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The growth rates of digits
in the Oppenheim series expansions

by

BAo-WEI WANG and JUN WU (Wuhan)

1. Introduction. Let a,(j) and b,(j), n > 1, be two sequences of
positive integer-valued functions of the positive integer j > 1. The algorithm
0 <z <1, x=ux, and, for any n > 1 and some positive integers d(z),

<xy < d

(1) ; # ! an(dn(x)) Tn+1
dn () n(T) — 1 dn () bn(dn())

Ty =
leads to the series expansion

2) Z ay(dy(z -an(dn(:c)) . 1

bi(di(z)) -+ bn(dn(z))  dpii(z)’
which is called the Oppenhezm series expansion of x. Set
an(J)

(3) hn(j) = o) iG-1, j=2
If hy(j) is integer-valued (n > 1, j > 2), then (2) is termed the restricted
Oppenheim series expansion of x. Here and in what follows, we always as-
sume h; is integer-valued for all j > 1.

The algorithm (1) implies

(4) di(z) > 2, dpyi(x) > hy(dp(z))+1 for any n > 1.

On the other hand, any integer sequence {d,,n > 1} satisfying (4) is an
Oppenheim admissible sequence, that is, there exists a unique x € (0, 1] such
that d,(x) = d,, for any n > 1. The representation (2) under (1) is unique.

The representation (2) under (1) was first studied by A. Oppenheim [7]
who established its arithmetical properties, including the question of ra-
tionality of the expansion. The foundations of the metric theory were laid
down by J. Galambos [2]-[4], [6]; see also the monographs of J. Galambos [5],
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F. Schweiger [8] and W. Vervaat [9]. In particular, concerning the growth
of {dn(x),n > 1} J. Galambos [5, p. 93] obtained the following interesting
result:

DEFINITION 1.1. Let 8 > 1. We say that the function h,(j) is of order
0 if there are constants 0 < C; < (s such that

(5) C1 < hn(§)/j° < Cy  for all n and .

THEOREM 1.2. Let hy,(j) be of order 3 >1. Then, for almost all x € (0,1],
the limit
lim 7" logd,(z) = G(x)

n—oo

exists. Its value equals the finite series
G(x) = 57 { logdi(2) + Y 87" 10g(dn+1(2)dn(2) ) }.
n=1

From Theorem 1.2, we deduce that when h,(j) is of order § > 1, then
for almost all z € (0, 1],
. logdjii()
6 lim —2T 2 —
(6) j—oo log hj(d;(x))
Hence a natural problem is to discuss the size of the sets with different
growth rates of {d,,(z), n > 1}. More precisely, for any a > 1, let

oo logdipa(z)
B~ {e0.1: Jim B = o}

What is the size of B,7 In this paper, we calculate its Hausdorff dimension.
The situation here is quite complicated and we carefully construct a Cantor
set £ C B, such that the Hausdorff dimension of E approximates that
of B,. Some other exceptional sets associated with the Oppenheim series
expansion were discussed in [10]-[12].

We use | - | to denote the diameter of a subset of (0, 1], dimy to denote
the Hausdorfl dimension and cl for the closure of a subset of (0, 1].

2. Hausdorff dimension of B,. In this section, we give the main
result of this paper.
We start with the mass distribution principle (see [1, Proposition 2.3])

that will be used later.
LEMMA 2.1. Let E C (0,1] be a Borel set, and p a measure with
w(E) > 0. If for any x € E,
1 B
lim inf 2BAB@ )
r—0 logr

)

where B(xz,r) denotes the open ball with center at x and radius r, then
dimpg F > s.



Oppenheim series expansions 177

The following result is proved in [10].

LEMMA 2.2. Suppose hy(j) > j—1 for any n > 1 and j > 2. Then for
any m > 3, the set
dj(x)

On={re 1<

SmforanijQ}

has Hausdorff dimension 1.
Now we state our main result.

