤ v} and [u, v) = {x ∈ R : u ≤ x < v}.
Let X be a set of positive real numbers, and let u, v ∈ R>0 with u < v.

The dilation of X by q ∈ R>0 is the set

q ∗X = {qx : x ∈ X}.
The reciprocal of X is the set

X−1 = {x−1 : x ∈ X}.
For example, q ∗ (u, v] = (qu, qv] and (1/v, 1/u]−1 = [u, v).

If A = (a0, a1, . . . , ak−1) is a finite sequence of positive real numbers,
then the dilation of A by q is the sequence q ∗A = (qa0, qa1, . . . , qak−1) and
the reciprocal of A is the sequence A−1 = (1/a0, 1/a1, . . . , 1/ak−1).

Let N denote the set of positive integers, and let N] = N\{1}. Let k ∈ N
and r, a ∈ R>0. A geometric progression of length k and ratio r with first
term a is a sequence of the form

(a, ar, ar2, . . . , ark−1) = a ∗ (1, r, r2, . . . , rk−1).

This is an integer geometric progression of length k if arj ∈ N for all j ∈
{0, 1, . . . , k−1}. If (a, ar, ar2, . . . , ark−1) is an integer geometric progression,
then the ratio r must be a rational number. For example, (8, 12, 18, 27) is
an integer geometric progression of length 4 with ratio 3/2.

Note that the dilation by a positive real number q of the geometric
progression (a, ar, ar2, . . . , ark−1) of length k, ratio r, and first term a is
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the geometric progression (qa, qar, qar2, . . . , qark−1) of length k, ratio r,
and first term qa. The reciprocal of (a, ar, ar2, . . . , ark−1) is the geometric
progression (
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of length k, ratio 1/r, and first term 1/a.

The reverse of the sequence (a1, a2, . . . , ak−1, ak) is (ak, ak−1, . . . , a2, a1).
The reverse of the reciprocal of the geometric progression (a, ar, ar2, . . .
. . . , ark−1) is the geometric progression (b, br, br2, . . . , brk−1), where b =
1/(ark−1).

Thus, a set G of real numbers contains no geometric progression of length
k if and only if the dilation q∗G contains no geometric progression of length
k for every positive real number q. Moreover, if G contains no geometric
progression of length k, then no subset of G does, so for every positive real
number q, the set (q ∗G)∩N is then a set of positive integers that contains
no geometric progression of length k. Similarly, if G contains no geometric
progression of length k, thenG−1∩N is a set of positive integers that contains
no geometric progression of length k.

A geometric progression of length k with integer ratio is a geometric
progression of length k with ratio r ∈ N]. An integer geometric progres-
sion of length k with integer ratio is a geometric progression of the form
(a, ar, ar2, . . . , ark−1) with a ∈ N and r ∈ N].

For positive integers k and n, let gk(n) denote the cardinality of the
largest subset of {1, . . . , n} that contains no integer geometric progression
of length k with integer ratio, and let ĝk(n) denote the cardinality of the
largest subset of {1, . . . , n} that contains no integer geometric progression
of length k with rational ratio.

We have g1(n) = ĝ1(n) = 0 for all n ∈ N, and gk(n) = ĝk(n) = n if n < k.
Moreover, ĝ2(n) = 1 for n ≥ 2. We compute g2(n) in the next section. In
this paper we obtain new lower bounds for gk(n) for k ≥ 3.

For every integer k ≥ 3, there are four basic unsolved problems:

(1) Determine the cardinality and the structure of the maximal subsets
of {1, . . . , n} that contain no geometric progression of length k with
integer ratio. In particular, what is the maximum cardinality gk(n)?

(2) Determine the cardinality and the structure of the maximal subsets
of {1, . . . , n} that contain no geometric progression of length k with
rational ratio. What is the maximum cardinality ĝk(n)?

(3) Determine the density and structure of maximal infinite sets of pos-
itive integers that contain no geometric progression of length k with
integer ratio. What is the least upper bound of the densities of such
sets? Is this least upper bound achieved?
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(4) Determine the density and structure of maximal infinite sets of pos-
itive integers that contain no geometric progression of length k with
rational ratio. What is the least upper bound of the densities of such
sets? Is this least upper bound achieved?

