Modular parametrizations of certain elliptic curves

by
Matija Kazalicki (Zagreb), Yuichi Sakai and Koji Tasaka (Fukuoka)

1. Introduction. By the modularity theorem [2, 6], an elliptic curve E over \mathbb{Q} admits a modular parametrization $\Phi_{E}: X_{0}(N) \rightarrow E$ for some integer N. If N is the smallest such integer, then it is equal to the conductor of E and the pullback of the Néron differential of E under Φ_{E} is a rational multiple of $2 \pi i f_{E}(\tau)$, where $f_{E}(\tau) \in S_{2}\left(\Gamma_{0}(N)\right)$ is a newform with rational Fourier coefficients. The fact that the L-function of $f_{E}(\tau)$ coincides with the Hasse-Weil zeta function of E (which follows from Eichler-Shimura theory) is central to the proof of Fermat's last theorem, and is related to the Birch and Swinnerton-Dyer conjecture. In addition to this, modular parametrization is used for constructing rational points on elliptic curves, and appears in the Gross-Zagier formula.

In this paper, we study some general properties of Φ_{E}, and as a consequence we explain and generalize the results of Kaneko and Sakai [8].

Kaneko and Sakai (inspired by the paper of Guerzhoy [7]) observed that certain elliptic curves whose associated newforms (by the modularity theorem) are given by the eta-quotients from the list of Martin and Ono [9] can be characterized by a particular differential equation involving holomorphic modular forms.

To give an example of this phenomena, let $f_{20}(\tau)=\eta(\tau)^{4} \eta(5 \tau)^{4}$ be a unique newform of weight 2 on $\Gamma_{0}(20)$, where $\eta(\tau)$ is the Dedekind eta function $\eta(\tau)=q^{1 / 24} \prod_{n>0}\left(1-q^{n}\right), q=e^{2 \pi i \tau}$, and put $\Delta_{5,4}(\tau)=f_{20}(\tau / 2)^{2}$. Then an Eisenstein series $Q_{5}(\tau)$ on $M_{4}\left(\Gamma_{0}(5)\right)$ associated either to cusp $i \infty$ or to cusp 0 is a solution of the differential equation

$$
\begin{equation*}
\partial_{5,4}\left(Q_{5}\right)^{2}=Q_{5}^{3}-\frac{89}{13} Q_{5}^{2} \Delta_{5,4}-\frac{3500}{169} Q_{5} \Delta_{5,4}^{2}-\frac{125000}{2197} \Delta_{5,4}^{3}, \tag{1.1}
\end{equation*}
$$

[^0]where $\partial_{5,4}\left(Q_{5}(\tau)\right)=\frac{1}{2 \pi i} Q_{5}(\tau)^{\prime}-\frac{1}{2 \pi i} Q_{5}(\tau) \Delta_{5,4}(\tau)^{\prime} / \Delta_{5,4}(\tau)$ is a RamanujanSerre differential operator. (Throughout the paper, we use the symbol ' to denote $d / d \tau$.) This differential equation defines a parametrization of the elliptic curve $E: y^{2}=x^{3}-\frac{89}{13} x^{2}-\frac{3500}{169} x-\frac{125000}{2197}$ by the modular functions
$$
x=\frac{Q_{5}(\tau)}{\Delta_{5,4}(\tau)}, \quad y=\frac{\partial_{5,4}\left(Q_{5}\right)(\tau)}{\Delta_{5,4}(\tau)^{3 / 2}}
$$
and $f_{20}(\tau)$ is the newform associated to E. One finds that $\Delta_{5,4}(\tau) \in S_{4}\left(\Gamma_{0}(5)\right)$, so curiously the modular forms $\Delta_{5,4}, Q_{5}$ and $\partial\left(Q_{5}\right)$ appearing in this parametrization are modular for $\Gamma_{0}(5)$, although the conductor of E is 20 .

Using Eichler-Shimura theory, we generalize (1.1) to the arbitrary elliptic curve E of conductor $4 N, E: y^{2}=x^{3}+a x^{2}+b x+c$, where $a, b, c \in \mathbb{Q}$, which admits a modular parametrization $\Phi: X \rightarrow E$ satisfying

$$
\Phi^{*}\left(\frac{d x}{2 y}\right)=\pi i f_{4 N}(\tau / 2) d \tau
$$

Here X is the modular curve $\mathbb{H} /\left(\begin{array}{rr}1 / 2 & 0 \\ 0 & 1\end{array}\right)^{-1} \Gamma_{0}(4 N)\left(\begin{array}{rr}1 / 2 & 0 \\ 0 & 1\end{array}\right)$, and $f_{4 N}(\tau) \in$ $S_{2}\left(\Gamma_{0}(4 N)\right.$) is a newform with rational Fourier coefficients associated to E. It follows from the modularity theorem that in any \mathbb{Q}-isomorphism class of elliptic curves there is an elliptic curve E admitting such a parametrization (note that for $u \in \mathbb{Q}^{\times}$the change of variables $x=u^{2} X$ and $y=u^{3} Y$ implies $\left.\frac{d X}{Y}=u \frac{d x}{y}\right)$.

