ACTA ARITHMETICA
170.4 (2015)

Roots of unity in definite quaternion orders
by

Luis ARENAS-CARMONA (Santiago)

1. Introduction. A commutative order ) in a quaternion algebra 2,
over a number field K, is said to be selective if it is contained in some, but
not all, of the maximal orders in the algebra. More generally, for a genus O of
orders of maximal rank in 2, a commutative order $) is called selective for O
if it embeds in some orders in O, but not in all of them. The selective orders,
for the genus of maximal order in a quaternion algebra, were characterized
by Chinburg and Friedman [CF], provided that the algebra satisfies Eichler’s
Condition (EC), namely:

For any finite set T' of places of K containing the set co(K) of
archimedean places, Eichler’s Condition for T is satisfied if there
exists a place p € T such that 2, is a matrix algebra. If T is
omitted, it is assumed that 7" = co(K).

Later several authors extended this characterization to Eichler orders [GQ),
[CX], [M]. B. Linowitz [L] has given several criteria under which selectivity
can be avoided for more general orders, always assuming EC. All these
results are based on the fact that if EC holds, every spinor genus of orders of
maximal rank in K contains a unique conjugacy class, and representations
of orders by spinor genera can be studied by purely local computations,
using the machinery of class field theory. In fact, the proportion of spinor
genera representing a given suborder (commutative or not) is frequently a
rational number of the form 1/[F : K| for some explicit class field F', the
representation field. It is often the case that FF C L when §) is a suborder
contained in a subfield L of 2. This shows that, for any such order §), the
proportion of spinor genera in a genus representing ) is 0, 1, or 1/2. The
field F' is also contained in the spinor class field of the genus [AI]. This
shows that whenever EC holds, for any given genus only a finite number of
subfields can contain selective orders. On the other hand, we showed in |[A4]
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that any given commutative order §) can be selective in some genera of at
most one quaternion algebra ($)). If $ spans the field L = K(v/d), then
2A($) is defined by the Hilbert symbol

A(H) = <d’;).

The preceding discussion implies that when EC is satisfied, selectivity
is a rare phenomenon. The purpose of this work is to provide some evidence
that this might not be so for quaternion algebras failing to satisfy EC, i.e.,
definite quaternion algebras. Here we concentrate mostly on the case where
K = Q and $) = Z|w], where w is a primitive cubic root of unity; this is due
to the fact that this specific order has a particularly nice characterization
in terms of quotient graphs.

THEOREM 1.1. Let Q be a genus of FEichler orders of odd level in a
definite rational quaternion algebra 2 that is unramified at 2. If O contains
n conjugacy classes of orders then at most n/2 + 1 of them contain cubic
roots of unity.

COROLLARY 1.2. Let O be a genus of Fichler orders in a definite rational
quaternion algebra A that is unramified at 2. Then if Zlw| is represented
by O, it is selective for O, as soon as Q contains at least three conjugacy
classes.

Note that the preceding corollary does not assume an odd level for the
Eichler order. This is due to the fact that Qq(w)/Q2 is unramified, and
therefore any isomorphic copy of the ring of integers Zs[w] is contained in
a unique maximal order of My(Q2) [A5, Prop. 4.2], so an Eichler order of
even level in 2 cannot contain a copy of Z[w]. The preceding result does not
mention spinor genera, since every genus of Eichler orders in a quaternion
algebra over Q has a unique spinor genus. This is not the case for more
general orders.

THEOREM 1.3. Let O be a spinor genus of orders of maximal rank in a
definite rational quaternion algebra A that is unramified at 2. Assume that
the orders of @ are maximal at 2. Then if @ has n conjugacy classes, the
orders in at most %(n + 1) of them contain cubic roots of unity.

COROLLARY 1.4. Let O be a spinor genus of orders of maximal rank in
a definite rational quaternion algebra A that is unramified at 2. Assume that
the orders of O are mazimal at 2. Then if Z|w] is represented by O, it is
selective for @, as soon as QO contains at least four conjugacy classes.

The latter result can be refined a little more using the theory of rep-
resentation by spinor genera (§2). An order is called spinor selective for a
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given genus if it is represented by some, but not all, of the spinor genera in
that genus.