Very little is known about these problems. The literature consists mostly
of lower bounds for the maximum cardinalities in Problems (1) and (2), and
for the densities in Problems (3) and (4). In this paper we improve the
lower bounds in Problem (1). Our method is to use a greedy algorithm
to construct, for every integer k ≥ 3, a unique maximal subset of the unit
interval (0, 1] that contains no geometric progression of length k with integer
ratio, and to use the measure of this set to obtain new lower bounds for the
finite sets considered in Problem (1).

The earliest discussion of sets with no k-term geometric progression is
in a paper of Rankin [6] in 1961 that was concerned with sets of integers
containing no k-term arithmetic progression.

2. Integral geometric progressions of length 2. We can quickly
solve the problem of integer geometric progressions of length 2 with integer
ratio. Every set {a, b} of positive real numbers with a < b is a geometric
progression of length 2 with ratio r = b/a. In particular, every set {a, b}
of positive integers with a < b is a geometric progression of length 2 with
rational ratio r = b/a. The set {a, b} is an integer geometric progression of
length 2 with integer ratio if and only if a, b ∈ N and a divides b. Thus, a set
S of positive integers contains no 2-term geometric progression if and only if
S is primitive in the sense that no element of S divides another element of S.

The following is a classical result in combinatorial number theory.

Theorem 1. Let g2(n) denote the cardinality of the largest primitive
subset of {1, . . . , n}, that is, the largest subset of {1, . . . , n} that contains no
integer geometric progression of length 2 with integer ratio. Then g2(n) =
[(n+ 1)/2].

Proof. For every positive integer n, the interval

(1) S = ([n/2], n] = {[n/2] + 1, [n/2] + 2, . . . , n− 1, n}
is primitive because 2([n/2] + 1) ≥ n+ 1 > n. The cardinality of this set is
[(n+ 1)/2], and so g2(n) ≥ [(n+ 1)/2].

Let S be any primitive subset of {1, . . . , n}. Each element s ∈ S can
be written uniquely in the form s = 2k(s)a(s), where k(s) is a nonnegative
integer and a(s) is an odd integer in {1, . . . , n}. If a(s1) = a(s2) for integers
s1, s2 ∈ S with s1 < s2, then s1 divides s2. It follows that the cardinality of
the primitive set S is at most the number of odd integers in {1, . . . , n}, and
so g2(n) ≤ [(n+ 1)/2].
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3. Good set, bad set. Let k be an integer, k ≥ 3. A k-good set is a set
of positive real numbers that contains no geometric progression of length k
with integer ratio. For example, the set

G
(k)
1 = (1/2k−1, 1]

is k-good because, if x ∈ G(k)
1 and r ∈ N], then xrk−1 ≥ x2k−1 > 1 and so

{x, xr, xr2, . . . , xrk−1} is not a subset of G
(k)
1 .

Let G be a k-good subset of (0, 1], and let x ∈ (0, 1]\G. The real number
x is k-bad with respect to G if there exists an integer r ∈ N] such that G∪{x}
contains the k-term geometric progression (x, xr, xr2, . . . , xrk−1). Thus, if x
is k-bad with respect to G, then the set G ∪ {x} is not k-good.

For example, the number 1/2k is k-bad with respect to the k-good set

G
(k)
1 because (1/2k, 1/2k−1, 1/2k−2, . . . , 1/2, 1) is a k-term geometric pro-

gression with ratio r = 2 contained in G
(k)
1 ∪ {1/2k}.

The number 3/16 is 3-bad with respect to the 3-good set G
(3)
1 = (1/4, 1]

because, with r = 2,{
3
16r,

3
16r

2
}

=
{
3
8 ,

3
4

}
⊆
(
1
4 , 1
]

= G
(3)
1

and so the set G
(3)
1 ∪ {3/16} contains the 3-term geometric progression

(3/16, 3/8, 3/4). Similarly, 1/10 is 3-bad with respect to G
(3)
1 because, with

r = 3, {
1
10 ,

1
10r,

1
10r

2
}

=
{

1
10 ,

3
10 ,

9
10

}
⊆ G(3)

1 ∪
{

1
10

}
.

