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1. Introduction. Let F be a finite field with q elements. We denote by
F[X] the set of polynomials with coefficients in F, and by F(X) the quotient
field of F[X]. We also denote by F((X−1)) the set of formal Laurent power
series:

F((X−1)) = {f = alX
l + al−1X

l−1 + . . . : l ∈ Z and each ai ∈ F}.
For f ∈ F((X−1)), we denote by [f ] its polynomial part:

[f ] = alX
l + al−1X

l−1 + . . .+ a0,

and define

|f | =
{

0 if f = 0,

ql if al 6= 0.
In this paper, we discuss the metric theory of Diophantine approximation

of Laurent series on the analogy of the classical theory; here, F[X], F(X),
and F((X−1)) play the role of integers, rational numbers, and real numbers,
respectively. We put

L = {f = a−1X
−1 + a−2X

−2 + . . . : ai ∈ F for i ≤ −1},
which plays the role of the unit interval [0, 1). Then L is a compact Abelian
group with the metric d(f, g) = |f − g|. We denote by m the normalized
Haar measure on L. Note that

m{f = a−1X
−1 + a−2X

−2 + . . . : a−1 = b1, . . . , a−l = bl} =
1
ql

for any b1, . . . , bl ∈ F. Our aim is to study the following Diophantine in-
equality: ∣∣∣∣f −

P

Q

∣∣∣∣ <
ψ(Q)
|Q| , P,Q coprime,

where ψ is a non-negative function defined on F[X] and ψ(Q) = ψ(Q′)
whenever Q′ = aQ for some non-zero a ∈ F. The question is whether this
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inequality has an infinite number of solutions P/Q for m-a.e. f ∈ L. In the
case of real numbers: ∣∣∣∣x−

p

q

∣∣∣∣ <
ψ(q)
q

, (p, q) = 1,(1)

a number of sufficient conditions are known for this question. For example, if
qψ(q) is non-increasing, then (1) has infinitely many solutions for a.e. x ∈ R
if and only if

∑
ψ(q) diverges. This can be proved by using the continued

fraction expansion of x (see Billingsley [2], for example). We refer to [7]
and [5] for the formal power series version of this theorem. In general, we
cannot make use of continued fractions for this type of problem. We refer to
[9] for general cases. In what follows, we first restrict to the case where ψ(Q)
depends only on the degree of Q. In this case, it is easy to give a necessary
and sufficient condition on ψ for having infinitely many solutions for a.e.
f ∈ L. Indeed, we have the following:

Theorem 1. Let ψ be a non-negative function defined on F[X] such that
ψ(Q) depends only on the degree of Q ∈ F[X]. For any set S of positive
integers, the inequality ∣∣∣∣f −

P

Q

∣∣∣∣ <
ψ(Q)
|Q|

with P , Q coprime and degQ ∈ S has infinitely many solutions for almost
every f ∈ L if and only if

∑

d∈S
qdψ(Xd) =∞.

To prove this theorem, we use continued fractions over F(X) to compute
the number of fractions P/Q with degQ = n for n ≥ 1 (see [3]). We discuss
this in Section 2 and give the proof in Section 3. If ψ(Q) does not depend
only on the degree of Q, then it is not easy to give a necessary and sufficient
condition for the existence of infinitely many solutions (a.e.). Let ψ be a
{q−n : n ≥ 0} ∪ {0}-valued function defined on the set of monic polynomials
in F[X] of the form

X l + al−1X
l−1 + . . .+ a1X + a0, ai ∈ F, 0 ≤ i ≤ l − 1.

We denote by E the set of f ∈ L such that the inequality
∣∣∣∣f −

P

Q

∣∣∣∣ <
ψ(Q)
|Q| , P,Q coprime, Q monic,(2)

has infinitely many solutions. In Section 4, we prove that m(E) = 0 or 1
(Theorem 4), which is an analogue of Gallagher’s theorem (see [6]). Moreover
we show that the Duffin–Schaeffer type theorem (see [4] and [9] for the
classical case) holds.
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Theorem 2. Let ψ be a {q−n : n ≥ 0} ∪ {0}-valued function which
satisfies

∞∑

n=1

∑

degQ=n
Qmonic

ψ(Q) =∞.

