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1. Introduction. Let F be a finite field with g elements. We denote by
F[X] the set of polynomials with coefficients in F, and by F(X) the quotient
field of F[X]. We also denote by F((X 1)) the set of formal Laurent power

series:
F(X™ YY) ={f=aX"+a_1 X" +...: | €7Z and each q; € F}.
For f € F((X1)), we denote by [f] its polynomial part:

[fl = aX'+ a1 X"+ .. +a,

0 if f=0,
1= {ql if a; # 0.
In this paper, we discuss the metric theory of Diophantine approximation
of Laurent series on the analogy of the classical theory; here, F[X], F(X),
and F((X 1)) play the role of integers, rational numbers, and real numbers,
respectively. We put

L={f=a1X '"+a X ?+. . . :q;€F fori< -1},
which plays the role of the unit interval [0, 1). Then L is a compact Abelian

group with the metric d(f,g) = |f — g|. We denote by m the normalized
Haar measure on L. Note that

and define

1
m{f=a 1 X"+a X7+, ta, =boau=bt =g

for any by,...,b; € F. Our aim is to study the following Diophantine in-

equality:
Pl (@) :
— —| < —=, P,Q coprime,
5<%

where 1 is a non-negative function defined on F[X] and ¢(Q) = ¥(Q’)
whenever ' = aQ for some non-zero a € F. The question is whether this
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inequality has an infinite number of solutions P/Q for m-a.e. f € L. In the
case of real numbers:
p
= <— (p,Q):l,

(1) . .

a number of sufficient conditions are known for this question. For example, if
q(q) is non-increasing, then (1) has infinitely many solutions for a.e. z € R
if and only if > ¢ (q) diverges. This can be proved by using the continued
fraction expansion of z (see Billingsley [2], for example). We refer to [7]
and [5] for the formal power series version of this theorem. In general, we
cannot make use of continued fractions for this type of problem. We refer to
[9] for general cases. In what follows, we first restrict to the case where ¥(Q)
depends only on the degree of (). In this case, it is easy to give a necessary
and sufficient condition on % for having infinitely many solutions for a.e.
f € L. Indeed, we have the following:

¥(q)

THEOREM 1. Let v be a non-negative function defined on F[X| such that
¥(Q) depends only on the degree of Q € F[X]. For any set S of positive
integers, the inequality

‘f — B < M
Ql  1Q
with P, QQ coprime and deg @ € S has infinitely many solutions for almost
every f € L if and only if

> (X7 = 0.
des
To prove this theorem, we use continued fractions over F(X) to compute
the number of fractions P/Q with deg@ = n for n > 1 (see [3]). We discuss
this in Section 2 and give the proof in Section 3. If (@) does not depend
only on the degree of (), then it is not easy to give a necessary and sufficient
condition for the existence of infinitely many solutions (a.e.). Let 1) be a

{¢g7" : n > 0} U {0}-valued function defined on the set of monic polynomials
in F[X] of the form

X paq X'+ o+ X +ag, a;eF,0<i<l-—1.
We denote by E the set of f € L such that the inequality

(2) ‘f — g < M P, @ coprime, ) monic,

QI

has infinitely many solutions. In Section 4, we prove that m(FE) = 0 or 1
(Theorem 4), which is an analogue of Gallagher’s theorem (see [6]). Moreover
we show that the Duffin—Schaeffer type theorem (see [4] and [9] for the
classical case) holds.
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THEOREM 2. Let v be a {g~™ : n > 0} U {0}-valued function which

satisfies
YD $(Q) =0

n=1 deg Q=n

Q monic

Suppose there are infinitely many positive integers n such that

b
3 > w@<c ¥ 0@
deg Q<n degQ<n
Q monic Q monic
for a constant C'. Then the inequality
Pl (@) _
f ol < o (P,Q)=1,

has infinitely many solutions P/Q for a.e. f € L.