Note that if G is a k-good subset of (0, 1] and if x ∈ (0, 1] \ G is k-bad
with respect to G, then x is also k-bad with respect to the good set G∩(x, 1],
because x < rjx for all r ∈ N] and j ∈ {1, . . . , k − 1}.

The real number x ∈ (0, 1]\G is k-good with respect to G if x is not k-bad
with respect to G. Thus, x is k-good with respect to G if and only if, for every
r ∈ N], there exists j ∈ {1, . . . , k−1} such that xrj /∈ G. Because G ⊆ (0, 1]
and xrk−1 /∈ G if r > (1/x)1/(k−1), it follows that x ∈ [0, 1)\G is k-good with
respect to G if and only if, for every integer r with 2 ≤ r ≤ (1/x)1/(k−1),
there exists j ∈ {1, . . . , k − 1} with xrj /∈ G.

For every k-good set G ⊆ (0, 1], we define

Bad(G) = {x ∈ (0, 1] \G : x is k-bad with respect to G}.
Thus, G ∪ {x} is k-good for all x ∈ (0, 1] \ (G ∪ Bad(G)). If G and G′ are
k-good sets with G ⊆ G′, then Bad(G) ⊆ Bad(G′).

For fixed k, we usually write “good” instead of “k-good” and “bad”
instead of “k-bad.”

4. Construction of a good set of real numbers. Fix the integer
k ≥ 3. We shall use a greedy algorithm to construct a large good set con-
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tained in the interval (0, 1]. We begin with some simple observations about
good and bad sets.

Lemma 1. Let k ≥ 3, let 0 < a < 1, and let δk(a) = a(k−1)/(k−2).

(i) For every δ > 0, the interval (0, δ] is not good.
(ii) Every number in (0, a2] is good with respect to (a, 1].

(iii) Let x ∈ (0, 1]. If xrj ∈ (a, 1] for some r ∈ N] and for all j ∈
{1, . . . , k − 1}, then x > δk(a).

(iv) If G is a good set with G ⊆ (a, 1], then (0, δk(a)] ∩ Bad(G) = ∅.
Note that 0 < δk(a) < a.

Proof of Lemma 1. (i) We have 0 < 21−kδ < δ. For every x ∈ (0, 21−kδ],
we have

0 < x < 2x < · · · < 2k−1x ≤ 2k−121−kδ = δ

and so (0, δ] contains the k-term geometric progression {x, 2x, . . . , 2k−1x}.
Thus, the interval (0, δ] is not good.

(ii) If x ∈ (0, a2], r ∈ N] and xr ∈ (a, 1], then xr > a and r > a/x. It
follows that

xrk−1 ≥ xr2 > x

(
a

x

)2

=
a2

x
> 1

and so x is good with respect to (a, 1].
(iii) If r ∈ N] and a < rx < · · · < rk−1x ≤ 1 then

a

r
< x ≤ 1

rk−1

and so 1/r > a1/(k−2). Therefore,

x >
a

r
> aa1/(k−2) = a(k−1)/(k−2) = δk(a).

(iv) This follows immediately from (iii).

Lemma 2. Let (ai)
2n
i=1 be a strictly decreasing sequence of positive real

numbers with a1 ≤ 1 such that

Gn =

n⋃
i=1

(a2i, a2i−1]

is a good set. If x ∈ Bad(Gn), then there exists δ > 0 such that (x− δ, x] ⊆
Bad(Gn).

Proof. We have Gn ⊆ (0, 1]. If x ∈ Bad(Gn), then there exists r ∈ N]

such that xrj ∈ Gn for all j ∈ {1, . . . , k − 1}. It follows that, for each
j ∈ {1, . . . , k − 1}, there exists ij ∈ {1, . . . , n} such that xrj ∈ (a2ij , a2ij−1]
or, equivalently,

a2ij
rj

< x ≤
a2ij−1

rj
.
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Choose δ > 0 such that
a2ij
rj

< x− δ < x ≤
a2ij−1

rj

for all j ∈ {1, . . . , k − 1}. If y ∈ (x− δ, x], then

a2ij < (x− δ)rj < yrj ≤ xrj ≤ a2ij−1
and so yrj ∈ (a2ij , a2ij−1] ⊆ Gn for all j ∈ {1, . . . , k− 1}. Thus, (x− δ, x] ⊆
Bad(Gn).

