A problem of Rankin on sets without geometric progressions

by
Melvyn B. Nathanson (Bronx, NY) and
Kevin O'Bryant (Staten Island, NY)

1. Real and integral geometric progressions. Let \mathbb{R} denote the real numbers. For $t \in \mathbb{R}$, let $\mathbb{R}_{>t}$ denote the set of all real numbers $x>t$. Let $[x]$ denote the integer part of the real number x. For real numbers $u<v$, we define the intervals

$$
(u, v]=\{x \in \mathbb{R}: u<x \leq v\} \quad \text { and } \quad[u, v)=\{x \in \mathbb{R}: u \leq x<v\}
$$

Let X be a set of positive real numbers, and let $u, v \in \mathbb{R}_{>0}$ with $u<v$. The dilation of X by $q \in \mathbb{R}_{>0}$ is the set

$$
q * X=\{q x: x \in X\}
$$

The reciprocal of X is the set

$$
X^{-1}=\left\{x^{-1}: x \in X\right\}
$$

For example, $q *(u, v]=(q u, q v]$ and $(1 / v, 1 / u]^{-1}=[u, v)$.
If $A=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ is a finite sequence of positive real numbers, then the dilation of A by q is the sequence $q * A=\left(q a_{0}, q a_{1}, \ldots, q a_{k-1}\right)$ and the reciprocal of A is the sequence $A^{-1}=\left(1 / a_{0}, 1 / a_{1}, \ldots, 1 / a_{k-1}\right)$.

Let \mathbb{N} denote the set of positive integers, and let $\mathbb{N}^{\sharp}=\mathbb{N} \backslash\{1\}$. Let $k \in \mathbb{N}$ and $r, a \in \mathbb{R}_{>0}$. A geometric progression of length k and ratio r with first term a is a sequence of the form

$$
\left(a, a r, a r^{2}, \ldots, a r^{k-1}\right)=a *\left(1, r, r^{2}, \ldots, r^{k-1}\right)
$$

This is an integer geometric progression of length k if $a r^{j} \in \mathbb{N}$ for all $j \in$ $\{0,1, \ldots, k-1\}$. If $\left(a, a r, a r^{2}, \ldots, a r^{k-1}\right)$ is an integer geometric progression, then the ratio r must be a rational number. For example, $(8,12,18,27)$ is an integer geometric progression of length 4 with ratio $3 / 2$.

Note that the dilation by a positive real number q of the geometric progression $\left(a, a r, a r^{2}, \ldots, a r^{k-1}\right)$ of length k, ratio r, and first term a is

[^0]the geometric progression ($q a, q a r, q a r^{2}, \ldots, q a r^{k-1}$) of length k, ratio r, and first term $q a$. The reciprocal of $\left(a, a r, a r^{2}, \ldots, a r^{k-1}\right)$ is the geometric progression
$$
\left(\frac{1}{a}, \frac{1}{a}\left(\frac{1}{r}\right), \frac{1}{a}\left(\frac{1}{r}\right)^{2}, \ldots, \frac{1}{a}\left(\frac{1}{r}\right)^{k-1}\right)
$$
of length k, ratio $1 / r$, and first term $1 / a$.
The reverse of the sequence $\left(a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}\right)$ is $\left(a_{k}, a_{k-1}, \ldots, a_{2}, a_{1}\right)$. The reverse of the reciprocal of the geometric progression (a,ar,ar${ }^{2}, \ldots$ $\left.\ldots, a r^{k-1}\right)$ is the geometric progression $\left(b, b r, b r^{2}, \ldots, b r^{k-1}\right)$, where $b=$ $1 /\left(a r^{k-1}\right)$.

Thus, a set G of real numbers contains no geometric progression of length k if and only if the dilation $q * G$ contains no geometric progression of length k for every positive real number q. Moreover, if G contains no geometric progression of length k, then no subset of G does, so for every positive real number q, the set $(q * G) \cap \mathbb{N}$ is then a set of positive integers that contains no geometric progression of length k. Similarly, if G contains no geometric progression of length k, then $G^{-1} \cap \mathbb{N}$ is a set of positive integers that contains no geometric progression of length k.

A geometric progression of length k with integer ratio is a geometric progression of length k with ratio $r \in \mathbb{N}^{\sharp}$. An integer geometric progression of length k with integer ratio is a geometric progression of the form $\left(a, a r, a r^{2}, \ldots, a r^{k-1}\right)$ with $a \in \mathbb{N}$ and $r \in \mathbb{N}^{\sharp}$.

For positive integers k and n, let $g_{k}(n)$ denote the cardinality of the largest subset of $\{1, \ldots, n\}$ that contains no integer geometric progression of length k with integer ratio, and let $\hat{g}_{k}(n)$ denote the cardinality of the largest subset of $\{1, \ldots, n\}$ that contains no integer geometric progression of length k with rational ratio.

We have $g_{1}(n)=\hat{g}_{1}(n)=0$ for all $n \in \mathbb{N}$, and $g_{k}(n)=\hat{g}_{k}(n)=n$ if $n<k$. Moreover, $\hat{g}_{2}(n)=1$ for $n \geq 2$. We compute $g_{2}(n)$ in the next section. In this paper we obtain new lower bounds for $g_{k}(n)$ for $k \geq 3$.

For every integer $k \geq 3$, there are four basic unsolved problems:
(1) Determine the cardinality and the structure of the maximal subsets of $\{1, \ldots, n\}$ that contain no geometric progression of length k with integer ratio. In particular, what is the maximum cardinality $g_{k}(n)$?
(2) Determine the cardinality and the structure of the maximal subsets of $\{1, \ldots, n\}$ that contain no geometric progression of length k with rational ratio. What is the maximum cardinality $\hat{g}_{k}(n)$?
(3) Determine the density and structure of maximal infinite sets of positive integers that contain no geometric progression of length k with integer ratio. What is the least upper bound of the densities of such sets? Is this least upper bound achieved?
(4) Determine the density and structure of maximal infinite sets of positive integers that contain no geometric progression of length k with rational ratio. What is the least upper bound of the densities of such sets? Is this least upper bound achieved?