THEOREM 1.5. Let O be a genus of orders of mazimal rank in a definite
rational quaternion algebra A and let @ C O be a spinor genus. If

(1) A is unramified at 2,

(2) the orders in O are mazimal at 2,

(3) O contains three conjugacy classes, and
(4) Z]w] is not spinor selective for 0,

then Zlw] is selective for O.

2. Adeles and spinor genera. Let K be a number field, and let 2 be a
quaternion K-algebra. For every place p of K, we let K, and 2, = A®x K,
be the corresponding completions. We let A = A be the adele ring on K,
namely the direct limit

Ag =lmOy7, Oar= (H Kp) X ( H Op)a
peT eIl (K)-T
where I1(K) is the set of all places of K, O, is the ring of integers of the
local field K, and the direct limit is taken with respect to the directed set
of finite subsets T' of II(K) containing oco(K). This defines a topology on
the ring A. Similarly, if © is an order of maximal rank in 2, we define, for
every finite set 7' C II(K') containing oco(K), the T-adelization

CDA,T: (H le) X ( H 53@).
peT pell(K)-T

The adelization 2, is defined as the direct limit of the rings © 4 7. Note that
this definition is independent of the choice of ® since two lattices on a K-
vector space coincide at almost all places. The ring A is naturally identified
with the subring of J] ¢ (k) Ko whose coordinates are integral at almost
all places, although the topology of A as a direct limit is strictly stronger
than the product topology. The same observations apply to 2. For any
order ©, and any finite set of places T" containing oo(k), the ring D4 7 can
be naturally identified with a subring of 2[4, and the induced topology is in
fact the product topology of Dy 7.

An order can be recovered from its adelization Dy (k) by the formula
D =Dy 00(k) N2, where 2 embeds diagonally into (5. More generally, for
any finite set 7' with co(K) C T C II(K), the intersection D7 = D, r N A
is the T-order obtained from ® by inverting the non-archimedean places
in 7. Furthermore, conjugation induces a well defined action of Jy = A}

on the set of orders of maximal rank, satisfying (a®a~1) AT = 0D A,Ta_l,
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and therefore @ (a®aHT = a(®T)a"! for every finite set T satisfying
oo(K) CT C II(K) [A3]. Two orders © and @’ of maximal rank in 2 are in
the same genus if they are in the same orbit for this action, i.e., ®' = a®a "
for some a € Jy. They are in the same spinor genus when a can be chosen
as a = bc where b € 2*, diagonally embedded into Jy, while every local
coordinate ¢, of ¢ has trivial reduced norm. Genera and spinor genera for
T-orders are defined analogously. When 2l satisfies EC, every spinor genus
contains a unique conjugacy class. This is not the case for definite quaternion
algebras over the rationals, which are the ones that interest us in this work.
Nevertheless, spinor genera still play a role in the general setting (§3).

3. Spinor class fields and classifying graphs. For any genus O =
Gen(®) of orders of maximal rank, the spinor class field X = X(Q) is the
class field corresponding to the class group K*H (D) C Jxg = A*, where the
spinor image H (D) is defined by

H(®)={N(a)|a€ Jy, ® =aDa"'},

and N : Jy — Jg is the reduced norm on adeles. There is a well defined dis-
tance map p: O x O — Gal(X/K), satisfying p(D,aDa"!) = [N(a), ¥/K]
for any adelic element a € Jy, where z +— [z, X/ K| denotes the Artin map
on ideles. Two orders ® and D’ are in the same spinor genus if and only if
,0(@,@/) = idz.

More generally, for every finite set of places T' satisfying oo(K) C T C
II(K), and for every genus of T-orders, we can define a spinor class field as
above. In fact, for the genus 07 = {D7 | ® € 0}, the corresponding spinor
class field X7 is the largest subfield of X = X(0) splitting completely at
every non-archimedean place in 7', since the reduced norm is surjective at
non-archimedean places.

Let T = oo(K) U {p} for some place p splitting 2A. Then A satisfies
EC for the set T, so that every spinor genus of T-orders contains a unique
conjugacy class. We conclude that if ©; and D5 are in the same spinor genus,
then the T-orders ®7 and DI are conjugate. Replacing D2 by a conjugate if
needed, we can assume that 7 = ©2T In this case, ®; and 4 are conjugate
if and only if there is an element a € A* satisfying both a®7a~! = ©T and
a@lypa_l = D3 . We conclude that the conjugacy classes of orders §), where
$HT is conjugate to DT, are in one-to-one correspondence with the orbits of
the conjugacy stabilizer I' = stabg (D7) on the set of orders of maximal
rank in %[, that are conjugate to D,.