To such a Φ we associate a solution $Q(\tau)=x(\Phi(\tau)) f_{4 N}(\tau / 2)^{2}$ of a differential equation

$$
\begin{equation*}
\partial_{N, 4}(Q)^{2}=Q^{3}+a Q^{2} \Delta_{N, 4}+b Q \Delta_{N, 4}^{2}+c \Delta_{N, 4}^{3}, \tag{1.2}
\end{equation*}
$$

where $\Delta_{N, 4}(\tau)=f_{4 N}(\tau / 2)^{2}$, and

$$
\partial_{N, 4}(Q(\tau))=\frac{1}{2 \pi i} Q(\tau)^{\prime}-\frac{1}{2 \pi i} Q(\tau) \frac{\Delta_{N, 4}(\tau)^{\prime}}{\Delta_{N, 4}(\tau)}
$$

We show in Corollary 12 that $f_{4 N}(\tau / 2)^{2}$ is modular for $\Gamma_{0}(N)$. In general the solution $Q(\tau)$ will not be holomorphic and will be modular only for $\left(\begin{array}{rr}1 / 2 & 0 \\ 0 & 1\end{array}\right)^{-1} \Gamma_{0}(4 N)\left(\begin{array}{rr}1 / 2 & 0 \\ 0 & 1\end{array}\right)$, but if the preimage of the point at infinity of E under Φ is contained in cusps of X and is invariant under the action of $\left(\begin{array}{ll}1 & 0 \\ N & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ (acting on X by Möbius transformations), then $Q(\tau)$ will be both holomorphic and modular for $\Gamma_{0}(N)$ (for more details see Proposition 5 and Theorem 7). Moreover, in Theorem 6 we show that there are only finitely many (up to isomorphism) elliptic curves E admitting Φ with these two properties.

We also obtain similar results generalizing the other examples from [8] that correspond to the elliptic curves over \mathbb{Q} with j-invariant 0 and 1728 (see the next section).
2. Main results. Throughout the paper, let N be a positive integer and $k \in\{4,6,8,12\}$. Let E_{k} / \mathbb{Q} be an elliptic curve given by the short Weierstrass equation $y^{2}=f_{k}(x)$, where

$$
\begin{aligned}
f_{4}(x) & =x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
f_{6}(x) & =x^{3}+b_{6} \\
f_{8}(x) & =x^{3}+c_{4} x \\
f_{12}(x) & =x^{3}+d_{6}
\end{aligned}
$$

and $a_{2}, a_{4}, a_{6}, b_{6}, c_{4}, d_{6} \in \mathbb{Q}$. Moreover, we assume $j\left(E_{4}\right) \neq 0,1728$. Let

$$
f_{N, k}(\tau) \in S_{2}\left(\Gamma_{0}\left(k^{2} N / 4\right)\right)
$$

be a newform with rational Fourier coefficients, and let $\Gamma_{k}:=\left(\begin{array}{cc}2 / k & 0 \\ 0 & 1\end{array}\right)^{-1}$ - $\Gamma_{0}\left(k^{2} N / 4\right)\left(\begin{array}{cc}2 / k & 0 \\ 0 & 1\end{array}\right)$. Define

$$
\Delta_{N, k}(\tau):=f_{N, k}(2 \tau / k)^{k / 2} \in S_{k}\left(\Gamma_{k}\right)
$$

For $f(\tau) \in M_{4}^{\mathrm{mer}}\left(\Gamma_{k}\right)$, we define the (Ramanujan-Serre) differential operator by

$$
\partial_{N, k}(f(\tau))=\frac{k}{8 \pi i} f^{\prime}(\tau)-\frac{1}{2 \pi i} f(\tau) \frac{\Delta_{N, k}^{\prime}(\tau)}{\Delta_{N, k}(\tau)} \in M_{6}^{\mathrm{mer}}\left(\Gamma_{k}\right)
$$

Finally, assume that there is a meromorphic modular form $Q_{k}(\tau) \in$ $M_{4}^{\mathrm{mer}}\left(\Gamma_{k}\right)$ such that the corresponding differential equation holds:

$$
\begin{align*}
\partial_{N, 4}\left(Q_{4}(\tau)\right)^{2}= & Q_{4}(\tau)^{3}+a_{2} Q_{4}(\tau)^{2} \Delta_{N, 4}(\tau) \\
& +a_{4} Q_{4}(\tau) \Delta_{N, 4}(\tau)^{2}+a_{6} \Delta_{N, 4}(\tau)^{3} \\
\partial_{N, 6}\left(Q_{6}(\tau)\right)^{2}= & Q_{6}(\tau)^{3}+b_{6} \Delta_{N, 6}(\tau)^{2} \tag{2.1}\\
\partial_{N, 8}\left(Q_{8}(\tau)\right)^{2}= & Q_{8}(\tau)^{3}+c_{4} Q_{8}(\tau) \Delta_{N, 8}(\tau) \\
\partial_{N, 12}\left(Q_{12}(\tau)\right)^{2}= & Q_{12}(\tau)^{3}+d_{6} \Delta_{N, 12}(\tau)
\end{align*}
$$