Very little is known about these problems. The literature consists mostly of lower bounds for the maximum cardinalities in Problems (1) and (2), and for the densities in Problems (3) and (4). In this paper we improve the lower bounds in Problem (1). Our method is to use a greedy algorithm to construct, for every integer $k \geq 3$, a unique maximal subset of the unit interval $(0,1]$ that contains no geometric progression of length k with integer ratio, and to use the measure of this set to obtain new lower bounds for the finite sets considered in Problem (1).

The earliest discussion of sets with no k-term geometric progression is in a paper of Rankin [6] in 1961 that was concerned with sets of integers containing no k-term arithmetic progression.
2. Integral geometric progressions of length 2. We can quickly solve the problem of integer geometric progressions of length 2 with integer ratio. Every set $\{a, b\}$ of positive real numbers with $a<b$ is a geometric progression of length 2 with ratio $r=b / a$. In particular, every set $\{a, b\}$ of positive integers with $a<b$ is a geometric progression of length 2 with rational ratio $r=b / a$. The set $\{a, b\}$ is an integer geometric progression of length 2 with integer ratio if and only if $a, b \in \mathbb{N}$ and a divides b. Thus, a set S of positive integers contains no 2-term geometric progression if and only if S is primitive in the sense that no element of S divides another element of S.

The following is a classical result in combinatorial number theory.
TheOrem 1. Let $g_{2}(n)$ denote the cardinality of the largest primitive subset of $\{1, \ldots, n\}$, that is, the largest subset of $\{1, \ldots, n\}$ that contains no integer geometric progression of length 2 with integer ratio. Then $g_{2}(n)=$ $[(n+1) / 2]$.

Proof. For every positive integer n, the interval

$$
\begin{equation*}
S=([n / 2], n]=\{[n / 2]+1,[n / 2]+2, \ldots, n-1, n\} \tag{1}
\end{equation*}
$$

is primitive because $2([n / 2]+1) \geq n+1>n$. The cardinality of this set is $[(n+1) / 2]$, and so $g_{2}(n) \geq[(n+1) / 2]$.

Let S be any primitive subset of $\{1, \ldots, n\}$. Each element $s \in S$ can be written uniquely in the form $s=2^{k(s)} a(s)$, where $k(s)$ is a nonnegative integer and $a(s)$ is an odd integer in $\{1, \ldots, n\}$. If $a\left(s_{1}\right)=a\left(s_{2}\right)$ for integers $s_{1}, s_{2} \in S$ with $s_{1}<s_{2}$, then s_{1} divides s_{2}. It follows that the cardinality of the primitive set S is at most the number of odd integers in $\{1, \ldots, n\}$, and so $g_{2}(n) \leq[(n+1) / 2]$.
3. Good set, bad set. Let k be an integer, $k \geq 3$. A k-good set is a set of positive real numbers that contains no geometric progression of length k with integer ratio. For example, the set

$$
G_{1}^{(k)}=\left(1 / 2^{k-1}, 1\right]
$$

is k-good because, if $x \in G_{1}^{(k)}$ and $r \in \mathbb{N}^{\sharp}$, then $x r^{k-1} \geq x 2^{k-1}>1$ and so $\left\{x, x r, x r^{2}, \ldots, x r^{k-1}\right\}$ is not a subset of $G_{1}^{(k)}$.

Let G be a k-good subset of $(0,1]$, and let $x \in(0,1] \backslash G$. The real number x is k-bad with respect to G if there exists an integer $r \in \mathbb{N}^{\sharp}$ such that $G \cup\{x\}$ contains the k-term geometric progression $\left(x, x r, x r^{2}, \ldots, x r^{k-1}\right)$. Thus, if x is k-bad with respect to G, then the set $G \cup\{x\}$ is not k-good.

For example, the number $1 / 2^{k}$ is k-bad with respect to the k-good set $G_{1}^{(k)}$ because $\left(1 / 2^{k}, 1 / 2^{k-1}, 1 / 2^{k-2}, \ldots, 1 / 2,1\right)$ is a k-term geometric progression with ratio $r=2$ contained in $G_{1}^{(k)} \cup\left\{1 / 2^{k}\right\}$.

The number $3 / 16$ is 3 -bad with respect to the 3 -good set $G_{1}^{(3)}=(1 / 4,1]$ because, with $r=2$,

$$
\left\{\frac{3}{16} r, \frac{3}{16} r^{2}\right\}=\left\{\frac{3}{8}, \frac{3}{4}\right\} \subseteq\left(\frac{1}{4}, 1\right]=G_{1}^{(3)}
$$

and so the set $G_{1}^{(3)} \cup\{3 / 16\}$ contains the 3 -term geometric progression $(3 / 16,3 / 8,3 / 4)$. Similarly, $1 / 10$ is 3 -bad with respect to $G_{1}^{(3)}$ because, with $r=3$,

$$
\left\{\frac{1}{10}, \frac{1}{10} r, \frac{1}{10} r^{2}\right\}=\left\{\frac{1}{10}, \frac{3}{10}, \frac{9}{10}\right\} \subseteq G_{1}^{(3)} \cup\left\{\frac{1}{10}\right\}
$$

Note that if G is a k-good subset of $(0,1]$ and if $x \in(0,1] \backslash G$ is k-bad with respect to G, then x is also k-bad with respect to the $\operatorname{good} \operatorname{set} G \cap(x, 1]$, because $x<r^{j} x$ for all $r \in \mathbb{N}^{\sharp}$ and $j \in\{1, \ldots, k-1\}$.

The real number $x \in(0,1] \backslash G$ is k-good with respect to G if x is not k-bad with respect to G. Thus, x is k-good with respect to G if and only if, for every $r \in \mathbb{N}^{\sharp}$, there exists $j \in\{1, \ldots, k-1\}$ such that $x r^{j} \notin G$. Because $G \subseteq(0,1]$ and $x r^{k-1} \notin G$ if $r>(1 / x)^{1 /(k-1)}$, it follows that $x \in[0,1) \backslash G$ is k-good with respect to G if and only if, for every integer r with $2 \leq r \leq(1 / x)^{1 /(k-1)}$, there exists $j \in\{1, \ldots, k-1\}$ with $x r^{j} \notin G$.