Here, (P,Q) = 1 means that P and @ are coprime polynomials, and
&(Q) is the number of monic polynomials @’ such that

deg Q' < degQ, (Q,Q)=1

2. Continued fractions. We refer to Berthé and Nakada [1] for the
details of the continued fraction expansions of power series.
Let T be the map of L onto itself defined by

T(fHy=r"-1f" feL
Henceforth, we denote by 1 the unity of multiplication of F, and by 0 the
unity of addition. Then we have
1 . 1o
f=———1—=[0pLp2..] with p,=[T"'f)""].

p1+
P2+

As in the classical case, we define

(1) P, =pyPn_1+ Py_o, Ph=0, P =1,
Qn=pnQn-1+Qn-2, Qo=1Q1=p,

and we have

PnQn—l - QnPn—l = :l:17

— = =:[0;p1,...,pn] forn>1.
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We call P,/Q, the nth convergent fraction of f. Since
f_ Pn+Tann—1
Qn + Tnf : Qn—l7

it is easy to see that

for n > 1.

-5

|Qn|2

Moreover, we have the following:

LEMMA 1. If two relatively pm’me non-zero polynomials P, Q satisfy

1
f - A )
‘ IQI2
then

P P,

— =— for somen > 1.

Q Qn

We put

Wn:{gEL:degQ:n, (P,Q)zl} for n > 1.

The following lemma, shown in [3], is essential in the next section. Here we
prove it by the use of continued fractions.

LEMMA 2.
#W, =" — 1 forn> 1.
Proof. If n =1, all elements in W7 are of the form
P a
Q X+b
This implies the assertion. Now suppose

AW =¢* — ¥ 1 forl1<i<n.

with a,b € F, a # 0.

Fix P/Q € Wy41. Then we have a unique continued fraction expansion

P
0~ [0;p1, .., D).

So we can define a unique element P'/Q’ € W; for some j, 1 < j <n, by
P/
Q/
unless m = 1. On the other hand, for any P'/Q" € W;, 1 < j < n, we
have ¢" 177 (q — 1) fractions P/Q € W, 41 by (4). The number of P/Q with

[0 P1,. .. apmfl]



Metric Diophantine approximation 209
deg@Q =n+1and deg P = 0 is ¢"*1(q — 1). Thus

#Wnt1 = Z ¢ g - 1)(¢¥ -7 )+ ¢ (g - 1)

—_ q2n+2 _ q2n+1‘ -

3. Proof of Theorem 1. In what follows, we always assume that P
and @ are coprime non-zero polynomials whenever P/() denotes a rational
function.

For P/Q with deg @ = n, we put

) =1t lrgl <

P
E, = {f € IL : there exists 6 such that deg@Q = n,

and also put

P 1
f‘d<?ﬁ'

LEMMA 3. For a fized integer n > 1, if P/Q # P'/Q" with deg@ =

deg Q' = n, then
P P
E, E, = 0.
<Q> " (Q’> !

Proof. Since |- | is ultrametric, we see that if the intersection were non-
empty, then
P P 1
a Q"
However,
P P 1 1
o "ol Ziono " o
Q QT ¢

which gives a contradiction. m

LEMMA 4. For any n > 1,
1
m(E,)=1——.
(En) .
Proof. Since m{f € L : |f — P/Q| < 1/¢*"} = 1/¢*" for a fixed P/Q
with deg @ = n, and the number of P/Q is ¢*® — ¢*"*~! from Lemma 2, we
have the assertion. m

LEMMA 5. For any n > 1 and k > 1, we have

2
m(Ep O Ep 1) = m(Ep)m(Ensy) = (1 - 3) .
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Proof. If f € E, N Epyy, say

P
o
with deg@ = n, deg@’ = n + k, then |P'/Q" — P/Q| < 1/¢*", so that
by Lemma 1, P/Q is a convergent of the continued fraction of P’/Q’.