Lemma 3. Let (ai)
2n+1
i=1 be a strictly decreasing sequence of positive real

numbers with a1 ≤ 1 such that

Gn =
n⋃

i=1

(a2i, a2i−1]

is a good set, and
n⋃

i=1

(a2i+1, a2i] ⊆ Bad(Gn).

If x ∈ (a2n+1/2, a2n+1] is good with respect to Gn, then there exists δ > 0
such that (x− δ, x] ∪Gn is good.

Proof. Let x ∈ (a2n+1/2, a2n+1] be good with respect to Gn. For each
r ∈ N] there exists jr ∈ {1, . . . , k − 1} such that xrjr /∈ Gn. Let r0 be the
smallest integer such that r0 ≥ 2 and xrk−10 > a1. Then x > a1/r

k−1
0 , and

there exists δ0 > 0 such that x− δ0 > a1/r
k−1
0 . If y ∈ (x− δ0, x] and r ≥ r0,

then

yrk−1 > (x− δ0)rk−10 > a1

and so yrk−1 /∈ Gn.

For each integer r such that 2 ≤ r < r0, we have

a2n+1 < 2x ≤ xrjr ≤ xrk−1 ≤ a1
and so there exists ir ∈ {1, . . . , n} such that a2ir+1 < xrjr ≤ a2ir or, equiv-
alently,

a2ir+1

rjr
< x ≤ a2ir

rjr
.

Choose 0 < δ1 < x/2 such that
a2ir+1

rjr
< x− δ1 < x ≤ a2ir

rjr

for all r ∈ N] with r < r0. If y ∈ (x− δ1, x] and r < r0, then

a2ir+1 < (x− δ1)rjr < yrjr ≤ xrjr ≤ a2ir
and so yrjr /∈ Gn. Let δ = min(δ0, δ1). It follows that if y ∈ (x− δ, x], then
y is good with respect to Gn.
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Theorem 2. Let k ≥ 3. There exists a unique strictly decreasing se-
quence (ai)

∞
i=1 of positive real numbers with a1 = 1 such that

G =

∞⋃
i=1

(a2i, a2i−1]

is a good set, and

Bad(G) =
∞⋃
i=1

(a2i+1, a2i].

Proof. We construct the sequence (ai)
∞
i=1 by induction. Let a1 = 1. If

x > 21−k, then for all r ∈ N] we have

rk−1x > 2k−121−k = 1

and so (21−k, 1] is a good set. Therefore,

a2 = inf{x ∈ (0, 1] : (x, a1] is good} ≤ 21−k.

We observe that [21−k, 1] is not a good set because, with y = 21−k, we have
{y, y2, . . . , y2k−1} ⊆ [21−k, 1]. Therefore,

a2 = 1/2k−1 ∈ Bad(G1) where G1 = (a2, a1] = (1/2k−1, 1].

We define

a3 = inf{x ∈ (0, 1] : (x, a2] ⊆ Bad(G1)}.
It follows from Lemmas 1 and 2 that 0< δk(a2)≤ a3 < a2 and a3 /∈ Bad(G1).

Let n ≥ 1, and assume that there is a unique strictly decreasing sequence
(ai)

2n+1
i=1 of positive real numbers with a1 = 1 such that

Gn =

n⋃
i=1

(a2i, a2i−1]

is a good set,
n⋃

i=1

(a2i+1, a2i] ⊆ Bad(Gn),

and

a2n+1 = inf{x ∈ (0, 1] : (x, a2n] ⊆ Bad(Gn)}.
By Lemma 2, the number a2n+1 is good with respect to Gn. Let

a2n+2 = inf{x ∈ (0, a2n+1] : (x, a2n+1] is good with respect to Gn},
Gn+1 = Gn ∪ (a2n+2, a2n+1].