Each of these identities defines a modular parametrization $\Phi_{k}: X_{k} \rightarrow E_{k}$ by

$$
\Phi_{k}(\tau)=\left(\frac{Q_{k}(\tau)}{\Delta_{N, k}(\tau)^{4 / k}}, \frac{\partial_{N, k}\left(Q_{k}\right)(\tau)}{\Delta_{N, k}(\tau)^{6 / k}}\right)
$$

where X_{k} is the compactified modular curve \mathbb{H} / Γ_{k}.
Proposition 1. Let $\frac{d x}{2 y}$ be the Néron differential on E_{k}. Then

$$
\begin{equation*}
\Phi_{k}^{*}\left(\frac{d x}{2 y}\right)=\frac{4 \pi i}{k} f_{N, k}(2 \tau / k) d \tau \tag{2.2}
\end{equation*}
$$

In particular, the conductor of E_{k} is $k^{2} N / 4$ and $f_{N, k}(\tau)$ is the cusp form associated to E_{k} by the modularity theorem.

Remark 2. Note that when $k=6,8$ or $12, f_{N, k}(\tau)$ is a modular form with complex multiplication by the ring of integers of $\mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$, respectively.

Conversely, given a modular parametrization $\Phi_{k}: X_{k} \rightarrow E_{k}$ satisfying (2.2), we construct a differential equation (2.1) and its solution $Q_{k}(\tau)$ as follows.

Let x and y be two functions on E_{k} satisfying the Weierstrass equation $y^{2}=f_{k}(x)$. The functions $x(\tau):=x \circ \Phi_{k}(\tau)$ and $y(\tau):=y \circ \Phi_{k}(\tau)$ satisfy $y(\tau)^{2}=f_{k}(x(\tau))$. Moreover (2.2) implies that

$$
\begin{equation*}
\left(\frac{k}{8 \pi i} x^{\prime}(\tau)\right)^{2}=f_{N, k}(2 \tau / k)^{2} y(\tau)^{2}=\Delta_{N, k}(\tau)^{4 / k} f_{k}(x(\tau)) \tag{2.3}
\end{equation*}
$$

Define $Q_{k}(\tau):=x(\tau) \Delta_{N, k}(\tau)^{4 / k}$.
Proposition 3. The following formula holds:

$$
\partial_{N, k}\left(Q_{k}(\tau)\right)^{2}=\Delta_{N, k}(\tau)^{12 / k} f_{k}(x(\tau))
$$

In particular, $Q_{k}(\tau)$ is a solution of (2.1).
Now we investigate conditions under which $Q_{k}(\tau)$ is holomorphic. The following lemma easily follows from the formula above.

Lemma 4. Assume that $\tau_{0} \in X_{k}$ is a pole of $x(\tau)$. Then

$$
\operatorname{ord}_{\tau_{0}}\left(Q_{k}(\tau)\right)= \begin{cases}0 & \text { if } \tau_{0} \text { is a cusp } \\ -2 & \text { if } \tau_{0} \in \mathbb{H}\end{cases}
$$

As a consequence, we have the following characterization of the holomorphicity of $Q_{k}(\tau)$ in terms of the modular parametrization Φ_{k}. Denote by \mathcal{C} the set of cusps of X_{k}, and by \mathcal{O} the point at infinity of E_{k}.

Proposition 5. $Q_{k}(\tau)$ is holomorphic if and only if $\Phi_{k}^{-1}(\mathcal{O}) \subset \mathcal{C}$.
In Section 3.2 we show that the degree of Φ_{k} (as a function of the conductor) grows faster than the total ramification index at cusps, hence the following theorem holds.

Theorem 6. There are finitely many elliptic curves E / \mathbb{Q} (up to a \mathbb{Q}-isomorphism) that admit a modular parametrization $\Phi: X_{k} \rightarrow E$ with the property that $\Phi^{-1}(\mathcal{O}) \subset \mathcal{C}$.

In particular, there are finitely many elliptic curves E_{k} (up to a \mathbb{Q}-isomorphism) for which $Q_{k}(\tau)$ (which satisfies (2.1)) is holomorphic.

Define $A:=\left(\begin{array}{ll}1 & 0 \\ N & 1\end{array}\right)$ and $T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. It is easy to see that $\Gamma_{0}(N)$ is generated by Γ_{k} and A and T (Lemma 9 below), hence $Q_{k}(\tau)$ is modular for $\Gamma_{0}(N)$ if and only if it is invariant under the action of the slash operators $\mid A$ and $\mid T$. The following theorem describes the modularity in terms of the parametrization Φ_{k}.

Theorem 7. If $\Phi_{k}^{-1}(\mathcal{O})$ is invariant under A and T, then $Q_{k}(\tau)$ is modular for $\Gamma_{0}(N)$.