THEOREM 2.3. Let hy(j) be of order 5 > 1 and hy,(j) > j — 1 for any
n>1and j > 2. Then for any a > 1,
1

dimyg B, = m.
Proof. Let
D = {z € (0,1] : limsupd;(z) < co}.
J—00
By (4) and the assumption h,(j) > j — 1 for any n > 1 and j > 2, w
have dj1(z) > hj(dj(x)) +1 > dj(x). Thus for any x € D, dj;1(x) =
ultimately, and therefore

> o0
D c U U{:r € (0,1] : dj(xz) =t for any j > k},
k=11t=2
which implies D is countable.
If « = 1, then for any = € Cy, \ D, where C,, is defined in Lemma 2.2,
we have
L 108 dj1()
j—oo log hj(z)
Thus C,, \ D C B;. By Lemma 2.2, we have dimy B; = 1.
In the following, we always assume that o > 1. We divide the proof into
two parts.

=1.

PART I: Upper bound. Let e < min{a—1/8,a—1}. For any x € B, \ D,
from the definition of B,, there exists jo such that for any j > jo,

(7) h$™2(dj(x)) < djpa(x) < h§TE(dj ().
Thus

o0
Bo\ D C | J Bale, jo),
Jo=1
where

Ba(e, jo) = {w € (0,1] : h§(d;(2)) < djyr(w) < hFT(d;(2)) for j > jo}.

Fix jo > 1; we now estimate dimy By (€, jo) from above.
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Since hj(d) is of order 3, for any
Bla—1—¢) 1 >

’Ig_

0 <n<minf{ 1,
g mm( a+l—c¢ oa—c

there exists do > 3'/2%¢ such that for any d > do,
(8) dP=" < hj(d) < dPt.

For any x € Bq(e,jo) \ D, since dj(z) — oo as j — oo, there exists j; such
that d;(x) > dp for any j > ji. Thus we have

Ba(2,jo) \ D C | Bale,jo. . 1),
J1=1
where

Ba(e, jo,m,j1) = {z € (0,1] : b ™°(d;(2)) < djsa(w) < h§Te(d;(x)) for
J > jo and dj(x) > dp for j > ji}.
For any j; > 1, let jo = max{j1,jo}. Then By,(e, jo,n,j1) is contained in
{z €(0,1] : h§™°(d;(@)) < djs1(z) < h§T5(d;())
and d;(x) > do for any j > ja}
= U {ZL‘ S (0, 1] : dl(l‘) =d,.. .,dj271(213) = dj271, dj (ZL‘) > dy,

di,..ydjo—1

and hS%(d;(2)) < djir(2) < WOV (d;(2)) for any j > ja}

c U {x € (0,1]:dy(z) = du,...,dj,(x) = djy,
d1,...,dj2_1,dj2 >dy

A (@) < dja (@) < AV @) for any j > o,

where the union is over all dy,...,d;,_1,d;, such that di > 2, d;, > dp and
djy1 > hj(d;) + 1 forany 1 < j < jo — 1.
For any d = (dy,...,dj,—1,d;,) satisfying the above conditions, let

I(e,jo,m, g2, d) = {z € (0,1] - di(2) = du, . .., djp () = dj,

[d§6—n)(a—6)(x)] <djii(z) < [d§.ﬁ+n)(a+5)(x)] + 1 for any j > jo}.

By the o-stability of Hausdorff dimension (notice that D is countable), in
order to get an upper bound of dimy B, (g, jo), it suffices to give an upper
bound of dimy I'(g, jo, 7, j2, d ) for any j2 > jo and any d = (d1, . .., dj,—1,d;,)
as above.
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Now we introduce a kind of symbolic space defined as follows. For any
k> jo+1, let

Dy = {O': (0'1,...,Uk) ENklo'l Idl,...,O'j2 :de,

(o} < oy < [0} 4 L for o < j < K,
and define
(o]
D* = U Dy..
k=j2+1
For any k > jo+ 1 and 0 = (01,...,0%) € Dy, let J, and I, denote the
following closed subintervals of (0, 1]:
Jo = U cf{z € (0,1] : di(z) = o1, ...,dp(z) = o,
(B=m)(a—e) (B+n)(a+te)
[‘Tk }<d§[ok 1+1 dk+1(3§') — d}7

I, =cl{z € (0,1] : di(x) = 01, ...,dp(x) = O}
By the restriction on 1, we know that J, # (), since, for any j > ja,

i1 > Uj(ﬂ—n)(a—a)

It follows that

>0 > > 0j, > dp.