For every k-good set $G \subseteq(0,1]$, we define

$$
\operatorname{Bad}(G)=\{x \in(0,1] \backslash G: x \text { is } k \text {-bad with respect to } G\}
$$

Thus, $G \cup\{x\}$ is k-good for all $x \in(0,1] \backslash(G \cup \operatorname{Bad}(G))$. If G and G^{\prime} are k-good sets with $G \subseteq G^{\prime}$, then $\operatorname{Bad}(G) \subseteq \operatorname{Bad}\left(G^{\prime}\right)$.

For fixed k, we usually write "good" instead of " k-good" and "bad" instead of " k-bad."
4. Construction of a good set of real numbers. Fix the integer $k \geq 3$. We shall use a greedy algorithm to construct a large good set con-
tained in the interval $(0,1]$. We begin with some simple observations about good and bad sets.

Lemma 1. Let $k \geq 3$, let $0<a<1$, and let $\delta_{k}(a)=a^{(k-1) /(k-2)}$.
(i) For every $\delta>0$, the interval $(0, \delta]$ is not good.
(ii) Every number in $\left(0, a^{2}\right]$ is good with respect to ($a, 1$].
(iii) Let $x \in(0,1]$. If $x r^{j} \in(a, 1]$ for some $r \in \mathbb{N}^{\sharp}$ and for all $j \in$ $\{1, \ldots, k-1\}$, then $x>\delta_{k}(a)$.
(iv) If G is a good set with $G \subseteq(a, 1]$, then $\left(0, \delta_{k}(a)\right] \cap \operatorname{Bad}(G)=\emptyset$.

Note that $0<\delta_{k}(a)<a$.
Proof of Lemma 1. (i) We have $0<2^{1-k} \delta<\delta$. For every $x \in\left(0,2^{1-k} \delta\right]$, we have

$$
0<x<2 x<\cdots<2^{k-1} x \leq 2^{k-1} 2^{1-k} \delta=\delta
$$

and so $(0, \delta]$ contains the k-term geometric progression $\left\{x, 2 x, \ldots, 2^{k-1} x\right\}$. Thus, the interval $(0, \delta]$ is not good.
(ii) If $x \in\left(0, a^{2}\right], r \in \mathbb{N}^{\sharp}$ and $x r \in(a, 1]$, then $x r>a$ and $r>a / x$. It follows that

$$
x r^{k-1} \geq x r^{2}>x\left(\frac{a}{x}\right)^{2}=\frac{a^{2}}{x}>1
$$

and so x is good with respect to $(a, 1]$.
(iii) If $r \in \mathbb{N}^{\sharp}$ and $a<r x<\cdots<r^{k-1} x \leq 1$ then

$$
\frac{a}{r}<x \leq \frac{1}{r^{k-1}}
$$

and so $1 / r>a^{1 /(k-2)}$. Therefore,

$$
x>\frac{a}{r}>a a^{1 /(k-2)}=a^{(k-1) /(k-2)}=\delta_{k}(a) .
$$

(iv) This follows immediately from (iii).

Lemma 2. Let $\left(a_{i}\right)_{i=1}^{2 n}$ be a strictly decreasing sequence of positive real numbers with $a_{1} \leq 1$ such that

$$
G_{n}=\bigcup_{i=1}^{n}\left(a_{2 i}, a_{2 i-1}\right]
$$

is a good set. If $x \in \operatorname{Bad}\left(G_{n}\right)$, then there exists $\delta>0$ such that $(x-\delta, x] \subseteq$ $\operatorname{Bad}\left(G_{n}\right)$.

Proof. We have $G_{n} \subseteq(0,1]$. If $x \in \operatorname{Bad}\left(G_{n}\right)$, then there exists $r \in \mathbb{N}^{\sharp}$ such that $x r^{j} \in G_{n}$ for all $j \in\{1, \ldots, k-1\}$. It follows that, for each $j \in\{1, \ldots, k-1\}$, there exists $i_{j} \in\{1, \ldots, n\}$ such that $x r^{j} \in\left(a_{2 i_{j}}, a_{2 i_{j}-1}\right]$ or, equivalently,

$$
\frac{a_{2 i_{j}}}{r^{j}}<x \leq \frac{a_{2 i_{j}-1}}{r^{j}}
$$

Choose $\delta>0$ such that

$$
\frac{a_{2 i_{j}}}{r^{j}}<x-\delta<x \leq \frac{a_{2 i_{j}-1}}{r^{j}}
$$

for all $j \in\{1, \ldots, k-1\}$. If $y \in(x-\delta, x]$, then

$$
a_{2 i_{j}}<(x-\delta) r^{j}<y r^{j} \leq x r^{j} \leq a_{2 i_{j}-1}
$$

and so $y r^{j} \in\left(a_{2 i_{j}}, a_{2 i_{j}-1}\right] \subseteq G_{n}$ for all $j \in\{1, \ldots, k-1\}$. Thus, $(x-\delta, x] \subseteq$ $\operatorname{Bad}\left(G_{n}\right)$.

Lemma 3. Let $\left(a_{i}\right)_{i=1}^{2 n+1}$ be a strictly decreasing sequence of positive real numbers with $a_{1} \leq 1$ such that

$$
G_{n}=\bigcup_{i=1}^{n}\left(a_{2 i}, a_{2 i-1}\right]
$$

is a good set, and

$$
\bigcup_{i=1}^{n}\left(a_{2 i+1}, a_{2 i}\right] \subseteq \operatorname{Bad}\left(G_{n}\right)
$$

If $x \in\left(a_{2 n+1} / 2, a_{2 n+1}\right]$ is good with respect to G_{n}, then there exists $\delta>0$ such that $(x-\delta, x] \cup G_{n}$ is good.