(*) This line should be taken as the definition of the symbol a(DT)a™!, which is by
no means a conjugation in the usual sense. If h € 2l is a global element and a € 2, is any
adelic element, the conjugate aha™' is hardly ever a global element.
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When D, is maximal, the latter set is simply the set O, of maximal or-
ders in 2. We can identify O, with the set of vertices of the local Bruhat—
Tits tree T, for PSLy(K,,) [V, §I1.2]. In particular, the set of conjugacy
classes of orders §), where 9T is conjugate to @T, is in one-to-one corre-
spondence with the set of vertices of the quotient graph (in the sense of
Serre [Se], see the remark below) I'\T,. We call I'\T,, the classifying graph
of ® at . Note that when ©, and CDfp are two neighbors in the tree, then
@fp = a@K,cfl for some local element a € 2, whose reduced norm is a
uniformizing parameter m,. In particular, if ®; and D5 are global maxi-
mal orders corresponding to neighboring vertices in the tree, their distance
satisfies p(D1,D2) = [e(p), X'/ K], where e(p) is an idele whose coordinates

are )
o ={ 7 o
if q # p.
We conclude that the orders corresponding to the vertices in the classifying
graph of © belong to a unique spinor genus if p splits in X'/ K, and to two
spinor genera otherwise. In the latter case the classifying graph is bipartite,
so in particular it contains no loops.

REMARK 3.1. The definition of quotient graph given in [Se| assumes
that the group acts on the tree without inversion. This can be fixed, as
noted in the same reference, by replacing the tree by its first barycentric
subdivision. We adopt this convention in all that follows, but we reserve the
word vertex for a vertex of the original graph, while the barycenters of edges
are called virtual vertices. When drawing actual pictures, virtual vertices are
not drawn unless they are endpoints, i.e., their valency is 1 (see Fig. 1). This
type of endpoints appear only if the original action had inversions.

*———

Fig. 1. A vertex () with an edge ending in a virtual endpoint (*)

REMARK 3.2. We should note that the quotient graph defined here has
been applied in the existing literature to the study of representations of
commutative orders. See for example [P].

4. Characterizing the orders with cubic roots. Our next result
gives a complete characterization of the orders in a genus containing a cu-
bic root of unity. This will be used in the next section to prove our main
theorems.

PRrROPOSITION 4.1. Let O be a genus of orders of maximal rank in the
definite rational quaternion algebra 2 containing a cubic root of unity. As-
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sume that:

[ ] ng = MQ(QQ).

e The orders in QO are mazximal at 2.

Let & = I'\Ty be the classifying graph at 2, as described in the preceding
section. Then the orders in Q@ containing a cubic root of unity correspond
precisely to the (non-virtual) endpoints, i.e., vertices of valency one in &.

Proof. Let ® € O be an order containing a cubic root of unity w. Since
Zs|w] is the ring of integers in the unique unramified quadratic extension
of Qg, it follows that Zs[w] is contained in a unique maximal order of 2,
[A5L Prop. 4.2], namely Ds. Recall that the conjugation-stabilizer of a local
maximal order &, is Q5€E3. Since w is a unit, it stabilizes exactly the orders
containing it. We conclude that conjugation by w permutes transitively the
three neighbors of ©, and therefore the vertex in & corresponding to ® has
valency one.

Now let © be a global order corresponding to a vertex of valency one
in the classifying graph &. Let I'y be the stabilizer of ® in I'. Then I'p =
I'5/Q* is the automorphism group of the order ®, and therefore it is finite,
since 2 is definite. Since © corresponds to a vertex of valency one in &, the
group I'p must permute the three neighbors of ® transitively, and therefore
it contains an element of order 3. In other words, there exists an element
u € A\ Q satisfying uDu~! =D and u® € Q*. This element has a quadratic
minimal polynomial with rational (and therefore real) coefficients. So it has
either two real roots or two conjugate complex roots.