(Bm)(a—e) (B=n)(a=e)
g1 > 05 >h; T (o) 2 hy(oy).
Moreover, we know that o > dg for any k& > jo + 1, which yields

() GOm0 5 gplonte) 5 gD S g

Each J, is called an interval of kth order. Finally, define

E= ﬁ U 7

k=j2+10€Dy

It is obvious that

F(57j0:777j2>d) = E
From the proof of Theorem 6.1 in [5], we have, for any k£ > jo + 1 and
o € Dy,

_ai(o1) az(o2)  ak—1(ok-1) 1
(10) ol = bi(o1) ba(o2)  bp—i(ok—1) (ox —1)oy’

al(al) “.ak(ak) ) 1
be(ok) (d—1)d

(1) |Jo| =

N
s
g

_ai(o1)  ag(ok) 1 B 1
N bl(O'l) bk(ak) [O-l(cﬁ_n)(a_g)] [U]gﬁ+n)(a+€)] +1 )
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For any

(a+e)(B+n)
(a=e)B-n2+(a=e)(B—n)—(B+n)]—(a+e)(B+n)
by (9) and (11), we have

H’(E) < liminf AL
(E) <liminf } | |J]

(12) s>

UGDk
.. ay(o1) ak(ak)< 1 1 >>8
= liminf < ... B
heo o€Dy, bi(o1) br.(ok) [U](gﬂ_n)(a_s)] [JI(Cﬁ+77)(a+s)] +1
. . s hk O_k S
= lim inf |J,| 3 < ﬁ )
7Pk [0{7 DM <oy <[o oA B+ K\Tk

1 1 5
X p—
<[O.](€a€)(ﬁ77)] [U]E:QJFE)([?JH?)] + 1)

1 1 s
X ( a—e — B (0% ot} >
[ (a—e)(B 77)] [Jl(gjl— )(ﬁ—f—n)] +1

Ok—1
B+n s
< liminf |J5|° Z UkQ L
k—o0 (o o —1
o€Dg_1 [01201—16)(5—77)}<0k§[o.’(€01-‘;5)(5+77)}+1
. 1 UIE;OjE)(ﬁJrn) +1\¢
o @By G2antBe) g
B+n s
< liminf |J5|° Z Th . Ok
k—oo O"% O — 1
o€Dg_1 [O.I(Coi—ls)(ﬁ—n)}<o_k§[a_l(coi-‘;5)(5+n)]+1
S
" 1 o) (B+n)
U’(Ca—€)(ﬁ—n) _1 k—1 '
For any k£ > jo + 1, let
oL Jlia—s)(ﬁ—n)

W o1 e
Since log(1 4+ z) < z for any > 0, and (o — ¢)(8 —n) > 1, we have
+ ! < i < 1 -
o —1 Jlga—a)(ﬁ—”) _1 Ok d[()(a*E)(/J’*Ti))’“*]2
4 —
d(()(a—ﬁ)(ﬂ—n)—l)(k—h) " pk—j2

(13)  logag <

< (7‘ > 1).
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Thus
H’(E)

IA

lim inf |5 |° Z (64/Tk7j2 )°

K
% oeDy (0O g <A

B+ s
(o1 (ate) (8-+1)
07 LB Tk

IN

fming 37 et g0
c€Dy_1

X

[ OESICOAN
(a—e)(B—n)2+(a—e)(B—n)—(B+n)) ~ k-1 )

Op_1

By (12) we have
H*(E) <liminf Y |J,%e*/™" "
(E) < limin |Jo|%€

o€Dg_1
k
<< 4s/r' 72 s .
S el § Z ol” < 00
i=jo+1 O‘GD]'2+1
Thus
s B < (o +)(B+7)