Conversely, when this is the case, and |f — P'/Q'| < 1/¢*"*?* then f €
E, N E, . Therefore

1
< q2n+2k

1 P’
<an7 ’f—@

1

(5) m(En N Enyy) = Z(n,n + k) S

where Z(n,n+k) is the number of pairs P/Q, P'/Q’ with P/Q a convergent
to P'/Q’, and deg @ = n, deg @’ = n + k. The number of choices for P/Q
is #W,, = ¢**(1 — 1/q). For given P/Q, we will find the number of choices
for P'/@Q’. Suppose that P’'/Q’ satisfies

P’ 1 ) p
f_@ < g2k’ deg@ =n+k fOTfGEn<§>.
There exist n = jo < j1 < ... < ji_1 < Ji = n + k (uniquely) such that
P Pm+l
Y = [0; P1,D2y -+, Pms - - - s Pmtl
Ql Qm—i—l [ m m+]

with
degpm+i = ji — ji-1, 1<i<1.
Since #{p € F[X] : degp = u} = ¢"(¢ — 1), we have

Pl
#{— cdegpmii = Ji — Ji—1, 1 <1 < l}

Q
— qjl_j0<q _ 1)qj2—j1 (g—1).. _qu—jl—1<q —1) = qk(q — 1)l

for each fixed (ji,...,7;). The number of choices for n < j1 < ... < ji—1

<n-+kis (];:11) and [ runs from 1 to k. Hence

P’ P’ 1 P
#{@ <Wf0r SomefEEn(§>}

I~

Consequently,

and by (5), we get

(B0 Byse) = (1 —)2 = (B )m(Bu)-
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By the Borel-Cantelli lemma, this implies the following;:
PROPOSITION 1. For any sequence ny < ng < ... of positive integers the
inequality
P 1
f——‘ <o degQ=m
-l < :
has infinitely many solutions for m-a.e. f € L.

According to this proposition, we can assume that (Q) < 1/¢" for any
n > 1. Then we rewrite Theorem 1 as follows:

THEOREM 3. For any sequences ny < ng < ... and ly,lo, ... of positive
integers, the inequality
P 1
f_@ <W7 deg @ = n;,

has infinitely many solutions for m-a.e. f € L if and only if

o0
Z q_l" = 0.
i=1

Proof. Put

P P 1
F; = {f € L : there exists é such that ’f — é < W, degQ = n,}
Given P/Q, the measure of f € L with |f — P/Q| < 1/¢* i is 1/¢?mth,
The number of P/Q in Wy, is ¢*"i — ¢®~ 1 therefore
qg—1 1

6 m F = — .
(6) ()=t
Now the assertion follows from the next lemma together with (6) by Theo-
rem 3 of [8].

LEMMA 6. (a) F; N Fi—i—j =0 if n; +1; > Njitj -

(b) 771(FZ N Fi+j) = m(FZ)m(F,_H) if ni+1; < Nt j -

Proof. 1If f € F; N Fi4;, say

P 1 P 1
I=gl <@ |/~ g < gt
with deg @ = n;, deg @' = n;j, then
P P 1
" Q @l @
and on the other hand
P P 1 1

Q Q7@ g

When n;+I; > n;;; these inequalities contradict each other, so F;NFy; = 0.
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Suppose, then, that n; + ; < n;i;. It follows from (7) that P/Q is a
convergent to P’/Q)'. Write again

P P
é = [07p17 v 7pm]7 a = [07p17 <o s Pmy Pmtly - 7pm+l]-
Then by a well-known formula,
P P 1 1

@~ @~ @] ~ @
yielding deg pp,+1 > I;. In analogy to (5) we obtain
1
(8) m(E N E+]) = Z(nza ni+j7 lz) q2ni+j+li+j )
where Z(n;,nitj,l;) is the number of pairs P/Q, P'/Q’ as above with
deg pm+1 > l;- Now, the number of choices for pm+1,. .., Pmag 18

qdegpm+1 (q _ 1)qdegpm+2 (q _ 1) o qdegpm+z(q _ 1) — qTLiJﬁj*ni(q _ 1)1‘
Thus

Z(Niy Nigj, i)