Now consider u as an element of 5 = A ®q Q = M3(Q), where Q is
the field of algebraic numbers. Then w is conjugate to a real multiple of a
matrix of the form (%1 722) where 771 and 72 are two different cubic roots of
unity. By the previous discussion we can assume either (11, 72) = (w,w?) or
(n2,m) = (w,w?). Hence, the projective representation p : C3 — 2A*/Q* of
the cyclic group Cs defined by u is a conjugate of the representation defined
by a cubic root of unity over Q, and therefore also over Q by [A2, Th. 1],
so we can assume that u is a root of unity. Since the stabilizer of a local
maximal order D, equals Q@7 at split places, and D, contains all local
integers at ramified places, we conclude that v € ©*, locally everywhere
and hence globally. The result follows.

ExXAMPLE 4.2. Consider the quaternion algebra 2 = (%) Let ¢ and
j be generators satisfying i> = j2 = —3 and ij = —ji. Set i = 21 + 1 and
Jj = 2w+ 1, so that n and w are cubic roots of unity. Then each of the
orders © = Z[n, j] and ®' = Z[i,w] is contained in a unique maximal order,
since they are maximal outside the place 3 and 23 has a unique maximal
order. Denote these maximal orders by ®g and ©f. They are endpoints of
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the classifying graph at 2 by the previous proposition. We claim that they
are neighbors. Since they are also isomorphic, and therefore conjugate, we
conclude that all maximal orders in 2 are conjugate.

Now we prove the claim. It follows from the tables in [Sa] that Zsa[i, j]
is contained in exactly two maximal orders. Alternatively, we can observe
that Zsli + j] & Zs[\/—6] is the ring of integers of a ramified extension, and
therefore it is contained in exactly two maximal orders by [A5l Prop. 4.2].

5. Proofs of the main results. Theorem 1.1 follows from Propositions
4.1 and (below).

PROPOSITION 5.1. Let G be a connected graph with every vertex of va-
lency 3 or less. If G has n =1+t vertices, r of which have valency 1, then
r <t+ 2, or equivalently, r < n/2 + 1. Equality holds if and only if G is a
tree with every vertex of valency 1 or 3.

Proof. Since the graph is connected, the number of edges is v > n — 1,
with equality if and only if the graph is a tree. On the other hand, since every
edge joins two vertices, 3t +r > 2v. We conclude that 3t +r > 2(t +r — 1),
with equality if and only if each of the previous inequalities is an equality.
The result follows. =

REMARK 5.2. Note that we might not have equality in Theorem 1.1
even if the quotient graph satisfies the sufficient conditions for equality in
Proposition above, because of the existence of virtual endpoints. This
can be used in a few cases to improve the bound r» < t + 2 and, a fortiori,
also r < n/2 4+ 1. In fact, the presence of some particular subfields implies
the existence of virtual endpoints. See the examples in §6.

The next result is needed in the proof of Theorem 1.3.

PRrROPOSITION 5.3. Let G be a bipartite graph with a set of vertices
V(G) = AU B, where every vertex of G joins a vertex in A and a ver-
tex in B. Let n be the cardinality of B, and let r be the number of endpoints
in B. If no vertex of G has a valency larger than 3, then r < 3(n + 1)/4.
Equality holds if and only if the following conditions hold:

(1) G is a tree.
(2) Ewvery vertex in A has valency 3.
(3) Every vertex in B has valency 3 or 1.

Proof. First we assume that G satisfies conditions (1)—(3). Let t =n—r
as before. Let m, p, and s be the numbers of vertices in A with zero, one,
or two neighboring endpoints, respectively. Then the previous result shows
that r =t 4+ m + p 4+ s + 2, while on the other hand, we have the identities
r = p+ 2s and 3t = 3m + 2p + s. Adding these two identities, we get
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r+3t=3(m+p+s)=3(r—t—2), whence r = 3(¢t + 1). Replacing ¢ by
n — r gives the result.