Proof. Let $x \in\left(a_{2 n+1} / 2, a_{2 n+1}\right]$ be good with respect to G_{n}. For each $r \in \mathbb{N}^{\sharp}$ there exists $j_{r} \in\{1, \ldots, k-1\}$ such that $x r^{j_{r}} \notin G_{n}$. Let r_{0} be the smallest integer such that $r_{0} \geq 2$ and $x r_{0}^{k-1}>a_{1}$. Then $x>a_{1} / r_{0}^{k-1}$, and there exists $\delta_{0}>0$ such that $x-\delta_{0}>a_{1} / r_{0}^{k-1}$. If $y \in\left(x-\delta_{0}, x\right]$ and $r \geq r_{0}$, then

$$
y r^{k-1}>\left(x-\delta_{0}\right) r_{0}^{k-1}>a_{1}
$$

and so $y r^{k-1} \notin G_{n}$.
For each integer r such that $2 \leq r<r_{0}$, we have

$$
a_{2 n+1}<2 x \leq x r^{j_{r}} \leq x r^{k-1} \leq a_{1}
$$

and so there exists $i_{r} \in\{1, \ldots, n\}$ such that $a_{2 i_{r}+1}<x r^{j_{r}} \leq a_{2 i_{r}}$ or, equivalently,

$$
\frac{a_{2 i_{r}+1}}{r^{j_{r}}}<x \leq \frac{a_{2 i_{r}}}{r^{j_{r}}}
$$

Choose $0<\delta_{1}<x / 2$ such that

$$
\frac{a_{2 i_{r}+1}}{r^{j_{r}}}<x-\delta_{1}<x \leq \frac{a_{2 i_{r}}}{r^{j_{r}}}
$$

for all $r \in \mathbb{N}^{\sharp}$ with $r<r_{0}$. If $y \in\left(x-\delta_{1}, x\right]$ and $r<r_{0}$, then

$$
a_{2 i_{r}+1}<\left(x-\delta_{1}\right) r^{j_{r}}<y r^{j_{r}} \leq x r^{j_{r}} \leq a_{2 i_{r}}
$$

and so $y r^{j_{r}} \notin G_{n}$. Let $\delta=\min \left(\delta_{0}, \delta_{1}\right)$. It follows that if $y \in(x-\delta, x]$, then y is good with respect to G_{n}.

Theorem 2. Let $k \geq 3$. There exists a unique strictly decreasing sequence $\left(a_{i}\right)_{i=1}^{\infty}$ of positive real numbers with $a_{1}=1$ such that

$$
G=\bigcup_{i=1}^{\infty}\left(a_{2 i}, a_{2 i-1}\right]
$$

is a good set, and

$$
\operatorname{Bad}(G)=\bigcup_{i=1}^{\infty}\left(a_{2 i+1}, a_{2 i}\right]
$$

Proof. We construct the sequence $\left(a_{i}\right)_{i=1}^{\infty}$ by induction. Let $a_{1}=1$. If $x>2^{1-k}$, then for all $r \in \mathbb{N}^{\sharp}$ we have

$$
r^{k-1} x>2^{k-1} 2^{1-k}=1
$$

and so $\left(2^{1-k}, 1\right]$ is a good set. Therefore,

$$
a_{2}=\inf \left\{x \in(0,1]:\left(x, a_{1}\right] \text { is good }\right\} \leq 2^{1-k}
$$

We observe that $\left[2^{1-k}, 1\right]$ is not a good set because, with $y=2^{1-k}$, we have $\left\{y, y 2, \ldots, y 2^{k-1}\right\} \subseteq\left[2^{1-k}, 1\right]$. Therefore,

$$
a_{2}=1 / 2^{k-1} \in \operatorname{Bad}\left(G_{1}\right) \quad \text { where } \quad G_{1}=\left(a_{2}, a_{1}\right]=\left(1 / 2^{k-1}, 1\right]
$$

We define

$$
a_{3}=\inf \left\{x \in(0,1]:\left(x, a_{2}\right] \subseteq \operatorname{Bad}\left(G_{1}\right)\right\}
$$

It follows from Lemmas 1 and 2 that $0<\delta_{k}\left(a_{2}\right) \leq a_{3}<a_{2}$ and $a_{3} \notin \operatorname{Bad}\left(G_{1}\right)$.
Let $n \geq 1$, and assume that there is a unique strictly decreasing sequence $\left(a_{i}\right)_{i=1}^{2 n+1}$ of positive real numbers with $a_{1}=1$ such that

$$
G_{n}=\bigcup_{i=1}^{n}\left(a_{2 i}, a_{2 i-1}\right]
$$

is a good set,

$$
\bigcup_{i=1}^{n}\left(a_{2 i+1}, a_{2 i}\right] \subseteq \operatorname{Bad}\left(G_{n}\right)
$$

and

$$
a_{2 n+1}=\inf \left\{x \in(0,1]:\left(x, a_{2 n}\right] \subseteq \operatorname{Bad}\left(G_{n}\right)\right\}
$$

By Lemma 2, the number $a_{2 n+1}$ is good with respect to G_{n}. Let

$$
\begin{aligned}
a_{2 n+2} & =\inf \left\{x \in\left(0, a_{2 n+1}\right]:\left(x, a_{2 n+1}\right] \text { is good with respect to } G_{n}\right\} \\
G_{n+1} & =G_{n} \cup\left(a_{2 n+2}, a_{2 n+1}\right] .
\end{aligned}
$$

Lemmas 1 and 3 imply that $0<a_{2 n+2}<a_{2 n+1}$ and $a_{2 n+2} \in \operatorname{Bad}\left(G_{n+1}\right)$. We define

$$
a_{2 n+3}=\inf \left\{x \in(0,1]:\left(x, a_{2 n+2}\right] \subseteq \operatorname{Bad}\left(G_{n}\right)\right\}
$$

This completes the induction.