3. Proofs

3.1. Proof of Propositions 1 and 3

Proof of Proposition 1. We have

$$
\begin{aligned}
\Phi_{k}^{*}\left(\frac{d x}{2 y}\right)= & \frac{1}{2} \frac{d}{d \tau}\left(\frac{Q_{k}(\tau)}{\Delta_{N, k}(\tau)^{4 / k}}\right) \frac{\Delta_{N, k}(\tau)^{6 / k}}{\partial_{N, k}\left(Q_{k}\right)(\tau)} d \tau \\
= & \frac{1}{2} \frac{\frac{d}{d \tau} Q_{k}(\tau) f_{N, k}(2 \tau / k)^{2}-\frac{d}{d \tau} f_{N, k}(2 \tau / k)^{2} Q_{k}(\tau)}{f_{N, k}(2 \tau / k)^{4}} \\
& \times \frac{f_{N, k}(2 \tau / k)^{3}}{\frac{k}{8 \pi i} \frac{d}{d \tau} Q_{k}(\tau)-Q_{k}(\tau) \frac{d}{d \tau} f_{N, k}(2 \tau / k)^{k / 2}} 2 \pi f_{N, k}(2 \tau / k)^{k / 2}
\end{aligned} \tau .
$$

Proof of Proposition 3. By definition,

$$
\begin{aligned}
\partial_{N, k}\left(Q_{k}(\tau)\right) & =\frac{k}{8 \pi i}\left(x(\tau) \Delta_{N, k}(\tau)^{4 / k}\right)^{\prime}-\frac{1}{2 \pi i} x(\tau) \Delta_{N, k}(\tau)^{4 / k} \frac{\Delta_{N, k}^{\prime}(\tau)}{\Delta_{N, k}(\tau)} \\
& =\frac{k}{8 \pi i} x^{\prime}(\tau) \Delta_{N, k}(\tau)^{4 / k} .
\end{aligned}
$$

Hence the claim follows from (2.3).
3.2. Proof of Theorem 6. Let $e_{x} \in \mathbb{Z}$ be the ramification index of Φ_{k} at $x \in X_{k}$, and let $\operatorname{deg}\left(\Phi_{k}\right)$ be the degree of Φ_{k}. It follows from the Hurwitz formula that $\sum_{x \in X_{k}}\left(e_{x}-1\right)=2 g-2$, where g is the genus of X_{k} (equal to the genus of $\left.\Gamma_{0}\left(k^{2} N / 4\right)\right)$. Therefore $\Phi_{k}^{-1}(\mathcal{O}) \subset \mathcal{C}$ implies

$$
\begin{equation*}
\operatorname{deg}\left(\Phi_{k}\right) \leq \sum_{x \in \mathcal{C}} e_{x} \leq 2 g-2+\# \mathcal{C} . \tag{3.1}
\end{equation*}
$$

In [11, Watkins proved a lower bound for the degree of a modular parametrization Φ of an elliptic curve over \mathbb{Q} of conductor M :

$$
\operatorname{deg}(\Phi) \geq \frac{M^{7 / 6}}{\log M} \frac{1 / 10300}{\sqrt{0.02+\log \log M}} .
$$

On the other hand, an upper bound (see [4) for the genus g of $X_{0}(M)$ is

$$
g<M \frac{e^{\gamma}}{2 \pi^{2}}(\log \log M+2 / \log \log M) \quad \text { for } M>2,
$$

where $\gamma=0.5772 \ldots$ is Euler's constant.

If we use a trivial bound $\# \mathcal{C} \leq M$, an easy calculation shows that (3.1) cannot hold for curves E_{k} of conductor greater than 10^{50}. Thus, we have proved Theorem 6 .

REMARK 8. If we assume that the ramification index at cusps is bounded by 24 (as suggested in the paper of Brunault [3]), and if we use Abramovich's [1] lower bound for the modular degree, $\operatorname{deg}(\Phi) \geq 7 M / 1600$, we conclude that (3.1) cannot hold for elliptic curves of conductor greater than 2^{19}.
3.3. Proof of Theorem 7. In this section we investigate conditions on the modular parametrization Φ_{k} under which $\Delta_{N, k}(\tau)$ and $Q_{k}(\tau)$, initially modular for Γ_{k}, are modular for $\Gamma_{0}(N)$.

For $S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, and a (meromorphic) modular form $f(\tau)$ of weight l, we define the usual slash operator as $\left.f(\tau)\right|_{l} S:=f(S \tau)(c \tau+d)^{-l}$, where $S \tau=\frac{a \tau+b}{c \tau+d}$. Define $T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $A:=\left(\begin{array}{ll}1 & 0 \\ N & 1\end{array}\right)$.

Lemma 9. The group $\Gamma_{0}(k N / 2)$ is generated by Γ_{k} and T, while $\Gamma_{0}(N)$ is generated by $\Gamma_{0}(k N / 2)$ and A.

Proof. To prove the first statement, let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(k N / 2)$. Then $\operatorname{gcd}(a, k / 2)=1$, and there is $r \in \mathbb{Z}$ such that $a r \equiv-b(\bmod k / 2)$. Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) T^{r} \in \Gamma_{k}=\Gamma_{0}(k N / 2) \cap \Gamma^{0}(k / 2)$, and the claim follows.

The second statement is proved analogously.
Thus, to prove that $\Delta_{N, k}(\tau)$ and $Q_{k}(\tau)$ are modular for $\Gamma_{0}(N)$ it suffices to show their invariance under the slash operators $\mid T$ and $\mid A$.