(a=e)(B=—n2+(a=e)(B-n)—B+n]—(a+e)(B+n)

By the o-stability of Hausdorff dimension, we have, for any j; > 1,

dlmH Ba(&jOﬂ%jl) < sup dimHF(€7j07777j2)d)

diyeedjy—1,djy >do
3 (a+)(3+n)
T (a=e)B-n2+(a-e)(B-n) - (B+n]—(a+e)(B+n)
This implies

dimH Ba(E,jo)
< (a+e)(B+n)
“(a—e)B-n2+(a—e)(B-n)—B+n)]—(a+e)(B+n)

Since 7 is arbitrary, we get

(a+e)s
(- a2+ (a—e)B—Bl—(a+o)B
The o-stability of Hausdorff dimension yields

(a+2)8
(@-9B2+(@-aB—f—(ate)B

Since ¢ is arbitrary, we have

dimy B, <

dlInH Ba(é‘, ]0) <

dimH Ba <

1
(a=1)p+1
This completes the proof of Part I.
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PART II: Lower bound. Since hj(d) is of order (3, there exists ¢ > 2 such
that for any j > 1 and d > 2,

(14) 1P < hj(d) < cd®.

Since o« > 1, there exist dy > 4 and Kg such that for any d > dy, j > Kp,
we have

(15) P >ed® +1, (d-1)*—1>(d—1)U+D/,
This implies, for any d > dp,
(16) h$(d) > (¢ 'd%)* > ed® + 1 > hj(d) + 1.

Let jo > max(3/3, Ko), jo € N. Choose an integer sequence dy,...,d;,
satisfying dy > 2, dj+1 > hj(dj) +1,1<5<j50—1, and

(17)  dj, > max{do,*2°*2 + 1},  (dj, — 1)*[(dj, — 1)?/70 —1] > 2.
Define
BW (o) = {z € (0,1] : dy(z) = dy, ..., dj,(x) = djp,

h(d;(x)) < dja(2) < BST2 (dj(x)) for j > jo}.

Then B,(Xl)(jo) # 0. In fact, by (17) and h;(d) > d — 1 for any j and d, we
have

B3 (dgy) = 1)
[(dj, — 1)?/70 —1] > 2.

Then there exists dj,+1 € N satisfying h% (dj,) < djp1 < hS*7°(d;,), and,
by (16),

RSP0 (dg) — b (djy) = hS (dj,

Jjo

djo+1 = h’?o (djo) > hjj (djo) + 1
Suppose by induction there exist dj,+1,djy+2, ..., d; € N satisfying
hi_i(di) < di < h V@A), Go+1 <k <,

e di > hg—1(dg-1) +1, Jo+1<k<j
By (15) and (17), we have
RS2 (dy) — b (dg) = b (dy)(h5 (d) — 1)
(dj — 1)*((dj — 1) = 1)
(hg_1(dj—1) = D[RS (dj—1) — 1) — 1]
((dj1 = 1)* = D*[((dj-1 — 1)* = 1) — 1]

(AVARNLY,

Y

J

> (djo1 — )T (djoy — )3 7T 1

S
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> (dj_1 — 1)¥[(dj_1 — 1)1 — 1]
> > (djy = 1)[(djy — 1?70 —1] > 2.
Thus there exists dj1 € N satisfying h'(d;) < djp1 < h?+2/j(dj), and,

by (16),
dj+1 > hj(d;) > hj(d;) + 1.

Therefore B&l)(jo) # (. From (16), it is clear that for any = € B&l)(jo),
d;j(x) — 0o as j — oo and Bél)(jo) C Ba.

Fix g € B&l)( jo) and choose any t satisfying
- o n 2a

b1 " Blap—1)
Since d;(xg) — oo as j — oo, there exists j; > jo such that for any j > ji,
(19) dj () > max(9%/2% ¢)t.