We call subgraphs of the shapes shown in Figure 2A nails and forks.
Vertices in B are denoted by “e” and vertices in A are denoted by “o”
Now, for the general case, we observe that by adding extra nails and forks,
as shown in Figure 2C, we can turn any tree into a tree satisfying the
preceding hypotheses. Furthermore, cycles can be eliminated by replacing
an edge by a nail-fork pair, as shown in Figure 2B. By repeated application
of these procedures, we obtain a graph G’ satisfying the hypotheses. Set
V(G") = A" U B’ as before, where B is identified with a subset of B’ in
the obvious way. Let n’ be the cardinality of B’, let 7" be the number of
endpoints in B’, and set t' = n’ —r’. Note that ¢/ = and r < 7/, by a case
by case inspection of the reduction steps in Figure 2. We conclude that

whence the result follows. Furthermore, the inequality is strict unless no

T

GlE

EH ER

Fig. 2. (A) Nail and fork. (B) Deleting a cycle by introducing a nail-fork pair. (C) Adding
nails and forks to several trees

l

Proof of Theorem 1.3. Let ® be an order in the spinor genus O, and let
X be the spinor class field corresponding to this genus. Let e(2) € Jg be the
idele whose only non-trivial coordinate is e(2)2 = 2, and let o = [e(2), X/Q)].
If o is the identity, the vertices in the quotient graph & correspond to
maximal orders in one spinor genus and the result follows from Proposition
since n/2+1 < 2(n+1) for n > 1. If o is not the identity, the graph
& is bipartite, and its vertices belong to exactly two spinor genera, so the
result follows from Proposition "

Proof of Theorem 1.5. Assume all conditions in the theorem hold, and
let o be as in the preceding proof. If ¢ is the identity, the vertices in &
correspond to maximal orders in one spinor genus and the result follows from
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Proposition [5.1] as before. We assume therefore that o is not the identity, so
in particular & is bipartite, with any pair of adjacent vertices in different
spinor genera. Let @ and O; be such spinor genera. Since Z[w] is not spinor
selective for this genus, there exists an order in each spinor genus containing
a copy of Z[w]. Let ©®1 € @1 be such an order. Let ® € O be a neighbor
of ®;. If Z[w] is not selective for the spinor genus O, both ® and ©; are
endpoints and the graph contains only two vertices, a contradiction. =

6. Generalizations and examples. The methods employed here for
the ring Z|w] work with a limited number of orders whose presence is re-
flected in the combinatorial properties of the local graph at some finite
place p.

ExaMPLE 6.1. Roots of unity n whose order is a Fermat prime p =
22" + 1 produce vertices of valency 1 for any definite quaternion algebra 2
defined over the totally real field L = Q(n) N R, at any dyadic place p of L
splitting 2. This can be proved as follows:

The extension Q(7n)/Q is unramified at 2, since the polynomial 2P —1 has
different roots in Fo, while each of them generates an extension of degree
2" + 1 over Fo, as m = 2™ + 1 is the smallest value of m for which p
divides 2™ — 1. Furthermore, the quadratic extension Q(n)/L is inert at
every dyadic place, since  — n~! induces a non-trivial isomorphism over
the residue field. In particular, for every dyadic place p of L, the residue
field L satisfies [L : Fy] = 2™. We conclude that the local Bruhat—Tits tree
for PSLa(L,,) at any such place has vertices of valency 22" 4+ 1 = p. Now the
result follows as in the proof of Proposition 4.1.

As a consequence, it can be proved, as in the proof of Theorem 1.3, in
any size-m spinor genus of Op-orders that are maximal at some place p as
above, that the number r of conjugacy classes representing Oy [n] satisfies

This again shows that Op[n] is selective for large values of m.

ExaMPLE 6.2. Let 2 be a definite quaternion algebra over QQ splitting
at 2. Consider the commutative order Z[u] = Ogy,), where u is a root of
the equation 2 — x + 2 = 0. Note that the extension Q[u]/Q splits at 2,
whence the local orders at 2 containing a fixed copy of Zs[u| in s lie in a
maximal path 7 in the Bruhat-Tits tree [A5, Prop. 4.2]. Since the norm of u
is a uniformizing parameter, it is easy to see that, for any global embedding
¢ : Q[u] — A, conjugation by ¢(u) defines a global automorphism of 2 that
shifts by 1 the line of local orders containing ¢(u). Since u is a unit outside
of 2, conjugation by ¢(u) must stabilize any Z[1/2]-order © containing it. It
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follows that all orders in ~ are isomorphic and are connected to equivalent
branches of the tree (Figure 3A). We conclude that the corresponding vertex
in the quotient graph looks like one of the graphs in Figure 3B, according
to whether there exists a global inversion on this path or not. It follows that
the proofs of Theorems 1.1-1.5 carry over word for word to this case.