Lemma 10. The matrices A and T normalize Γ_{k}.
Proof. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{k}=\Gamma_{0}(k N / 2) \cap \Gamma^{0}(k / 2)$. Then $k N / 2 \mid c$ and $k / 2 \mid c$, and $a d \equiv 1(\bmod k / 2)$. In particular, since $k / 2 \in\{2,3,4,6\}$, it follows that $a \equiv d(\bmod k / 2)$.

Since

$$
\begin{aligned}
A^{-1}\binom{a b}{c d} A & =\left(\begin{array}{cc}
a+b N & b \\
-a N-b N^{2}+c+d N & -b N+d
\end{array}\right) \\
T^{-1}\binom{a b}{c d} T & =\left(\begin{array}{cc}
a-c & a+b-c-d \\
c & c+d
\end{array}\right)
\end{aligned}
$$

the claim follows.
For a prime p, define the Hecke operator T_{p} as a double coset operator $\Gamma_{k}\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right) \Gamma_{k}$ acting on the space of cusp forms on Γ_{k}. The slash operators $\mid A$ and $\mid T$ correspond to $\Gamma_{k} A \Gamma_{k}$ and $\Gamma_{k} T \Gamma_{k}$ (see [6, Chapter 5]).

Define the Fricke involution $\left.\right|_{2} B$ on $S_{2}\left(\Gamma_{k}\right)$ by the matrix $B:=\left(\begin{array}{cc}0 & -k / 2 \\ k N / 2 & 0\end{array}\right)$. Note that $\left.\right|_{2} B$ is the conjugate of the usual Fricke involution on $\Gamma_{0}\left(k^{2} N / 4\right)$.

In particular, B normalizes Γ_{k}, and $\left.\right|_{2} B$ commutes with all the Hecke operators T_{p} with $p \nmid k^{2} N / 4$. Hence, $\left.f_{N, k}(2 \tau / k)\right|_{2} B=\lambda_{k, N} f_{N, k}(2 \tau / k)$ for some $\lambda_{k, N}= \pm 1$.

Lemma 11. The following are true:
(a) $\left.f_{N, k}(2 \tau / k)\right|_{2} T=e^{4 \pi i / k} f_{N, k}(2 \tau / k)$,
(b) $\left.f_{N, k}(2 \tau / k)\right|_{2} A=e^{-4 \pi i / k} f_{N, k}(2 \tau / k)$.

In particular, $\left.\right|_{2} A$ and $\left.\right|_{2} B$ have order $k / 2$ when acting on $f_{N, k}(2 \tau / k)$.
Proof. A key observation is that the Fourier coefficients of $f_{N, k}(\tau)$ are supported at integers that are $1(\bmod k / 2)$. This implies

$$
\left.f_{N, k}(2 \tau / k)\right|_{2} T=e^{4 \pi i / k} f_{N, k}(2 \tau / k) .
$$

When $k=4$ (and $k=12$) this is a consequence of the general fact that $a_{f}(2)=0$ whenever $f(\tau)=\sum a_{f}(n) q^{n}$ is a newform of level divisible by 4 (see [10, p. 29]). In the other three cases, $f_{N, k}(\tau)$ is a modular form with complex multiplication by the ring of integers of $\mathbb{Q}(\sqrt{-3})$ or $\mathbb{Q}(\sqrt{-1})$, hence its Fourier coefficients $a_{f_{N, k}}(p)$ are zero when p is an inert prime (i.e. $p \equiv 2$ $(\bmod 3)$ or $p \equiv 3(\bmod 4)$, respectively). Multiplicativity of the Fourier coefficients then implies the observation.

On the other hand $A=B T^{-1} B^{-1}$, therefore

$$
\begin{aligned}
\left.f_{N, k}(2 \tau / k)\right|_{2} A & =\left.\left.\left(\left.f_{N, k}(2 \tau / k)\right|_{2} B\right)\right|_{2} T^{-1}\right|_{2} B^{-1} \\
& =\left.\left(\left.\lambda_{k, N} f_{N, k}(2 \tau / k)\right|_{2} T^{-1}\right)\right|_{2} B^{-1} \\
& =\lambda_{k, N} \lambda_{k, N}^{-1} e^{-4 \pi i / k} f_{N, k}(2 \tau / k) .
\end{aligned}
$$

Corollary 12. We have:
(a) $\Delta_{N, k}(\tau) \in S_{k}\left(\Gamma_{0}(N)\right)$,
(b) $\Delta_{N, 8}(\tau)^{1 / 2}{ }_{4} A=-\Delta_{N, 8}(\tau)^{1 / 2}$ and $\Delta_{N, 8}(\tau)^{1 / 2}{ }_{4} T=-\Delta_{N, 8}(\tau)^{1 / 2}$,
(c) $\left.\Delta_{N, 12}(\tau)^{1 / 2}\right|_{6} A=-\Delta_{N, 12}(\tau)^{1 / 2}$ and $\left.\Delta_{N, 12}(\tau)^{1 / 2}\right|_{6} T=-\Delta_{N, 12}(\tau)^{1 / 2}$.