Now

(18)

S « n 2a
af—1 " Blaf-1)
implies that there exists jo > j; such that for any j > jo,

@) (- e G- > 20
Define

BO(j1) = {z € (0,1] : di(x) = di(0), ..., dj, (x) = dj (o),
1 (dj(2)) < dj () < h“”“(%(z)) for any j > j1},
B®(jo) = {z € (0,1] : di(x) = di(0), ..., djy (x) = dj (o),

) =
h(dj(2)) < djr(2) < h““”(dy(

i x)) for any j > jo}.

For any z € B&g)(

jg) and j > jo, by (19), we have

(21)  di(2) > h§y(dja (@) > (¢ ']y (@) = (¢ ), (2)
> ()R D(dja()) > () (e )y (2))*
= () ()P (@) > -

> ()"

R

> C(t—iaﬁa,1)(Oéﬁ—l)(j_jl)""aﬁafl > CQ(D%H)‘

« ( —1) (aB)i =91~ 1ad(aﬁ)J 7 (ZL‘)
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On the other hand, if ¢ > 93/2% from (21), we have

3 2(ajt+1)

dj(z) > 9% " 5 > 9%/

while if ¢ < 9%/2%, then ¢~ > 973/2% and from (19), in the same way as in
the proof of (21), we have

dj(z) > (c‘l)o‘ .. (c—l)(aﬁ)j*h*ladfﬁ)dm (2)
> (973/20a | (g=3/20\(aB) 1 e (g3/2a\t(aB)Y I 5 g3j/B

So for any x € B&?’) (j2) and j > j2, we have
(22) dj(x) > 9%/8.
Let

B (j2) = {z € (0,1] : dy(x) = dr(x0), - .., djp (x) = dj, (w0),

(cd] ())* < djy1(z) < (¢7'd] (2))*T?/ for any j > ja},

BP(j2) = {z € (0,1] : dy(z) = di(x0), - .., djp (x) = dj, (w0),

8 o
4 @) < () < d“ I ) for 2 o)
By (21), we have
(23) B (j2) € B (j2) € BY(j2) € BY (1) € BY(jo) C Ba

For any j > ja, write

(24) 8j=a<5+2<aj’%1>)’ v (ﬁ_%> <“+§)'

Then for any j > jo,

(25) tj =s;+ §
For any j > jo + 1, define
J—1 si+2t; J=2 842,
L= (145 )an = o M =d T )

where Mj, 1 = dj]; (z9). From (24), we have, for any j > jo + 1,

2
(b= 5573 (o4 57) > e

J s;+2t; j—2 s+2t .
Hi7j2 * IT; ttj_18;

= 3 i=
d, (w0) > dj,

thus

(z0),
that is,
(26) Lj1 > M.



Oppenheim series expansions 185

At the same time, it is evident that, for any j > jo + 1,
(27) Mj+1 < L;-j.
Let

BY)(jo) = {x € (0,1] : di () = du(w0), - .., dj () = dj (o),

[Lj+1] < djia(x) < [Mjya] for j > jo +1}.

From (26), (27) and (23), we have
(28) BY(j2) € BY)(j2) € B (j2) € B (j2) € BY (1) € B (jo) € Ba.

In the following, we find a lower bound of Hausdorff dimension of
B&G) (j2) by using the mass distribution principle (Lemma 2.1).

First we introduce a kind of symbolic space defined in a similar way to
the proof of Part 1. For any k£ > js, let

Dk:{O': (0'1,...,0'k) Etho'j :dj(xo) for 1 S_] Sjg,
and [Lj1] < oj41 < [Mja] for jo < j <k},
and define
D* = U Dy..
k=j2
For any k > js and 0 = (01,...,0%) € D, let J, and I, denote the following
closed subintervals of (0, 1]:
Jy = U {z € (0,1] 1 di(z) =01,...,dx(x) = 0%, djps1(x) = d},
[Lr+1]<d<[M41]
I, =cl{zx € (0,1] : di(z) = 01, ...,dp(x) = ok };
each J, is called an interval of nth order. Let
= U 7
k=j2 c€Dy,
It is obvious that
E = BP(j2).
From (10) and (11), we have