ThEOREM 3. Let $\left(a_{i}\right)_{i=1}^{2 n}$ be a strictly decreasing sequence of positive real numbers such that

$$
G_{n}=\bigcup_{i=1}^{n}\left(a_{2 i}, a_{2 i-1}\right]
$$

is a good set, and

$$
\bigcup_{i=1}^{n-1}\left(a_{2 i+1}, a_{2 i}\right] \subseteq \operatorname{Bad}\left(G_{n}\right)
$$

If $1 / a_{1}$ and $1 / a_{2}$ are integers, then $1 / a_{i}$ is an integer for all $i=1, \ldots, 2 n$.
Proof. The proof is by induction on i. Let $2 \leq i \leq n$ and assume that there are positive integers $A_{1}<\cdots<A_{2 i-2}$ such that $a_{j}=1 / A_{j}$ for $j=$ $1, \ldots, 2 i-2$. We shall prove that there are positive integers $A_{2 i-1}$ and $A_{2 i}$ such that $a_{2 i-1}=1 / A_{2 i-1}$ and $a_{2 i}=1 / A_{2 i}$.

Consider the good number $a_{2 i-1}$. If $h \in \mathbb{N}$ and $h \geq\left(a_{2 i-2}-a_{2 i-1}\right)^{-1}$, then

$$
a_{2 i-1}+1 / h \in\left(a_{2 i-1}, a_{2 i-2}\right] \subseteq \operatorname{Bad}\left(G_{n}\right)
$$

and so there exists $r_{h} \in \mathbb{N}^{\sharp}$ such that, for all $j \in\{1, \ldots, k-1\}$,

$$
\left(a_{2 i-1}+1 / h\right) r_{h}^{j} \in G_{n}
$$

and

$$
a_{2 i-1}<a_{2 i-1} r_{h} \leq a_{2 i-1} r_{h}^{j}<\left(a_{2 i-1}+1 / h\right) r_{h}^{k-1} \leq a_{1}
$$

Therefore,

$$
2 \leq r_{h}<a_{1} / a_{2 i-1}
$$

Because $a_{2 i-1} \in G_{n}$, there exists $j_{h} \in\{1, \ldots, k-1\}$ such that

$$
a_{2 i-1} r_{h}^{j_{h}} \notin G_{n}
$$

There are only finitely many choices for r_{h} and j_{h}. By the pigeonhole principle, there are integers $r \in \mathbb{N}^{\sharp}$ and $j \in\{1, \ldots, k-1\}$ and there is a strictly increasing infinite sequence $\left(h_{\ell}\right)_{\ell \in \mathbb{N}}$ of positive integers such that

$$
r_{h_{\ell}}=r \quad \text { and } \quad j_{h_{\ell}}=j
$$

for all $\ell \in \mathbb{N}$. Because $a_{2 i-1} r^{j} \notin G_{n}$ and $a_{2 i-1}<a_{2 i-1} r^{j}<a_{1}$, there is a unique positive integer $t \leq i$ such that $a_{2 i-1} r^{j} \in\left(a_{2 t-1}, a_{2 t-2}\right]$. Because $\left(a_{2 i-1}+1 / h_{\ell}\right) r^{j} \in G_{n}$, it follows that $a_{2 i-1} r^{j} \leq a_{2 t-2}<\left(a_{2 i-1}+1 / h_{\ell}\right) r^{j}$ or, equivalently,

$$
\frac{a_{2 t-2}}{r^{j}}-\frac{1}{h_{\ell}}<a_{2 i-1} \leq \frac{a_{2 t-2}}{r^{j}} .
$$

By the induction hypothesis, there is a positive integer $A_{2 h-2}$ such that $a_{2 t-2}=1 / A_{2 t-2}$. Letting $\ell \rightarrow \infty$, we obtain

$$
a_{2 i-1}=\frac{a_{2 t-2}}{r^{j}}=\frac{1}{r^{j} A_{2 t-2}}=\frac{1}{A_{2 i-1}}
$$

with $A_{2 i-1}=r^{j} A_{2 t-2}$.

Next we consider the bad number $a_{2 i}$. There exists $r \in \mathbb{N}^{\sharp}$ such that $a_{2 i} r^{j} \in G_{n}$ for all $j \in\{1, \ldots, k-1\}$. If $h \geq\left(a_{2 i-1}-a_{2 i}\right)^{-1}$, then

$$
a_{2 i}+1 / h \in\left(a_{2 i}, a_{2 i-1}\right] \subseteq G_{n}
$$

and so there exists $j_{h} \in\{1, \ldots, k-1\}$ such that

$$
\left(a_{2 i}+1 / h\right) r^{j_{h}} \notin G_{n} .
$$

By the pigeonhole principle again, there is an integer $j \in\{1, \ldots, k-1\}$ and there is a strictly increasing infinite sequence $\left(h_{\ell}\right)_{\ell \in \mathbb{N}}$ of positive integers such that $j_{h_{\ell}}=j$ for all $\ell \in \mathbb{N}$. Because $a_{2 i} r^{j} \in G_{n}$, there is a unique positive integer $t \leq i$ such that $a_{2 i} r^{j} \in\left(a_{2 t}, a_{2 t-1}\right]$. Because $\left(a_{2 i}+1 / h_{\ell}\right) r^{j} \notin G_{n}$, it follows that, for all $\ell \in \mathbb{N}$, we have $a_{2 i} r^{j} \leq a_{2 t-1}<\left(a_{2 i}+1 / h_{\ell}\right) r^{j}$ or, equivalently,

$$
\frac{a_{2 t-1}}{r^{j}}-\frac{1}{h_{\ell}}<a_{2 i} \leq \frac{a_{2 t-1}}{r^{j}} .
$$

By the induction hypothesis, there is a positive integer $A_{2 t-1}$ such that $a_{2 t-1}=1 / A_{2 t-1}$. Letting $\ell \rightarrow \infty$, we obtain

$$
a_{2 i}=\frac{a_{2 t-1}}{r^{j}}=\frac{1}{r^{j} A_{2 t-1}}=\frac{1}{A_{2 i}}
$$

with $A_{2 i}=r^{j} A_{2 t-1}$.
Theorem 4. Let $\left(a_{i}\right)_{i \in \mathbb{N}}$ be a strictly decreasing infinite sequence of positive real numbers such that

$$
G=\bigcup_{i=1}^{\infty}\left(a_{2 i}, a_{2 i-1}\right]
$$

is a good set, and

$$
\operatorname{Bad}(G)=\bigcup_{i=1}^{\infty}\left(a_{2 i+1}, a_{2 i}\right] .
$$