Suppose there are infinitely many positive integers n such that
∑

degQ≤n
Qmonic

ψ(Q) < C
∑

degQ≤n
Qmonic

ψ(Q)
Φ(Q)
|Q|(3)

for a constant C. Then the inequality∣∣∣∣f −
P

Q

∣∣∣∣ <
ψ(Q)
|Q| , (P,Q) = 1,

has infinitely many solutions P/Q for a.e. f ∈ L.

Here, (P,Q) = 1 means that P and Q are coprime polynomials, and
Φ(Q) is the number of monic polynomials Q′ such that

degQ′ < degQ, (Q,Q′) = 1.

2. Continued fractions. We refer to Berthé and Nakada [1] for the
details of the continued fraction expansions of power series.

Let T be the map of L onto itself defined by

T (f) = f−1 − [f−1], f ∈ L.
Henceforth, we denote by 1 the unity of multiplication of F, and by 0 the
unity of addition. Then we have

f =
1

p1 +
1

p2 + ...

=: [0; p1, p2, . . .] with pn = [(Tn−1f)−1].

As in the classical case, we define

Pn = pnPn−1 + Pn−2, P0 = 0, P1 = 1,

Qn = pnQn−1 +Qn−2, Q0 = 1, Q1 = p1,
(4)

and we have

PnQn−1 −QnPn−1 = ±1,

Pn
Qn

=
1

p1 +
1

p2 + ... +
1
pn

=: [0; p1, . . . , pn] for n ≥ 1.
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We call Pn/Qn the nth convergent fraction of f . Since

f =
Pn + Tnf · Pn−1

Qn + Tnf ·Qn−1
,

it is easy to see that
∣∣∣∣f −

Pn
Qn

∣∣∣∣ <
1
|Qn|2

for n ≥ 1.

Moreover, we have the following:

Lemma 1. If two relatively prime non-zero polynomials P,Q satisfy
∣∣∣∣f −

P

Q

∣∣∣∣ <
1
|Q|2 ,

then
P

Q
=
Pn
Qn

for some n ≥ 1.

We put

Wn =
{
P

Q
∈ L : degQ = n, (P,Q) = 1

}
for n ≥ 1.

The following lemma, shown in [3], is essential in the next section. Here we
prove it by the use of continued fractions.

Lemma 2.
#Wn = q2n − q2n−1 for n ≥ 1.

Proof. If n = 1, all elements in W1 are of the form

P

Q
=

a

X + b
with a, b ∈ F, a 6= 0.

This implies the assertion. Now suppose

#Wi = q2i − q2i−1 for 1 ≤ i ≤ n.
Fix P/Q ∈Wn+1. Then we have a unique continued fraction expansion

P

Q
= [0; p1, . . . , pm].

So we can define a unique element P ′/Q′ ∈Wj for some j, 1 ≤ j ≤ n, by

P ′

Q′
= [0; p1, . . . , pm−1]

unless m = 1. On the other hand, for any P ′/Q′ ∈ Wj, 1 ≤ j ≤ n, we
have qn+1−j(q− 1) fractions P/Q ∈Wn+1 by (4). The number of P/Q with
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degQ = n+ 1 and degP = 0 is qn+1(q − 1). Thus

#Wn+1 =
n∑

j=1

qn+1−j(q − 1)(q2j − q2j−1) + qn+1(q − 1)

= q2n+2 − q2n+1.

3. Proof of Theorem 1. In what follows, we always assume that P
and Q are coprime non-zero polynomials whenever P/Q denotes a rational
function.

For P/Q with degQ = n, we put

En

(
P

Q

)
=
{
f ∈ L :

∣∣∣∣f −
P

Q

∣∣∣∣ <
1
q2n

}

and also put

En =
{
f ∈ L : there exists

P

Q
such that degQ = n,

∣∣∣∣f −
P

Q

∣∣∣∣ <
1
q2n

}
.

Lemma 3. For a fixed integer n ≥ 1, if P/Q 6= P ′/Q′ with degQ =
degQ′ = n, then

En

(
P

Q

)
∩ En

(
P ′

Q′

)
= ∅.

Proof. Since | · | is ultrametric, we see that if the intersection were non-
empty, then ∣∣∣∣

P

Q
− P ′

Q′

∣∣∣∣ <
1
q2n .

However, ∣∣∣∣
P

Q
− P ′

Q′

∣∣∣∣ ≥
1

|Q| |Q′| =
1
q2n ,

which gives a contradiction.

Lemma 4. For any n ≥ 1,

m(En) = 1− 1
q
.