_ai(o1) az(o2)  ap—1(ok-1) 1
(29) ol = bi(o1) ba(oz)  br—i1(ok—1) (ok —1)oy’
(30) A | CAV /0 p.
7 bi(o1) br(or) (d—1)d

[Li+1]<d<[Mg41]

_ ai(o1) _@k(%))({ 1 1 >

~ bi(o1)  bi(og

L] [Mya]
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Let © be a probability mass distribution supported on FE such that for

any k > jo and o € Dy,
(31)

1

N(JU) = ﬁE7

where f denotes cardinality. We shall use p to give a lower bound of the

Hausdorff dimension of E.
For any k > jo, write

k j—1
A=Y 155
j=ja+li=js
Then
A
(32) lim =%
k—o0 Bk
Ck
33 lim —

7 Bk_ Z H81+2t1t] L Ck_H 3

k+1 j—2

S; + 2t1

Jj=j2+1i=j2 J=Jj2

C oy A 1

= lim ———— = —,
k—oo Bk+1 — Bk Oéﬁ

_1. Ck+1—0k_aﬁ—1

= lim = .
k—o0 Bk-‘,—l — Bk Oéﬁ

Now we estimate §Dy. Notice that 2+ 1 > (x 4+ 1)? for any 0 < a < 1 and
x > 0. By (22), for any j > jo > jo > (3/3 we have

1
2
Then for any j > jo + 1,

1=

(34) M) = [Ly] > dj,

i=
> dHl

= %4y

1=

= djz

Thus for any k£ > jo + 1,
k

(35)

Jj=jo+1

For any s satisfying

0<s<

B/3i 4 4
Lj> > 5 (L + 1A% —1) >

1=
> dj2

iD= [ (M) - [Ly) > d;

37

(0

&lw

—1)

N[ =

2s+2tt H]15+2t
je = 3 Tl 4 il i=j2 3
1 (1 + 'Z)dp
J
1s+2t H]2s+2t,tg15 -1
jo d i=jo 3 3 _ 3
J2
Vot ] o1
J2 . _
5 Limt 3
1 s;+2t;
o 3 _ i
g2

k J—1 si+2¢;
> imjot1 Hz’:jQ SEE :dAk

aﬁ<2—<a+ .
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there exists 1/2 > 19 > 0 such that for any 0 < n < 79,

1 _
(36) s < il

Ao ) ) e

For any fixed 0 < 1 < ng, by (32) and (33), there exists ko(n) such that for
any k > ko(n),

A _1-n C’k>aﬁ—1—n

(37) B~ o' B af

For any x € E, we prove that

1 B
r—0 log r

For such z, there exists 0 = (01, 02, . ..) such that o; = d;(x¢) for 1 <1i < jo,
and for any k > jo, (0|k) := (01,...,0) € Dy and d;(x) = o for any j > 1.
Thus x € Jy,...s,, for any k > jo.

From the proof of Theorem 6.1 in [5], we know that, for any k > jo, the
right endpoint of the interval Jys, ..., , i.€., max{y € (0,1] : y € Jy,...0p }, 18

1 al(al) ) 1 al(al)“_ak(ak.) ) 1

(38) 0_1+b1(01) o2 bi(or)  br(on) [Lrta]’

and the left endpoint, i.e., min{y € (0,1] : y € Joy..0, }, 1S

(39) i+a1<01) i a1(01) ak(ak) 1 ‘
o1 bi(o1) o2 bi(o1)  brlok)  [Myd]
(i) If o — 1 > [Lg], from the definition of h;(d), (38) and (39), we know
that the gap between J,,...q, and Jo,...s,—1, denoted by g (), is

a1(o1)  ap-1(ok-1) aglog—1) 1
bi(o1)  bk-1(ok—1) br(or —1) [Myy1]
ay(o1) ak (o) 1 1
i )

* bi(01)  br(ok) \hi(on)  [Li+1)

ai(o1)  ap-1(ok-1) ar(ox—1) 1
T bi(o1)  bpe1(op—1) br(ox — 1) [Myyd]

=: G(x).