Lemmas 1 and 3 imply that 0 < a2n+2 < a2n+1 and a2n+2 ∈ Bad(Gn+1).
We define

a2n+3 = inf{x ∈ (0, 1] : (x, a2n+2] ⊆ Bad(Gn)}.
This completes the induction.
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Theorem 3. Let (ai)
2n
i=1 be a strictly decreasing sequence of positive real

numbers such that

Gn =
n⋃

i=1

(a2i, a2i−1]

is a good set, and
n−1⋃
i=1

(a2i+1, a2i] ⊆ Bad(Gn).

If 1/a1 and 1/a2 are integers, then 1/ai is an integer for all i = 1, . . . , 2n.

Proof. The proof is by induction on i. Let 2 ≤ i ≤ n and assume that
there are positive integers A1 < · · · < A2i−2 such that aj = 1/Aj for j =
1, . . . , 2i − 2. We shall prove that there are positive integers A2i−1 and A2i

such that a2i−1 = 1/A2i−1 and a2i = 1/A2i.
Consider the good number a2i−1. If h ∈ N and h ≥ (a2i−2 − a2i−1)−1,

then
a2i−1 + 1/h ∈ (a2i−1, a2i−2] ⊆ Bad(Gn)

and so there exists rh ∈ N] such that, for all j ∈ {1, . . . , k − 1},
(a2i−1 + 1/h)rjh ∈ Gn

and
a2i−1 < a2i−1rh ≤ a2i−1rjh < (a2i−1 + 1/h)rk−1h ≤ a1.

Therefore,
2 ≤ rh < a1/a2i−1.

Because a2i−1 ∈ Gn, there exists jh ∈ {1, . . . , k − 1} such that

a2i−1r
jh
h /∈ Gn.

There are only finitely many choices for rh and jh. By the pigeonhole prin-
ciple, there are integers r ∈ N] and j ∈ {1, . . . , k− 1} and there is a strictly
increasing infinite sequence (h`)`∈N of positive integers such that

rh`
= r and jh`

= j

for all ` ∈ N. Because a2i−1r
j /∈ Gn and a2i−1 < a2i−1r

j < a1, there is
a unique positive integer t ≤ i such that a2i−1r

j ∈ (a2t−1, a2t−2]. Because
(a2i−1 + 1/h`)r

j ∈ Gn, it follows that a2i−1r
j ≤ a2t−2 < (a2i−1 + 1/h`)r

j or,
equivalently,

a2t−2
rj
− 1

h`
< a2i−1 ≤

a2t−2
rj

.

By the induction hypothesis, there is a positive integer A2h−2 such that
a2t−2 = 1/A2t−2. Letting `→∞, we obtain

a2i−1 =
a2t−2
rj

=
1

rjA2t−2
=

1

A2i−1

with A2i−1 = rjA2t−2.
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Next we consider the bad number a2i. There exists r ∈ N] such that
a2ir

j ∈ Gn for all j ∈ {1, . . . , k − 1}. If h ≥ (a2i−1 − a2i)−1, then

a2i + 1/h ∈ (a2i, a2i−1] ⊆ Gn

and so there exists jh ∈ {1, . . . , k − 1} such that

(a2i + 1/h)rjh /∈ Gn.

By the pigeonhole principle again, there is an integer j ∈ {1, . . . , k− 1} and
there is a strictly increasing infinite sequence (h`)`∈N of positive integers such
that jh`

= j for all ` ∈ N. Because a2ir
j ∈ Gn, there is a unique positive

integer t ≤ i such that a2ir
j ∈ (a2t, a2t−1]. Because (a2i + 1/h`)r

j /∈ Gn,
it follows that, for all ` ∈ N, we have a2ir

j ≤ a2t−1 < (a2i + 1/h`)r
j or,

equivalently,
a2t−1
rj
− 1

h`
< a2i ≤

a2t−1
rj

.