If $1 / a_{1}$ and $1 / a_{2}$ are integers, then $1 / a_{i}$ is an integer for all $i \in \mathbb{N}$. Moreover,

$$
\lim _{i \rightarrow \infty} a_{i}=0 .
$$

Proof. Apply Theorem 3 to the good set $G_{n}=\bigcup_{i=1}^{n}\left(a_{2 i}, a_{2 i-1}\right]$. Because there is a strict increasing sequence $\left(A_{i}\right)_{i=1}^{\infty}$ of positive integers such that $a_{i}=1 / A_{i}$, it follows that

$$
\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \frac{1}{A_{i}}=0
$$

Theorem 5. Let $k \geq 3$. There exists a unique strictly increasing sequence $\left(A_{i}^{(k)}\right)_{i=1}^{\infty}$ of positive integers with $A_{1}^{(k)}=1$ such that

$$
\begin{equation*}
G^{(k)}=\bigcup_{i=1}^{\infty}\left(\frac{1}{A_{2 i}^{(k)}}, \frac{1}{A_{2 i-1}^{(k)}}\right] \tag{2}
\end{equation*}
$$

is a k-good set and

$$
\operatorname{Bad}\left(G^{(k)}\right)=\bigcup_{i=1}^{\infty}\left(\frac{1}{A_{2 i+1}^{(k)}}, \frac{1}{A_{2 i}^{(k)}}\right]
$$

Proof. The existence and uniqueness of $\left(A_{i}^{(k)}\right)_{i=1}^{\infty}$ follows immediately from Theorems 2 and 4.

Note that $\inf G^{(k)}=\inf \operatorname{Bad}\left(G^{(k)}\right)=0$ because $\lim _{i \rightarrow \infty} A_{i}^{(k)}=\infty$.
We have already proved that $A_{2}^{(k)}=2^{k-1}$. We can also determine the integers $A_{3}^{(k)}$ and $A_{4}^{(k)}$. The proofs use a simple arithmetic inequality: If $k \geq 3$, then

$$
\frac{3^{k-1}}{2^{k}}=\frac{1}{2}\left(\frac{3}{2}\right)^{k-1} \geq \frac{1}{2}\left(\frac{3}{2}\right)^{2}=\frac{9}{8}>1
$$

and so $2^{k}<3^{k-1}$. Note that between two consecutive integral powers of 2 there is at most one integral power of 3 .

Theorem 6 . If $k \geq 3$, then

$$
A_{3}^{(k)}=2^{k}
$$

Proof. Let $G_{1}^{(k)}=\left(1 / 2^{k-1}, 1\right]$. If $1 / 2^{k}<x \leq 1 / 2^{k-1}$ then

$$
\frac{1}{2^{k-1}}=\frac{2}{2^{k}}<2 x<2^{2} x<\cdots<2^{k-1} x \leq \frac{2^{k-1}}{2^{k-1}}=1
$$

and so $\left\{2^{i} x: i=1, \ldots, k-1\right\} \subseteq G_{1}^{(k)}$, that is, x is k-bad with respect to $G_{1}^{(k)}$.

If $x=1 / 2^{k}$, then $2 x=1 / 2^{k-1} \notin G_{1}^{(k)}$. If $r \geq 3$, then

$$
r^{k-1} x \geq \frac{3^{k-1}}{2^{k}}>1
$$

and so $r^{k-1} x \notin G_{1}^{(k)}$. Therefore, $1 / 2^{k}$ is k-good with respect to $G_{1}^{(k)}$, and $A_{3}^{(k)}=2^{k}$.

ThEOREM 7. Let $k \geq 3$. If there is no integral power of 3 between 2^{k-1} and 2^{k}, then

$$
A_{4}^{(k)}=3^{k-1}
$$

If there is a positive integer ℓ such that

$$
\begin{equation*}
2^{k-1}<3^{\ell}<2^{k} \tag{3}
\end{equation*}
$$

then $2 \leq \ell \leq k-2$ and

$$
A_{4}^{(k)}=2^{k} 3^{k-1-\ell}=3^{k-1} \frac{2^{k}}{3^{\ell}}
$$

Inequality (3) is equivalent to $1<2^{k} / 3^{\ell}<2$.
For positive integers k, the following are equivalent:
(i) There is an integral power of 3 between 2^{k-1} and 2^{k}.
(ii) The fractional part of $k \log _{3} 2$ is less than $\log _{3} 2$.
(iii) k is in $\left\{\left[\ell \log _{2} 3\right]+1: \ell=1,2, \ldots\right\}$. Thus, the formula for $A_{4}^{(k)}$ depends on diophantine properties of logarithms.
Proof of Theorem γ. We have $A_{3}^{(k)}=1 / 2^{k}$ by Theorem 6. Let

$$
\frac{1}{4^{k-1}}<x \leq \frac{1}{2^{k}}
$$

For $r \geq 4$ we have

$$
x r^{k-1} \geq x 4^{k-1}>\frac{4^{k-1}}{4^{k-1}}=1
$$

and so $\left\{x r^{i}: i=1, \ldots, k-1\right\} \nsubseteq G_{1}^{(k)}$.
With $r=2$ we have

$$
x 2^{k-1}>\frac{2^{k-1}}{4^{k-1}}=\frac{1}{2^{k-1}}
$$

Let j be the smallest integer such that $x 2^{j}>1 / 2^{k-1}$. Then $j \leq k-1$. Because $2 x \leq 2 / 2^{k}=1 / 2^{k-1}$, it follows that $j \geq 2$. If

$$
x 2^{j-1} \leq \frac{1}{2^{k}}
$$

then

$$
x 2^{j} \leq \frac{1}{2^{k-1}}<x 2^{j}
$$

which is absurd. Therefore,

$$
\frac{1}{2^{k}}<x 2^{j-1} \leq \frac{1}{2^{k-1}}
$$

and so $\left\{x 2^{i}: i=1, \ldots, k-1\right\} \nsubseteq G_{1}^{(k)}$.
The remaining case is the ratio $r=3$ and the geometric progression $\left\{x 3^{i}: i=1, \ldots, k-1\right\}$. If $x>1 / 3^{k-1}$, then $x 3^{k-1}>1$ and x is good with respect to $G_{1}^{(k)}$. Therefore, $A_{4}^{(k)} \geq 3^{k-1}$.