(ii) Suppose oy, = [Li) + 1. If 05 = [L;] + 1 for any jo +1 < j <k,
let gp(z) = gp_4(x) = -+ = gj,11(2) = 00 and Gy(z) = Gy _,(z) =
G, 41(z) = oo. If there exists jo +1 < j < k such that o > [L;] + 1, let
j=max{j:jo+1<j <k, o;>[Lj]+1}. Define g(z) = gf_,(x) =--- =
g2(x) and Gi(x) = G}_,(x) = - = GZ(a).
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(iii) If o + 1 < [M], the gap between Jy,...;, and Jo,...gp+1, denoted by

gk (), satisfies

z ar(o1)  aklow) 1 z
x) > . =:G.(x).
20 twlon) W] Y

(iv) If of, = [My], let gt (z) denote the distance between the left endpoint
of Js,..qp_, and the left endpoint of Jy,...,,. Then

1oy ai(on) ag(ox) 1 — G
gk(ﬁ) N bl(o'l) bk(Uk) [Mk—i-l] ' Gk( )
Define

Gr(x) := min{G (z), G} (x)}.

Let k > max(1/3(a — 1), j2). By (24), we have a3/3k < (a— 1)y, which
implies t;5 < (tx — B/3k)af. Thus tx0 < ((sg + 2tx)/3)tk+1, SO

(40) M| < Mysos.
On the other hand, by (17), we have
(41) Opi1 — 1> djy(w0) —1=dj, — 1> - 2°%2,

Combining (40) and (41), we have

B
3, 9f+2 Okt1
c _
Okt1(0kt1 — 1)
By the definition of hj(d), and since h;(d) is of order 3, we have

hi (o) hit1(0p41 — 1) 1 hi(or — 1) 1

or(or —1) (okp1 = D(oks1 —2) [Mrya] — (on — D)ok —2) [My41]’

M1 < Myo.

al(al) ”'ak+1(ak+1—1) ) 1
bi(o1)  bksi(oks1 — 1)  [Myo]
ai(o1) ak—1(0k-1) ) ag(ok — 1) 1

bi(or)  be—1(ok-1) brlok —1) [Myta]’
that is, G} ;(z) < G(x). In the same way, we have Gfg_H(x) < GL(z). So
k > max(1/3(a — 1), j2) implies Gy41(z) < Gi(z).

Let K1 = max(1/3(a —1),52). For any 0 < r < minj,«j<r, {G;(x)},
there exists k& > K such that Gi11(z) < r < Gi(x). Thus B(x,r) can in-
tersect only one kth-order interval, which is Jy,....,. Now we find an upper
bound of the number of (k+1)th-order intervals, the (k+1)th-order subinter-
vals of Jy,...s),, which intersect B(x,r). Since J, C I, we only need to con-
sider the number of {I(01, ..., 0%, J) }[L,,1]<j<[M,,) Which intersect B(z,7).

By (29), the definition of hj(d) and the fact that E = B (J2) C B&l)(jo),
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we have
Ll a1
TN by (1) bk(ok) GG —1)
io—1
:]i_[ ai(or) 1 ) hijy (955) . hemalon1) - (o)
oy bilon) o0, = 1) opi(opn =1 oklor—1) j(—1)
(a+2/j2) "t a+2/(k—1)71 .y -
> c(j2) Tja+1 2 ...Ul(c e .j( e
B ]2'2+1 O-z ]2
(3) 1
= (01w o - )2 (et 252
‘ 1 o\ —(2=(a+2/42)" 1) By
2 el72) (Mjyq1 -+ My )2 (at2/52)7! - C(JQ)de ’
where
j2—1
. ai(oy) ai(di(20)) !
c = : ’ ’
U2) l[[l bi(o7) ‘7]2(‘7]2 H bi(di(wo))  dja(w0)(djy(20) — 1)

which does not depend on z. So the number of (k + 1)th-order intervals
which intersect B(z,r) is not more than