By the induction hypothesis, there is a positive integer A2t−1 such that
a2t−1 = 1/A2t−1. Letting `→∞, we obtain

a2i =
a2t−1
rj

=
1

rjA2t−1
=

1

A2i

with A2i = rjA2t−1.

Theorem 4. Let (ai)i∈N be a strictly decreasing infinite sequence of
positive real numbers such that

G =
∞⋃
i=1

(a2i, a2i−1]

is a good set, and

Bad(G) =

∞⋃
i=1

(a2i+1, a2i].

If 1/a1 and 1/a2 are integers, then 1/ai is an integer for all i ∈ N. Moreover,

lim
i→∞

ai = 0.

Proof. Apply Theorem 3 to the good set Gn =
⋃n

i=1(a2i, a2i−1]. Because
there is a strict increasing sequence (Ai)

∞
i=1 of positive integers such that

ai = 1/Ai, it follows that

lim
i→∞

ai = lim
i→∞

1

Ai
= 0.

Theorem 5. Let k ≥ 3. There exists a unique strictly increasing se-

quence (A
(k)
i )∞i=1 of positive integers with A

(k)
1 = 1 such that

(2) G(k) =

∞⋃
i=1

(
1

A
(k)
2i

,
1

A
(k)
2i−1

]
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is a k-good set and

Bad(G(k)) =

∞⋃
i=1

(
1

A
(k)
2i+1

,
1

A
(k)
2i

]
.

Proof. The existence and uniqueness of (A
(k)
i )∞i=1 follows immediately

from Theorems 2 and 4.

Note that inf G(k) = inf Bad(G(k)) = 0 because limi→∞A
(k)
i =∞.

We have already proved that A
(k)
2 = 2k−1. We can also determine the

integers A
(k)
3 and A

(k)
4 . The proofs use a simple arithmetic inequality: If

k ≥ 3, then

3k−1

2k
=

1

2

(
3

2

)k−1
≥ 1

2

(
3

2

)2

=
9

8
> 1

and so 2k < 3k−1. Note that between two consecutive integral powers of 2
there is at most one integral power of 3.

Theorem 6. If k ≥ 3, then

A
(k)
3 = 2k.

Proof. Let G
(k)
1 = (1/2k−1, 1]. If 1/2k < x ≤ 1/2k−1 then

1

2k−1
=

2

2k
< 2x < 22x < · · · < 2k−1x ≤ 2k−1

2k−1
= 1

and so {2ix : i = 1, . . . , k − 1} ⊆ G
(k)
1 , that is, x is k-bad with respect

to G
(k)
1 .

If x = 1/2k, then 2x = 1/2k−1 /∈ G(k)
1 . If r ≥ 3, then

rk−1x ≥ 3k−1

2k
> 1

and so rk−1x /∈ G(k)
1 . Therefore, 1/2k is k-good with respect to G

(k)
1 , and

A
(k)
3 = 2k.

Theorem 7. Let k ≥ 3. If there is no integral power of 3 between 2k−1

and 2k, then

A
(k)
4 = 3k−1.

If there is a positive integer ` such that

(3) 2k−1 < 3` < 2k,

then 2 ≤ ` ≤ k − 2 and

A
(k)
4 = 2k3k−1−` = 3k−1

2k

3`
.
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Inequality (3) is equivalent to 1 < 2k/3` < 2.
For positive integers k, the following are equivalent:

(i) There is an integral power of 3 between 2k−1 and 2k.
(ii) The fractional part of k log3 2 is less than log3 2.

(iii) k is in {[` log2 3] + 1 : ` = 1, 2, . . .}. Thus, the formula for A
(k)
4

depends on diophantine properties of logarithms.

Proof of Theorem 7. We have A
(k)
3 = 1/2k by Theorem 6. Let

1

4k−1
< x ≤ 1

2k
.

For r ≥ 4 we have

xrk−1 ≥ x4k−1 >
4k−1

4k−1
= 1

and so {xri : i = 1, . . . , k − 1} 6⊆ G(k)
1 .

With r = 2 we have

x2k−1 >
2k−1

4k−1
=

1

2k−1
.