. O—0 O

Fig. 3. (A) Repetitive pattern arising from a global uniformizing parameter in a field
splitting at 2. (B) Possible shapes of the quotient graph.

Another consequence is the following proposition:

PROPOSITION 6.3. Assume the quaternion Q-algebra 2 is unramified
at 2, and let ® be an order in A that is maximal at 2, and contains both
a cubic root of unity and a root of the equation x> — x +2 = 0. Then the
spinor genus Spin(®) contains a unique class.

EXAMPLE 6.4. When K is the function field of a smooth projective curve
X over a finite field F, quotient graphs similar to those described here can
be used to classify X-orders in a quaternion K-algebra 2 [A6, Thm. 1.1].
These graphs are finite if and only if 2 is a division algebra. They depend
on the choice of a place at infinity, playing the same role as the place 2 in
our case. If the place at infinity is defined over F, endpoints correspond to
orders representing the maximal order of the subfield KL where L is the
unique quadratic extension of F [A6l Ex. 5.1]. The same argument given
here can be used to show that this order is selective on large spinor genera.

EXAMPLE 6.5. It follows easily from [A5l Prop. 2.4] that if the algebra 2
contains a cubic root of unity and if r is the largest distance of a vertex from
the set of non-virtual endpoints, in the classifying graph at 2 of maximal
orders in A, then § = Z +2"Z[w] = Z[2"~1y/—3] embeds into every maximal
order in 2. The methods in this work cannot be used to prove selectivity

Fig. 4. The classifying graph of a conjectural large genus for which Z[/—3] would not be
selective.



Roots of unity in quaternion orders 391

for the order Z[v/—3], since it is easy to draw graphs where every vertex
is at distance 1 from an endpoint, as in Figure 4. Whether these graphs
can actually be classifying graphs for some family of spinor genera is still
unknown to us. If such genera existed we would have an example of an order
that is non-selective for arbitrarily large spinor genera.

By the theorem of almost strong approximation or ASAP [HIJ, Th. 3.1],
the order Z[p?v/—d] is not selective in a fixed genus, for almost every prime p,
since ASAP implies that every pair of maximal orders are at most at a
distance 2 in the classifying graph at almost every place. Furthermore, the
main result in [E] states:

Any positive definite ternary quadratic lattice of discriminant
d represents any integer of the form ct?, if ¢ is large enough,
(t,2d) = 1, and c is primitively represented by the corresponding
genus.

This implies that, in a fixed genus, Z[t\/d] is not selective for a larger family
of values of t. All these results refer to large factors, however, so the following
question remains open, as far as we know:

Is any order in an imaginary quadratic field selective for any
large enough spinor genus?

As noted above, if the answer to this question is positive, this imposes
restrictions to the possible shapes of the classifying graphs.

Let (p) be the unique quaternion algebra over Q that ramifies exactly
at the places p and co. We end this work by computing the quotient graph
at 2 of the genus of maximal orders for all odd primes for which the type
number of the algebra 2(p) is 1, that is when p € {3,5,7,13} (cf. [L, §3], [D]).

When Q[w] embeds into 2A(p), namely, when p € {3,5}, the unique ver-
tex of the classifying graph has valency 1, and therefore the graph looks
like Figure 5A. Since Q[v/—7] embeds into 2A(7), it follows from the sec-
ond example in this section that the classifying graph I'\To has one of the

shapes in Figure 3B. Note that (7) = (_7@_1), whence for any embed-

ding ¢ : Q[u] — A(7), where u = (/=7 + 1)/2, there is a pure quaternion
i € A(7) satisfying i> = —1 and i¢(u)i~! = ¢(u), whence conjugation by i
permutes the eigenvectors of ¢(u). Since conjugation by ¢(u) is a shift in
the path + of maximal orders containing ¢(u), as in Figure 3A, conjugation

o———k = kO —k

(A) (B)

Fig. 5. Classifying graphs at 2 for the genus of maximal orders for the algebra 2(p) when
(A) pe{3,5}, (B) pe{7,13}
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by ¢ is an inversion on that line. We conclude that I" \ To looks like Figure

5B. The same holds for p = 13 if we note that A(13) = (%), and any

pure quaternion satisfying i> = —13 stabilizes any maximal {oo,2}-order
containing it, even if i is not a {oo, 2}-unit, since the maximal order at 13
is unique, and N (7) is a unit outside 13. The result follows.
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