(42) 47.(c(jQ)dJ;(z—(Oé‘f‘?/h)il)Bk)71
By (31), (34)-(37), (42), we have

{ 4r
ﬁDk_H (]2)d (2—(a+2/72

y-1)By,’ [Mk+1] - [LkJrl]}

1 o ’ 1-s

: ﬁDkH( (a)d, @ (at2/j2) 1 )Bk> ([Mg+1] = [Li41])
i L
T 8Dk \c(j2) 2 [Myi1] — [Lis1]

A [ A7\ je—(a2/ia) ) Brs —Cs
dez k(@) de 2 K de &
< ( ar )S Bi(— g +s(2—(at2/j2) )= 225571
~\clj)) 2

: <<4;>> - <<j>>

By Lemma 2.1, we have

dimH B(G) (jg) = dimH E > s.



190 B. W. Wang and J. Wu

Therefore,
1
mmHBmudemMB@UﬁZcw@-wa+2ﬁﬂ*)—Wﬁ—U
1
2 B (@2 ) = (@f—1)’

Thus
1

aB(2 - (a+2/jo)~!) — (B — 1)
for any jo > /3, jo € N, which implies

dimH Ba Z

1
(a—1)B+1
This completes the proof of Theorem 2.3. =

dimyg B, >

We now list some special cases which satisfy the assumptions of Theo-
rem 2.3.

ExAMPLE 1 (Engel expansion). Let an(d,) = 1, by(d,) = dn (n =
1,2,...). Then (2), together with the algorithm (1), yields the Engel ex-

pansion of x,
R - ! -
di(z)  di(z)da(z) di(z)dz(z) - - dn(2) '

In this case, hy(j) = j — 1 is of order 1. By Theorem 2.3, we have

(43) =z=

COROLLARY 2.4. For the Engel expansion,
logd 1
dimy xe(O,l]:limw:a =—  forany a>1.
n—oo logdy,(z) a
EXAMPLE 2 (Sylvester expansion). Choose an(d,) = 1, by(d,) = 1
(n=1,2,...). We get the Sylvester exzpansion of x,
1 1 1
44 r=——+ ——+-- o — + -,
e @ e T T aw
Here hy,(j) = j(j — 1) is of order 2. By Theorem 2.3, we have

COROLLARY 2.5. For the Sylvester expansion,

log d,,
dimpg {ac € (0,1] : lim —ogd +1(2)

1
p— = — > .
A o (2) a} for any a > 2

a—1

ExaMPLE 3 (Cantor product). Take a,(dn) = dn + 1 by(dn) = dyn
(n=1,2,...). The expansion (2) yields the Cantor product

o oo (i) (e st) (o)

Here h,,(j) = j2 — 1 is of order 2. By Theorem 2.3, we have
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COROLLARY 2.6. For the Cantor product,

log d,, 1
dimH{xe(O,l]:nILrgo(TiT:(laz()@:a}:a_l for any a > 2.

ExAMPLE 4 (Modified Engel expansion). Let a,(dy,) = 1, b, (d,) = dp—1
(n=1,2,...). We get the modified Engel ezpansion of x,
1 1
46 r=——---+ 4.
U @ T @@ D@ D) )~ D)

Thus hy(j) = j is of order 1. By Theorem 2.3, we have

COROLLARY 2.7. For the modified Engel expansion,

lim w :a}

1
= — > 1.
n—oo logdy,(z) Q for any a 2

dimgg {.%' S (0, 1] :
EXAMPLE 5 (Daréczy-Katai-Birthday expansion). Choose ay,(d,) = d,,
bn(dy) =1 (n=1,2,...). The resulting series expansion of z takes the form
1 d dy(x)d cdy

. ) o a@)d@)dia(@)

di(z) ~ da(z) dn ()
This Daréczy—Kdtai—-Birthday expansion was introduced for the first time
in Galambos [6]. Here hy,(j) = j2(j — 1) is of order 3. By Theorem 2.3, we
have

(47)

COROLLARY 2.8. For the Dardczy—Kdtai—Birthday expansion,

. . logdyi1(x) 1
. — e — >
dimp {x € (0,1] : nhigo log d, (2) « p— for any a > 3.
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