Proof. Since m{f ∈ L : |f − P/Q| < 1/q2n} = 1/q2n for a fixed P/Q
with degQ = n, and the number of P/Q is q2n − q2n−1 from Lemma 2, we
have the assertion.

Lemma 5. For any n ≥ 1 and k ≥ 1, we have

m(En ∩En+k) = m(En)m(En+k) =
(

1− 1
q

)2

.
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Proof. If f ∈ En ∩ En+k, say∣∣∣∣f −
P

Q

∣∣∣∣ <
1
q2n ,

∣∣∣∣f −
P ′

Q′

∣∣∣∣ <
1

q2n+2k

with degQ = n, degQ′ = n + k, then |P ′/Q′ − P/Q| < 1/q2n, so that
by Lemma 1, P/Q is a convergent of the continued fraction of P ′/Q′.
Conversely, when this is the case, and |f − P ′/Q′| < 1/q2n+2k, then f ∈
En ∩En+k. Therefore

m(En ∩ En+k) = Z(n, n+ k)
1

q2n+2k ,(5)

where Z(n, n+k) is the number of pairs P/Q, P ′/Q′ with P/Q a convergent
to P ′/Q′, and degQ = n, degQ′ = n + k. The number of choices for P/Q
is #Wn = q2n(1− 1/q). For given P/Q, we will find the number of choices
for P ′/Q′. Suppose that P ′/Q′ satisfies∣∣∣∣f −

P ′

Q′

∣∣∣∣ <
1

q2n+2k , degQ′ = n+ k for f ∈ En
(
P

Q

)
.

There exist n = j0 < j1 < . . . < jl−1 < jl = n+ k (uniquely) such that

P ′

Q′
=
Pm+l

Qm+l
= [0; p1, p2, . . . , pm, . . . , pm+l]

with
deg pm+i = ji − ji−1, 1 ≤ i ≤ l.

Since #{p ∈ F[X] : deg p = u} = qu(q − 1), we have

#
{
P ′

Q′
: deg pm+i = ji − ji−1, 1 ≤ i ≤ l

}

= qj1−j0(q − 1)qj2−j1(q − 1) . . . qjl−jl−1(q − 1) = qk(q − 1)l

for each fixed (j1, . . . , jl). The number of choices for n < j1 < . . . < jl−1

< n+ k is
(
k−1
l−1

)
and l runs from 1 to k. Hence

#
{
P ′

Q′
:
∣∣∣∣f −

P ′

Q′

∣∣∣∣ <
1

q2n+2k for some f ∈ En
(
P

Q

)}

=
k∑

l=1

(
k − 1
l − 1

)
qk(q − 1)l = q2k

(
1− 1

q

)
.

Consequently,

Z(n, n+ k) = q2n+2k
(

1− 1
q

)2

,

and by (5), we get

m(En ∩En+k) =
(

1− 1
q

)2

= m(En)m(En+k).
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By the Borel–Cantelli lemma, this implies the following:

Proposition 1. For any sequence n1 < n2 < . . . of positive integers the
inequality ∣∣∣∣f −

P

Q

∣∣∣∣ <
1
|Q|2 , degQ = ni,

has infinitely many solutions for m-a.e. f ∈ L.

According to this proposition, we can assume that ψ(Q) < 1/qn for any
n ≥ 1. Then we rewrite Theorem 1 as follows:

Theorem 3. For any sequences n1 < n2 < . . . and l1, l2, . . . of positive
integers, the inequality∣∣∣∣f −

P

Q

∣∣∣∣ <
1

q2ni+li
, degQ = ni,

has infinitely many solutions for m-a.e. f ∈ L if and only if
∞∑

i=1

q−li =∞.

Proof. Put

Fi =
{
f ∈ L : there exists

P

Q
such that

∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2ni+li
, degQ = ni

}
.

Given P/Q, the measure of f ∈ L with |f − P/Q| < 1/q2ni+li is 1/q2ni+li .
The number of P/Q in Wni is q2ni − q2ni−1, therefore

m(Fi) =
q − 1
q
· 1
qli
.(6)

Now the assertion follows from the next lemma together with (6) by Theo-
rem 3 of [8].

Lemma 6. (a) Fi ∩ Fi+j = ∅ if ni + li ≥ ni+j.
(b) m(Fi ∩ Fi+j) = m(Fi)m(Fi+j) if ni + li < ni+j.