We now recall some basic facts about Jacobians of modular curves. For more details see Chapter 6 of [6]. Denote by $\operatorname{Jac}\left(X_{k}\right)$ the Jacobian of X_{k}. We will view it either as $S_{2}\left(\Gamma_{k}\right)^{\wedge} / H_{1}\left(X_{k}, \mathbb{Z}\right)$ (where $\gamma \in H_{1}\left(X_{k}, \mathbb{Z}\right)$ acts on $f(\tau) \in S_{2}\left(\Gamma_{k}\right)$ by $\left.f(\tau) \mapsto \int_{\gamma} f(\tau) d \tau\right)$, or as the Picard group $\operatorname{Pic}^{0}\left(X_{k}\right)$ of X_{k}, which is the quotient $\operatorname{Div}^{0}\left(X_{k}\right) / \operatorname{Div}^{l}\left(X_{k}\right)$ of the degree zero divisors of X_{k} modulo principal divisors. If x_{0} is a base point in X_{k}, then X_{k} embeds into its Picard group under the Abel-Jacobi map

$$
X_{k} \rightarrow \operatorname{Pic}^{0}\left(X_{k}\right), \quad x \mapsto(x)-\left(x_{0}\right),
$$

where $(x)-\left(x_{0}\right)$ denotes the equivalence class of divisors $(x)-\left(x_{0}\right)+$ $\operatorname{Div}^{l}\left(X_{k}\right)$.

It is known that the parametrization $\Phi_{k}: X_{k} \rightarrow E_{k}$ can be factored as

$$
\begin{equation*}
X_{k} \hookrightarrow \operatorname{Jac}\left(X_{k}\right) \xrightarrow{\psi_{k}} \tilde{E}_{k} \xrightarrow{\phi_{k}} E_{k} . \tag{3.2}
\end{equation*}
$$

Here $X_{k} \hookrightarrow \operatorname{Jac}\left(X_{k}\right)$ is the Abel-Jacobi map (for some base point x_{0} in X_{k}), ϕ_{k} is a rational isogeny and \tilde{E}_{k} (together with ψ_{k}) is the strong Weil curve associated to the newform $f_{N, k}(2 \tau / k)$ via the Eichler-Shimura construction as follows.

Let V_{k} be the \mathbb{C}-span of $f_{N, k}(2 \tau / k) \in S_{2}\left(\Gamma_{k}\right)$, and define $\Lambda_{k}:=H_{1}\left(X_{k}\right) \mid V_{k}$. Restriction to V_{k} gives a homomorphism

$$
\psi_{k}: \operatorname{Jac}\left(X_{k}\right) \rightarrow V_{k}^{\wedge} / \Lambda_{k} \cong \tilde{E}_{k}
$$

Here $V_{k}^{\wedge} / \Lambda_{k}$ is a one-dimensional complex torus isomorphic to the rational elliptic curve \tilde{E}_{k} with the Weierstrass equation

$$
\tilde{E}_{k}: y^{2}=x^{3}-\frac{g_{2}\left(\Lambda_{k}\right)}{4} x-\frac{g_{3}\left(\Lambda_{k}\right)}{4}
$$

Let S be either A or T. Since by Lemma 10, S normalizes Γ_{k}, we can define the action of S on $\operatorname{Jac}\left(X_{k}\right)$ in two equivalent ways: for $\phi \in$ $S_{2}\left(\Gamma_{k}\right)^{\wedge} / H_{1}\left(X_{k}, \mathbb{Z}\right)$ and $f(\tau) \in S_{2}\left(\Gamma_{k}\right)$ let $S(\phi)(f(\tau)):=\phi\left(\left.f(\tau)\right|_{2} S\right)$, or for $P=(x)-\left(x_{0}\right) \in \operatorname{Pic}^{0}\left(X_{k}\right)$ let $S(P)=(S x)-\left(S x_{0}\right)$. Now Lemma 11 implies that the action of S on $\operatorname{Jac}\left(X_{k}\right)$ descends to an automorphism of \tilde{E}_{k} of order $k / 2$.

Recall that x and y are functions on E_{k} satisfying the Weierstrass equation $y^{2}=f_{k}(x)$, and that $x(\tau)=x \circ \Phi_{k}(\tau)$ and $y(\tau)=y \circ \Phi_{k}(\tau)$ are modular functions on X_{k}.

Proposition 13. Let S be either A or T. If $\Phi_{k}^{-1}(\mathcal{O})$ is invariant under A and T, then:
(a) $x(\tau) \left\lvert\, S= \begin{cases}x(\tau) & \text { if } k=4, \\ -x(\tau) & \text { if } k=8 .\end{cases}\right.$
(b) $y(\tau) \left\lvert\, S= \begin{cases}y(\tau) & \text { if } k=6, \\ -y(\tau) & \text { if } k=12 .\end{cases}\right.$

Proof. For $P \in E_{k}$, we define $S(P):=\phi_{k}(S(\tilde{P}))$ for any $\tilde{P} \in \phi_{k}^{-1}(P)$. This is well defined since the S-invariance of $\Phi_{k}^{-1}(\mathcal{O})$ implies the S-invariance of $\operatorname{Ker}\left(\phi_{k}\right)$. We have $\phi_{k}(S(P))=S\left(\phi_{k}(P)\right)$, hence S is an automorphism of E_{k}.