Let $x=1 / 3^{k-1}$. If there exists $j \in\{1, \ldots, k-1\}$ such that

$$
\frac{1}{2^{k}}<x 3^{j}=\frac{3^{j}}{3^{k-1}}<\frac{1}{2^{k-1}}
$$

then

$$
2^{k-1}<3^{k-1-j}<2^{k}
$$

Hence, if there is no power of 3 between 2^{k-1} and 2^{k}, then for all $i \in$ $\{1, \ldots, k-1\}$, either $x<3^{i} x<1 / 2^{k}$ or $1 / 2^{k-1}<3^{i} x \leq 1$. Thus, $1 / 3^{k-1}$ is k-bad, and $A_{4}^{(k)}=3^{k-1}$.

Suppose that there is a power of 3 between 2^{k-1} and 2^{k}, and that ℓ is the unique positive integer that satisfies (3). We observe that $k \geq 4$ because there is no power of 3 between $2^{2}=4$ and $2^{3}=8$, and that $2 \leq \ell \leq k-2$ because $2^{3}<3^{2} \leq 3^{\ell}$ and $2^{k-1}<3^{\ell} \leq 3^{k-2}$. Let

$$
j=k-1-\ell .
$$

Then $1 \leq j \leq k-3$. For $k \geq 4$ we have

$$
\left(\frac{4}{3}\right)^{k-1} \geq\left(\frac{4}{3}\right)^{3}>2
$$

and so

$$
\left(\frac{2}{3}\right)^{k-1}>\frac{1}{2^{k-2}}
$$

Let

$$
x_{0}=\frac{1}{2^{k} 3^{j}}=\frac{3^{\ell}}{2^{k} 3^{k-1}}>\frac{2^{k-1}}{2^{k} 3^{k-1}}=\frac{1}{2^{k}}\left(\frac{2}{3}\right)^{k-1}>\frac{1}{4^{k-1}} .
$$

If

$$
x_{0}<x \leq \frac{1}{3^{k-1}},
$$

then

$$
\frac{1}{2^{k}}=x_{0} 3^{j}<x 3^{j} \leq \frac{3^{j}}{3^{k-1}}=\frac{1}{3^{\ell}}<\frac{1}{2^{k-1}}
$$

and so x is good with respect to $G_{1}^{(k)}$.
It remains only to prove that x_{0} is bad. If $1 \leq i \leq j$, then

$$
x_{0}<x_{0} 3^{i} \leq x_{0} 3^{j}=\frac{1}{2^{k}} .
$$

If $j+1 \leq i \leq k-1$, then

$$
\frac{1}{2^{k-1}}<\frac{3}{2^{k}}=3^{j+1} x_{0} \leq 3^{i} x_{0} \leq 3^{k-1} x_{0}=\frac{3^{\ell}}{2^{k}}<1 .
$$

Thus, $x_{0}=1 /\left(2^{k} 3^{j}\right)$ is bad and $A_{4}^{(k)}=2^{k} 3^{j}$.
5. Integer sequences with no k-term geometric progression. If a and b are real numbers with $a \leq b$, then the number of integers in the interval $(a, b]$ is $b-a+\theta$ with $|\theta|<1$.

Recall that, for positive integers k and n, the arithmetic function $g_{k}(n)$ denotes the cardinality of the largest subset of $\{1, \ldots, n\}$ that contains no integer geometric progression of length k with integer ratio.

THEOREM 8. Let $k \geq 3$, and let $\left(A_{i}^{(k)}\right)_{i=1}^{\infty}$ be the strictly increasing sequence of positive integers constructed in Theorem 5. Then

$$
\gamma_{k}=\liminf _{n \rightarrow \infty} \frac{g_{k}(n)}{n} \geq \sum_{i=1}^{\infty}\left(\frac{1}{A_{2 i-1}^{(k)}}-\frac{1}{A_{2 i}^{(k)}}\right)
$$

In particular,

$$
\gamma_{k} \geq 1-\frac{1}{2^{k}}-\frac{1}{3^{k}}
$$

Proof. For every positive integer h, the set

$$
G_{h}^{(k)}=\bigcup_{i=1}^{h}\left(\frac{1}{A_{2 i}^{(k)}}, \frac{1}{A_{2 i-1}^{(k)}}\right]
$$

is a k-good subset of $(0,1]$. For every positive integer n, the dilated set

$$
n * G_{h}^{(k)}=n * \bigcup_{i=1}^{h}\left(\frac{1}{A_{2 i}}, \frac{1}{A_{2 i-1}}\right]=\bigcup_{i=1}^{h}\left(\frac{n}{A_{2 i}}, \frac{n}{A_{2 i-1}}\right]
$$

is a disjoint union of intervals, and so

$$
\left|\left(n * G_{h}^{(k)}\right) \cap \mathbb{N}\right|=\sum_{i=1}^{h}\left|\left(\frac{n}{A_{2 i}}, \frac{n}{A_{2 i-1}}\right] \cap \mathbb{N}\right|=n \sum_{i=1}^{h}\left(\frac{1}{A_{2 i-1}}-\frac{1}{A_{2 i}}\right)+\theta_{h}
$$

with $\left|\theta_{h}\right|<h$. Because the dilation of a k-good set is k-good, and a subset of a k-good set is k-good, it follows that $\left(n * G_{h}^{(k)}\right) \cap \mathbb{N}$ is a k-good set of positive integers. Moreover, $A_{1}=1$ implies that $\left(n * G_{h}^{(k)}\right) \cap \mathbb{N} \subset\{1, \ldots, n\}$. Therefore,

$$
\left|\left(n * G_{h}^{(k)}\right) \cap \mathbb{N}\right| \leq g_{k}(n)
$$

and so

$$
\begin{equation*}
\sum_{i=1}^{h}\left(\frac{1}{A_{2 i-1}}-\frac{1}{A_{2 i}}\right)=\lim _{n \rightarrow \infty} \frac{\left|\left(n * G_{h}^{(k)}\right) \cap \mathbb{N}\right|}{n} \leq \liminf _{n \rightarrow \infty} \frac{g_{k}(n)}{n} \tag{4}
\end{equation*}
$$