Proof. If f ∈ Fi ∩ Fi+j , say∣∣∣∣f −
P

Q

∣∣∣∣ <
1

q2ni+li
,

∣∣∣∣f −
P ′

Q′

∣∣∣∣ <
1

q2ni+j+li+j

with degQ = ni, degQ′ = ni+j , then∣∣∣∣
P

Q
− P ′

Q′

∣∣∣∣ <
1

q2ni+li
,(7)

and on the other hand∣∣∣∣
P

Q
− P ′

Q′

∣∣∣∣ ≥
1

|Q| |Q′| =
1

qni+ni+j
.

When ni+li ≥ ni+j these inequalities contradict each other, so Fi∩Fi+j = ∅.
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Suppose, then, that ni + li < ni+j . It follows from (7) that P/Q is a
convergent to P ′/Q′. Write again

P

Q
= [0; p1, . . . , pm],

P ′

Q′
= [0; p1, . . . , pm, pm+1, . . . , pm+l].

Then by a well-known formula,∣∣∣∣
P

Q
− P ′

Q′

∣∣∣∣ =
1

|Q|2|pm+1|
=

1
q2ni+deg pm+1

,

yielding deg pm+1 > li. In analogy to (5) we obtain

m(Fi ∩ Fi+j) = Z(ni, ni+j , li)
1

q2ni+j+li+j
,(8)

where Z(ni, ni+j , li) is the number of pairs P/Q, P ′/Q′ as above with
deg pm+1 > li. Now, the number of choices for pm+1, . . . , pm+l is

qdeg pm+1(q − 1)qdeg pm+2(q − 1) . . . qdeg pm+l(q − 1) = qni+j−ni(q − 1)l.

Thus

Z(ni, ni+j , li)

= (q2ni − q2ni−1)
ni+j−ni−li∑

l=1

(
ni+j − ni − li − 1

l − 1

)
qni+j−ni(q − 1)l

= (q2ni − q2ni−1)qni+j−ni(q − 1)qni+j−ni−li−1

= q2ni+j−li
(

1− 1
q

)2

,

which together with (8) yields the lemma.

Example 1. Put

ψ(Q) =
{

1/|Q| if degQ is prime,

0 otherwise.
Then we see that there are infinitely many solutions of∣∣∣∣f −

P

Q

∣∣∣∣ <
1
|Q|2 , degQ prime,

for a.e. f ∈ L.

4. General case. For a given polynomial

h = alX
l + al−1X

l−1 + . . .+ a1X + a0, ai ∈ F, 0 ≤ i ≤ l, al 6= 0,

we denote by 〈h〉 the cylinder set defined by

{f ∈ L : [X l+1 · f ] = h}.
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Lemma 7. Let hk, k ≥ 1, be a sequence of polynomials with

lim
k→∞

deg hk =∞,

and Ek be a sequence of measurable subsets of L for which Ek ⊂ 〈hk〉.
Suppose that m(Ek) ≥ δm(〈hk〉) for some δ > 0. Then

m
( ∞⋂

l=1

∞⋃

k=l

Ek

)
= m

( ∞⋂

l=1

∞⋃

k=l

〈hk〉
)
.

Proof. Let

H :=
∞⋂

l=1

∞⋃

k=l

〈hk〉, E∗l =
∞⋃

k=l

Ek, H∗l := H \ E∗l .

We show that m(H∗l ) = 0 for any l ≥ 1, which implies the assertion of
this lemma. Suppose that m(H∗k) > 0. For almost all f0 ∈ H∗l , there are
infinitely many k such that f0 ∈ 〈hk〉. For f =

∑
i<0 aiX

i ∈ L, we put
ι(f) =

∑
i<0 aiq

i ∈ (0, 1]. The map ι is a measure isomorphism of (L,m)
to (0, 1] with the Lebesgue measure. By this isomorphism, the cylinder sets
〈hk〉 are mapped to q-adic rational intervals. So we can apply Lebesgue’s
density theorem to get

m(H∗k ∩ 〈hk〉)
m(〈hk〉)

> 1− δ

2

for some k. On the other hand, H∗k ∩ E∗k = ∅. So

m(〈hk〉) ≥ m(Ek) +m(H∗k ∩ 〈hk〉) ≥ δm(〈hk〉) +m(H∗k ∩ 〈hk〉),
which says that m(H∗k ∩ 〈hk〉) ≤ (1− δ)m(〈hk〉). This is impossible.