Let x_{0} be a base point of the Abel-Jacobi map in (3.2). Then x_{0} is in $\Phi_{k}^{-1}(\mathcal{O})$, hence $\phi_{k} \circ \psi_{k} \operatorname{maps}\left(S x_{0}\right)-\left(x_{0}\right)$ to \mathcal{O} in E_{k}. In particular, for $x \in X_{k}$ we have

$$
\begin{equation*}
\Phi_{k}(S x)=\phi_{k} \circ \psi_{k}\left((S x)-\left(x_{0}\right)\right)=\phi_{k} \circ \psi_{k}\left((S x)-\left(S x_{0}\right)\right)=S\left(\Phi_{k}(x)\right) . \tag{3.3}
\end{equation*}
$$

Assume first that $k=4$. Then $j\left(E_{4}\right) \neq 0,1728$, and the automorphism group of E_{4} is of order 2 generated by $(x, y) \mapsto(x,-y)$. In particular $x(S(P))=x(P)$ for every $P \in E_{4}$.

If $k=8$, then S is an automorphism of order $k / 2=4$ of \tilde{E}_{k}, therefore $j\left(\tilde{E}_{k}\right)=1728$ and $g_{3}\left(\Lambda_{8}\right)=0$. Moreover ϕ_{k} is an isomorphism (defined over \mathbb{Q}), which implies that S is an isomorphism of order 4 of E_{8} as well. The automorphism group is generated by $(x, y) \mapsto(-x, i y)$, hence $x(S(P))=$ $-x(P)$ for every $P \in E_{8}$.

If $k=6$ or 12 , then $j\left(\tilde{E}_{k}\right)=0, g_{2}\left(\Lambda_{k}\right)=0$ and ϕ_{k} is an isomorphism (defined over \mathbb{Q}). Therefore, S has order 3 on E_{k} if $k=6$, and order 6 if $k=12$. The automorphism group is generated by $(x, y) \mapsto\left(e^{2 \pi i / 3} x,-y\right)$, and in particular $y(S(P))=y(P)$ if $k=6$, and $y(S(P))=-y(P)$ if $k=12$, for every $P \in E_{k}$.

Now (3.3) implies

$$
\begin{aligned}
& x(\tau) \mid S=x(S \tau)=x\left(\Phi_{k}(S \tau)\right)=x\left(S\left(\Phi_{k}(\tau)\right)\right) \\
& y(\tau) \mid S=y(S \tau)=y\left(\Phi_{k}(S \tau)\right)=y\left(S\left(\Phi_{k}(\tau)\right)\right)
\end{aligned}
$$

and the claim follows from the previous paragraph.
We need the following technical lemma. Recall $Q_{k}(\tau):=x(\tau) \Delta_{N, k}(\tau)^{4 / k}$.
Lemma 14. If $\partial_{N, k}\left(Q_{k}(\tau)\right) \in M_{6}^{\text {mer }}\left(\Gamma_{0}(N)\right)$, then $Q_{k}(\tau) \in M_{4}^{\text {mer }}\left(\Gamma_{0}(N)\right)$.
Proof. As in the proof of Proposition 3, we have

$$
\partial_{N, k}\left(Q_{k}(\tau)\right)=\frac{k}{8 \pi i} x^{\prime}(\tau) \Delta_{N, k}(\tau)^{4 / k}=\frac{k}{8 \pi i} \frac{x^{\prime}(\tau)}{x(\tau)} Q_{k}(\tau)
$$

Let S be either A or T. Then $(x(S \tau))^{\prime}=\left.x^{\prime}(\tau)\right|_{2} S$, and the invariance of $x^{\prime}(\tau) / x(\tau)$ under S (hence under $\Gamma_{0}(N)$) follows from the fact that $x(\tau)$ is an eigenfunction for S, which follows from the proof of Proposition 13 .

Since $Q_{k}(\tau):=x(\tau) \Delta_{N, k}(\tau)^{4 / k}$, Theorem 7 for $k=4$ and 8 now follows from Corollary 12 (a), (b) and Proposition 13(a), while the $k=6$ and 12 case follows from $\partial_{N, k}\left(Q_{k}\right)(\tau)=y(\tau) \Delta_{N, k}(\tau)^{6 / k}$ together with Corollary 12 (a), (c), Proposition 13 (b) and Lemma 14 .
4. Example. Let

$$
f_{19,4}(\tau)=\sum_{n=1}^{\infty} a(n) q^{n}=q+2 q^{3}-q^{5}-3 q^{7}+q^{9}+\cdots
$$

be a unique newform in $S_{2}\left(\Gamma_{0}(76)\right)$, and denote $\Delta_{19,4}(\tau)=f_{19,4}(\tau / 2)^{2} \in$ $S_{4}\left(\Gamma_{0}(19)\right)$.