Let j be the smallest integer such that x2j > 1/2k−1. Then j ≤ k − 1.
Because 2x ≤ 2/2k = 1/2k−1, it follows that j ≥ 2. If

x2j−1 ≤ 1

2k

then

x2j ≤ 1

2k−1
< x2j ,

which is absurd. Therefore,

1

2k
< x2j−1 ≤ 1

2k−1

and so {x2i : i = 1, . . . , k − 1} 6⊆ G(k)
1 .

The remaining case is the ratio r = 3 and the geometric progression
{x3i : i = 1, . . . , k − 1}. If x > 1/3k−1, then x3k−1 > 1 and x is good with

respect to G
(k)
1 . Therefore, A

(k)
4 ≥ 3k−1.

Let x = 1/3k−1. If there exists j ∈ {1, . . . , k − 1} such that

1

2k
< x3j =

3j

3k−1
<

1

2k−1

then

2k−1 < 3k−1−j < 2k.

Hence, if there is no power of 3 between 2k−1 and 2k, then for all i ∈
{1, . . . , k − 1}, either x < 3ix < 1/2k or 1/2k−1 < 3ix ≤ 1. Thus, 1/3k−1 is

k-bad, and A
(k)
4 = 3k−1.
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Suppose that there is a power of 3 between 2k−1 and 2k, and that ` is
the unique positive integer that satisfies (3). We observe that k ≥ 4 because
there is no power of 3 between 22 = 4 and 23 = 8, and that 2 ≤ ` ≤ k − 2
because 23 < 32 ≤ 3` and 2k−1 < 3` ≤ 3k−2. Let

j = k − 1− `.

Then 1 ≤ j ≤ k − 3. For k ≥ 4 we have(
4

3

)k−1
≥
(

4

3

)3

> 2

and so (
2

3

)k−1
>

1

2k−2
.

Let

x0 =
1

2k3j
=

3`

2k3k−1
>

2k−1

2k3k−1
=

1

2k

(
2

3

)k−1
>

1

4k−1
.

If

x0 < x ≤ 1

3k−1
,

then
1

2k
= x03

j < x3j ≤ 3j

3k−1
=

1

3`
<

1

2k−1

and so x is good with respect to G
(k)
1 .

It remains only to prove that x0 is bad. If 1 ≤ i ≤ j, then

x0 < x03
i ≤ x03j =

1

2k
.

If j + 1 ≤ i ≤ k − 1, then

1

2k−1
<

3

2k
= 3j+1x0 ≤ 3ix0 ≤ 3k−1x0 =

3`

2k
< 1.

Thus, x0 = 1/(2k3j) is bad and A
(k)
4 = 2k3j .

5. Integer sequences with no k-term geometric progression. If
a and b are real numbers with a ≤ b, then the number of integers in the
interval (a, b] is b− a+ θ with |θ| < 1.

Recall that, for positive integers k and n, the arithmetic function gk(n)
denotes the cardinality of the largest subset of {1, . . . , n} that contains no
integer geometric progression of length k with integer ratio.
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Theorem 8. Let k ≥ 3, and let (A
(k)
i )∞i=1 be the strictly increasing

sequence of positive integers constructed in Theorem 5. Then

γk = lim inf
n→∞

gk(n)

n
≥
∞∑
i=1

(
1

A
(k)
2i−1

− 1

A
(k)
2i

)
.

In particular,

γk ≥ 1− 1

2k
− 1

3k
.

Proof. For every positive integer h, the set

G
(k)
h =

h⋃
i=1

(
1

A
(k)
2i

,
1

A
(k)
2i−1

]
is a k-good subset of (0, 1]. For every positive integer n, the dilated set

n ∗G(k)
h = n ∗

h⋃
i=1

(
1

A2i
,

1

A2i−1

]
=

h⋃
i=1

(
n

A2i
,

n

A2i−1

]
is a disjoint union of intervals, and so

|(n ∗G(k)
h ) ∩ N| =

h∑
i=1

∣∣∣∣( n

A2i
,

n

A2i−1

]
∩ N

∣∣∣∣ = n

h∑
i=1

(
1

A2i−1
− 1

A2i

)
+ θh

with |θh| < h. Because the dilation of a k-good set is k-good, and a subset

of a k-good set is k-good, it follows that (n ∗ G(k)
h ) ∩ N is a k-good set of

positive integers. Moreover, A1 = 1 implies that (n ∗G(k)
h )∩N ⊂ {1, . . . , n}.