Lemma 8. For any polynomial h ∈ F[X] and g ∈ L, the map T of L
onto itself defined by

T (f) = hf + g − [hf + g] for f ∈ L
is ergodic.

Proof. It is easy to see that both f 7→ h · f and f 7→ f + g for f ∈ L are
m-preserving. Then ωi(f) = [h · T i−1], 1 ≤ i < ∞, is an independent and
identically distributed sequence of random variables defined on (L,m). This
implies the assertion of the lemma.

Let ψ be a {q−n : n ≥ 0} ∪ {0}-valued function defined on the set of
monic polynomials, that is, of the form

X l + al−1X
l−1 + . . .+ a1X + a0, ai ∈ F, 0 ≤ i ≤ l − 1.

Here ψ(Q) depends on Q itself, and we put
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EQ = {f ∈ L : |f − P/Q| < ψ(Q)/|Q| for some polynomial P

with degP < degQ and (P,Q) = 1}
for a monic polynomial Q. The following theorem is a formal power series
version of [6].

Theorem 4. For any ψ, m(
⋂∞
n=1

⋃
degQ≥nEQ) = 0 or 1.

Proof. If

lim sup
degQ→∞

ψ(Q)
qdegQ > 0,

then we can find a sequence Q1, Q2, . . . of monic polynomials and a positive
integer l such that ψ(Qk)/qdegQ > q−l for any k ≥ 1. For any f ∈ L and
sufficiently large k, we can find P (degP < degQk) such that

∣∣∣∣f −
P

Qk

∣∣∣∣ <
1
ql

(
<
ψ(Qk)
qdegQk

)

and P and Qk are coprime. Otherwise, Qk has more than qdegQk−l factors,
which is impossible. This implies

m
(∞⋂

l=1

∞⋃

k=l

EQk

)
= 1.

Now we show the assertion of the theorem when

lim sup
degQ→∞

ψ(Q)
qdegQ = 0.

This means we can apply Lemma 7. We put

E =
∞⋂

n=1

⋃

degQ≥n
EQ.

Let R be an irreducible polynomial and consider
∣∣∣∣f −

P

Q

∣∣∣∣ <
ψ(Q)|R|n−1

|Q| , (P,Q) = 1,(9)

for n ≥ 1. We put

E0(n : R) = {f ∈ L : (9) has infinitely many solutions P,Q with R -Q},
E1(n : R) = {f ∈ L : (9) has infinitely many solutions P,Q with R ‖Q}.

Then

Ei(1 : R) ⊂ Ei(2 : R) ⊂ . . . , Ei(1 : R) ⊂ E for i = 0, 1.
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From Lemma 7, we find that m(Ei(n : R)) = m(Ei(1 : R)) for n ≥ 1. Thus

m
(⋃

n≥1

Ei(n : R)
)

= m(Ei(1 : R)).

Let
T1(f) = R · f − [R · f ] for f ∈ L.

Then
T1

(⋃

n≥1

E0(n : R)
)

=
⋃

n≥2

E0(n : R).

From Lemma 8, we have

m
(⋃

n≥1

E0(n : R)
)

= 0 or 1.

Next we let

T2(f) = R · f +
1
R
−
[
R · f +

1
R

]
for f ∈ L.

Suppose (9) holds. We have
∣∣∣∣
(
R · f +

1
R

)
− R · P +Q/R

Q

∣∣∣∣ <
ψ(Q)|R|n
|Q| ,

(
R · P +

Q

R
,Q

)
= 1,

and so
T2

(⋃

n≥1

E1(n : R)
)

=
⋃

n≥2

E1(n : R).

Thus we have, again by Lemma 8,

m
(⋃

n≥1

E1(n : R)
)

= 0 or 1.

Hence, if either m(E0(1 : R)) or m(E1(1 : R)) is positive for some ir-
reducible polynomial R, then m(E) = 1. Assume that m(E0(1 : R)) =
m(E1(1 : R)) = 0 for any irreducible polynomial R. We put

F (R) = {f ∈ L : (2) has infinitely many solutions P,Q with R2 |Q}.
If f ∈ F (R), then

∣∣∣∣
(
f +

U

R

)
− P +QU/R

Q

∣∣∣∣ <
ψ(Q)
|Q| ,

(
P +

QU

R
,Q

)
= 1,

for any polynomial U with 0 ≤ degU < degR. This means that f ∈ F (R)
implies f + U/R ∈ F (R). If we put S(U ;R) = {f ∈ L : [Rf ] = U}, then

⋃

U : 0≤degU≤degR

S(U ;R) ∪ {f ∈ L : deg f < −degR} = L
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and each measure is equal to 1/qdegR. Since F (R) is (·+ U/R)-invariant,

m(F (R) ∩ S(U ;R)) =
m(F (R))
qdegR .