This inequality holds for all $h \in \mathbb{N}$, and so

$$
\sum_{i=1}^{\infty}\left(\frac{1}{A_{2 i-1}}-\frac{1}{A_{2 i}}\right) \leq \liminf _{n \rightarrow \infty} \frac{g_{k}(n)}{n}=\gamma_{k}
$$

Applying inequality (4) with $h=2$ and the values for $A_{3}^{(k)}$ and $A_{4}^{(k)}$ computed in Theorems 6 and 7, we obtain

$$
\gamma_{k} \geq\left(1-\frac{1}{2^{k-1}}\right)+\left(\frac{1}{2^{k}}-\frac{1}{3^{k}}\right)=1-\frac{1}{2^{k}}-\frac{1}{3^{k}}
$$

Table 1. All integers $A_{i}^{(k)}$ satisfying Theorem 5 that are less than 10^{6}, for $3 \leq k \leq 9$. These numbers are sequences A235054-60 in the OEIS.

i	k						
	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1
2	4	8	16	32	64	128	256
3	8	16	32	64	128	256	512
4	9	48	96	243	1152	2304	6561
5	12	200	144	288	1728	3456	6912
6	24	216	576	576	8192	16384	13824
7	27	288	4032	729	28800	32768	19683
8	32	1200	4096	1152	172800	163840	131072
9	36	1296	4608	2048	248832	288000	221184
10	40	1400	32256	3645	307328	331776	492075
11	45	1512	32768	4000	395136	497664	655360
12	48	1600	36288	10240		884736	
13	2208	1728	36864	20736		995328	
14	2209	1800	40320	21952			
15	2256	1944	40960	92160			
16	8832	2000	41472	100000			
17	8836	62400	129600	102400			
18	9024	63936	131072	207360			
19	17664	73800	147456	219520			
20	17672	74088	157216	518400			
21	18048	75600	166464	548800			
22	19872	79704		921600			
23	19881	80688					
24	20304	81648					
25	26496	88000					
26	26508	499200					
27	27072	511488					
28	52992	590400					
29	53016	592704					
30	54144	604800					
30	54144	604800					
31	59616	637632					
32	59643	645504					
33	60912	653184					
34	70656	704000					
35	70688	998400					

Table 1 (cont.)

	k						
i	3	4	5	6	7	8	9
36	72192						
37	79488						
38	79524						
39	81216						
40	88320						
41	88360						
42	90240						
43	99360						
44	99405						
45	101520						
46	103776						
47	103823						
48	105984						
49	106032						
50	108192						
51	108241						
52	108288						

It is a finite calculation to determine explicit values of the integers $A_{i}^{(k)}$ for small values of i and k. Table 1 contains all values of $A_{i}^{(k)}$ for $3 \leq k \leq 9$ with $A_{i}^{(k)}<10^{6}$. Applying inequality (4), we can use these values to get lower bounds for γ_{k} that improve results obtained previously by Rankin [6] and Riddell [7]. For $k=3$, McNew [3] has the current best lower bound. Related results have been obtained by Brown and Gordon [2], Beiglböck, Bergelson, Hindman, and Strauss [1], and Nathanson and O'Bryant [4, 5].

The following table records upper and lower bounds for γ_{k}.

	Lower bounds on γ_{k}					Upper bounds on γ_{k}		
k	Rankin	Riddell	this paper	McNew	k	McNew	from r_{k}	Riddell
3	0.719745		0.815870	0.818410	3	0.819222	0.846376	0.857143
4	0.862601	0.895283	0.919818		4		0.928874	0.933334
5	0.931652	0.958056	0.963737		5		0.967742	0.967742
6	0.966324	0.980371	0.982877		6		0.983871	0.984126
7	0.983438	0.991159	0.991805		7			0.992126
8	0.991841	0.995717	0.995913		8			0.996079
9	0.995969	0.997939	0.998012		9			0.998044

References

[1] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss, Multiplicative structures in additively large sets, J. Combin. Theory Ser. A 113 (2006), 1219-1242.
[2] B. E. Brown and D. M. Gordon, On sequences without geometric progressions, Math. Comp. 65 (1996), 1749-1754.
[3] N. McNew, On sets of integers which contain no three terms in geometric progression, Math. Comp., to appear; arXiv:1310.2277.
[4] M. B. Nathanson and K. O'Bryant, On sequences without geometric progressions, Integers 13 (2013), \#A73, 5 pp.
[5] M. B. Nathanson and K. O'Bryant, Irrational numbers associated to sequences without geometric progressions, Integers 14 (2014), \#A40, 11 pp.
[6] R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical progression, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/1961), 332-344.
[7] J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J. 10 (1969), 137-146.

Melvyn B. Nathanson
Department of Mathematics
Lehman College (CUNY)
Bronx, NY 10468, U.S.A.
E-mail: melvyn.nathanson@lehman.cuny.edu

Kevin O'Bryant
Department of Mathematics
College of Staten Island (CUNY) Staten Island, NY 10314, U.S.A.
E-mail: kevin@member.ams.org

[^0]: 2010 Mathematics Subject Classification: 11B05, 11B25, 11B75, 11B83, 05D10.
 Key words and phrases: geometric progression-free sequences, Ramsey theory.