Therefore,

|(n ∗G(k)
h ) ∩ N| ≤ gk(n)

and so

(4)

h∑
i=1

(
1

A2i−1
− 1

A2i

)
= lim

n→∞

|(n ∗G(k)
h ) ∩ N|
n

≤ lim inf
n→∞

gk(n)

n
.

This inequality holds for all h ∈ N, and so
∞∑
i=1

(
1

A2i−1
− 1

A2i

)
≤ lim inf

n→∞

gk(n)

n
= γk.

Applying inequality (4) with h = 2 and the values for A
(k)
3 and A

(k)
4 com-

puted in Theorems 6 and 7, we obtain

γk ≥
(

1− 1

2k−1

)
+

(
1

2k
− 1

3k

)
= 1− 1

2k
− 1

3k
.
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Table 1. All integers A
(k)
i satisfying Theorem 5 that are less than 106, for 3 ≤ k ≤ 9.

These numbers are sequences A235054–60 in the OEIS.

k

i 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1

2 4 8 16 32 64 128 256

3 8 16 32 64 128 256 512

4 9 48 96 243 1152 2304 6561

5 12 200 144 288 1728 3456 6912

6 24 216 576 576 8192 16384 13824

7 27 288 4032 729 28800 32768 19683

8 32 1200 4096 1152 172800 163840 131072

9 36 1296 4608 2048 248832 288000 221184

10 40 1400 32256 3645 307328 331776 492075

11 45 1512 32768 4000 395136 497664 655360

12 48 1600 36288 10240 884736

13 2208 1728 36864 20736 995328

14 2209 1800 40320 21952

15 2256 1944 40960 92160

16 8832 2000 41472 100000

17 8836 62400 129600 102400

18 9024 63936 131072 207360

19 17664 73800 147456 219520

20 17672 74088 157216 518400

21 18048 75600 166464 548800

22 19872 79704 921600

23 19881 80688

24 20304 81648

25 26496 88000

26 26508 499200

27 27072 511488

28 52992 590400

29 53016 592704

30 54144 604800

30 54144 604800

31 59616 637632

32 59643 645504

33 60912 653184

34 70656 704000

35 70688 998400
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Table 1 (cont.)

k

i 3 4 5 6 7 8 9

36 72192

37 79488

38 79524

39 81216

40 88320

41 88360

42 90240

43 99360

44 99405

45 101520

46 103776

47 103823

48 105984

49 106032

50 108192

51 108241

52 108288

It is a finite calculation to determine explicit values of the integers

A
(k)
i for small values of i and k. Table 1 contains all values of A

(k)
i for

3 ≤ k ≤ 9 with A
(k)
i < 106. Applying inequality (4), we can use these val-

ues to get lower bounds for γk that improve results obtained previously
by Rankin [6] and Riddell [7]. For k = 3, McNew [3] has the current
best lower bound. Related results have been obtained by Brown and Gor-
don [2], Beiglböck, Bergelson, Hindman, and Strauss [1], and Nathanson and
O’Bryant [4, 5].

The following table records upper and lower bounds for γk.

Lower bounds on γk Upper bounds on γk

k Rankin Riddell this paper McNew k McNew from rk Riddell

3 0.719 745 0.815 870 0.818 410 3 0.819222 0.846 376 0.857 143

4 0.862 601 0.895 283 0.919 818 4 0.928 874 0.933 334

5 0.931 652 0.958 056 0.963 737 5 0.967 742 0.967 742

6 0.966 324 0.980 371 0.982 877 6 0.983 871 0.984 126

7 0.983 438 0.991 159 0.991 805 7 0.992 126

8 0.991 841 0.995 717 0.995 913 8 0.996 079

9 0.995 969 0.997 939 0.998 012 9 0.998 044
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