This implies
m(F (R) ∩ S(U ;R))

m(S(U ;R))
= m(F (R)).

By the density theorem, we have m(E) = m(F (R)) = 1 whenever m(F (R))
> 0 for some irreducible polynomial R; otherwise m(E) = 0, since E =
F (R) ∪ E0(1, R) ∪ E1(1, R). This concludes the proof of the theorem.

Remark. Note that the set E is the same as the one in the introduction.

Proof of Theorem 2. In what follows, we always assume that Q, Q1, Q′

and Q′1 are monic. By the definition of EQ,

m(EQ) = ψ(Q)
Φ(Q)
|Q| .(10)

Now consider the measure of the intersection of EQ1 and EQ (degQ1 ≤
degQ). We let N(Q1, Q) be the number of pairs of polynomials P and P1.
For these polynomials, the conditions

(11)

∣∣∣∣
P

Q
− P1

Q1

∣∣∣∣ <
ψ(Q)
|Q| +

ψ(Q1)
|Q1|

,

(P,Q) = (P1, Q1) = 1, degP < degQ, degP1 < degQ1,

hold for given Q and Q1. Then

m(EQ1 ∩ EQ) ≤ min
(
ψ(Q1)
|Q1|

,
ψ(Q)
|Q|

)
N(Q1, Q).

If
PQ1 − P1Q = R(12)

for some polynomialR, thenD = (Q1, Q) dividesR. SettingQ1 = DQ′1, Q =
DQ′, R = DR′, we have

PQ′1 − P1Q
′ = R′, (Q′1, Q

′) = 1.(13)

If P ′ and P ′1 also satisfy (12), then

P ′Q′1 − P ′1Q′ = R′.(14)

From (13) and (14),

P = P ′ +KQ′, K a polynomial.(15)

From (12), we see that

|P − P ′| = |K| |Q′| < |Q| = |D| |Q|,
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which implies |K| < |D|. The number of possible polynomials P satisfy-
ing (12) for a given R is no greater than qdegD. (11) implies

0 6= |R| < |Q1|ψ(Q) + |Q|ψ(Q1)

and we can only take polynomials R divisible by D. We find that

N(Q1, Q) ≤ |Q1|ψ(Q) + |Q|ψ(Q1)
|D| |D| = |Q1|ψ(Q) + |Q|ψ(Q1).

Then
m(EQ1 ∩ EQ) ≤ 2ψ(Q1)ψ(Q).

Since
∑

degQ≤n ψ(Q) diverges,
∑

degQ≤n
ψ(Q) ≤

( ∑

degQ≤n
ψ(Q)

)2

for sufficiently large n. Therefore∑

degQ1,degQ≤n
m(EQ1 ∩ EQ) ≤ 2

∑

degQ1,degQ≤n
Q6=Q1

ψ(Q1)ψ(Q) +
∑

degQ≤n
ψ(Q)

< 3
( ∑

degQ≤n
ψ(Q)

)2

for all sufficiently large degQ. From (3) and (10), we have
∑

degQ1,degQ≤n
m(EQ1 ∩ EQ) < 3C2

( ∑

degQ≤n
m(EQ)

)2

for infinitely many Q. Hence m(E) > (3C2)−1, by [9, Lemma 5, pp. 17–18].
Finally, applying Theorem 4, we have the assertion of the theorem.

Example 2. Put

ψ(Q) =
{

1/|Q| if Q is irreducible,

0 otherwise.
Then ∞∑

n=1

∑

Q:degQ=n

ψ(Q) >
∞∑

k=1

1
qk
· 1
k
· qk =∞

and it is easy to see that
∑

degQ≤n
ψ(Q) ≤ C

∑

degQ≤n
ψ(Q)

Φ(Q)
|Q| .

Thus there are infinitely many solutions P/Q of∣∣∣∣f −
P

Q

∣∣∣∣ <
1
|Q|2 , Q is irreducible,

for a.e. f ∈ L.
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