Set $\Gamma=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right)^{-1} \Gamma_{0}(76)\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right)$. For $\tau \in \overline{\mathbb{H}}$ we define

$$
\Psi(\tau):=\pi i \int_{i \infty}^{\tau} f(z / 2) d z
$$

For $\gamma \in \Gamma$ and $\tau \in \overline{\mathbb{H}}$, define $\omega(\gamma):=\Psi(\gamma \tau)-\Psi(\tau)$. One easily checks that $\frac{d}{d \tau} \omega(\gamma)=0$, hence $\omega(\gamma)$ does not depend on τ. Denote by Λ the image of Γ under ω. By Eichler-Shimura theory, Λ is a lattice, and $\Psi(\tau)$ induces a parametrization $X:=\mathbb{H} / \Gamma \rightarrow \mathbb{C} / \Lambda$. The complex torus \mathbb{C} / Λ is isomorphic to $E: y^{2}=x^{3}-\frac{g_{2}(\Lambda)}{4} x-\frac{g_{3}(\Lambda)}{4}$ by the map given by the Weierstrass \wp-function and its derivative, $z \mapsto\left(\wp(z, \Lambda), \wp^{\prime}(z, \Lambda) / 2\right)$, thus by composing these two maps we obtain a modular parametrization $\Phi: X \rightarrow E$.

One finds that Λ has generators

$$
\begin{aligned}
& \omega_{1}=1.1104197465122 \ldots \\
& \omega_{2}=0.5552098732561 \ldots+2.1752061725591 \ldots \times i
\end{aligned}
$$

Moreover, $g_{2}(\Lambda)=256 / 3$ and $g_{3}(\Lambda)=4112 / 27$, hence Proposition 3 implies that

$$
\begin{aligned}
Q(\tau) & =\Delta_{19,4}(\tau) \wp(\Psi(\tau), \Lambda) \\
& =1+\frac{1}{3}\left(8 q+8 q^{2}+64 q^{3}+232 q^{4}+336 q^{5}+256 q^{6}+512 q^{7}+\cdots\right)
\end{aligned}
$$

satisfies the differential equation

$$
\begin{equation*}
\partial_{19,4}(Q)^{2}=Q^{3}-\frac{64}{3} Q \Delta_{19,4}^{2}-\frac{1028}{27} \Delta_{19,4}^{3} \tag{4.1}
\end{equation*}
$$

One finds that

$$
\mathrm{GCD}(\{p+1-a(p): p \text { prime, } p \equiv 1(\bmod 76)\})=1
$$

hence it follows from the special case of the Drinfeld-Manin theorem (see [5], Theorem 2.20]) that $\Psi(\tau)$ maps cusps of X to the lattice Λ, or equivalently that Φ maps cusps of X to the point at infinity of E. The modular curve X has six cusps, and one can check (for example by using Magma) that the degree of Φ is six, therefore the conditions of Proposition 5 and Theorem 7 are satisfied, and we conclude that $Q(\tau) \in M_{4}\left(\Gamma_{0}(19)\right)$.

References

[1] D. Abramovich, A linear lower bound on the gonality of modular curves, Int. Math. Res. Notices 1996, no. 20, 1005-1011.
[2] C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over \mathbb{Q} : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939.
[3] F. Brunault, On the ramification of modular parametrization at the cusps, arXiv: 1206.2621v1 (2012).
[4] J. A. Csirik, J. L. Wetherell and M. E. Zieve, On the genera of $X_{0}(N)$, arXiv:math/ 0006096v2 (2000).
[5] H. Darmon, Rational Points on Modular Elliptic Curves, CBMS Reg. Conf. Ser. Math. 101, Amer. Math. Soc., Providence, RI, 2004.
[6] F. Diamond and J. Shurman, A First Course in Modular Forms, Grad. Texts in Math. 228, Springer, New York, 2005.
[7] P. Guerzhoy, The Ramanujan differential operator, a certain CM elliptic curve and Kummer congruences, Compos. Math. 141 (2005), 583-590.
[8] M. Kaneko and Y. Sakai, The Ramanujan-Serre differential operators and certain elliptic curves, Proc. Amer. Math. Soc. 141 (2013), 3421-3429.
[9] Y. Martin and K. Ono, Eta-quotients and elliptic curves, Proc. Amer. Math. Soc. 125 (1997), 3169-3176.
[10] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Reg. Conf. Ser. Math. 102, Amer. Math. Soc., Providence, RI, 2004.
[11] M. Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002), 487-502.

Matija Kazalicki
Department of Mathematics
University of Zagreb
Bijenicka cesta 30
Zagreb, Croatia
E-mail: mkazal@math.hr

Yuichi Sakai
E-mail: dynamixaxs@gmail.com
Koji Tasaka
Graduate School of Mathematics
Kyushu University
744 Motooka Nishiku
Fukuoka-city
Fukuoka, 819-0395, Japan
E-mail: k-tasaka@math.kyushu-u.ac.jp

Received on 4.2.2013 and in revised form on 11.10.2013

[^0]: 2010 Mathematics Subject Classification: Primary 11G05; Secondary 11F11, 11F30.
 Key words and phrases: modular parametrization, modular forms, Ramanujan-Serre differential operator, modular degree.