Nipj—n;—l;

| _ Mivi—mg—L—1\

= (@ -¢m) ) <l A )q”’“ ni(g —1)!
=1

— (q2n, _ q2ni—1)qni+j—ni <q _ l)qni+j—ni—li—1

2
= g?iti=h <1 — 1) ’
q

which together with (8) yields the lemma. m

EXAMPLE 1. Put
1 if de is prime,
0 otherwise.
Then we see that there are infinitely many solutions of
P 1
f

— —| < +—5, degQ prime,
Ql QP

for a.e. f el.

4. General case. For a given polynomial
h=aX' + g X'+  +aX+ay, a el 0<i<l, ag#0,
we denote by (h) the cylinder set defined by
{feL: (X" f]=h).
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LEMMA 7. Let hy, k > 1, be a sequence of polynomials with

lim deg hy = oo,

k—oo

and Ej be a sequence of measurable subsets of L for which Ey C (hg).
Suppose that m(Ey) > dm((hy)) for some § > 0. Then

(AU A =m(\Uow)

1=1 k=l I=1 k=l
Proof. Let

oo o0 oo
H:= ﬂ U(hk>, Ef = UEk Hf = H\ EJ.
I=1 k=l k=l
We show that m(H;) = 0 for any [ > 1, which implies the assertion of
this lemma. Suppose that m(H;) > 0. For almost all fo € H, there are
infinitely many k such that fo € (hg). For f = 7, a; X" € L, we put
u(f) = Xicoaiq" € (0,1]. The map ¢ is a measure isomorphism of (L, m)
to (0, 1] with the Lebesgue measure. By this isomorphism, the cylinder sets
(hg) are mapped to g-adic rational intervals. So we can apply Lebesgue’s
density theorem to get

m(H 0 () 8
m((hx)) 2
for some k. On the other hand, H; N E; = 0. So
m((hi)) = m(E) +m(Hg 0 (b)) = 0m((he)) +m(H O (i),
which says that m(H; N (hx)) < (1 = 6)m((hg)). This is impossible. =
LEMMA 8. For any polynomial h € F[X] and g € L, the map T of L
onto itself defined by

T(f)=hf+g—[hf+g] forfeL
s ergodic.

Proof. 1t is easy to see that both f+— h-fand f+— f+4gfor f € L are
m-preserving. Then w;(f) = [h-T" 1], 1 < i < oo, is an independent and
identically distributed sequence of random variables defined on (L., m). This
implies the assertion of the lemma. u

Let ¢ be a {¢™™ : n > 0} U {0}-valued function defined on the set of
monic polynomials, that is, of the form

Xl+al_1Xl_1+...+a1X+a0, a; €F, 0<i<l—1.
Here 9(Q) depends on @ itself, and we put
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Eqg={fel:|f-P/Q| <¥(Q)/|Q] for some polynomial P
with deg P < deg @ and (P, Q) = 1}

for a monic polynomial ). The following theorem is a formal power series
version of [6].

THEOREM 4. For any ¥, m((;21 Udeg 0sn E@) =0 or 1.

Proof. 1f
lim sup 1/;((2@22 > 0,
deg Q—o0 4 &
then we can find a sequence @1, @2, ... of monic polynomials and a positive

integer [ such that 1(Qy)/q%8? > ¢! for any k > 1. For any f € L and
sufficiently large k, we can find P (deg P < deg Q) such that

1 ¥(Qk)
< ? << qdeg£k>

and P and Qj, are coprime. Otherwise, Q) has more than ¢3°8@r— factors,
which is impossible. This implies

m(ﬁ [j EQk) =1.

=1 k=l

P
}f‘@

Now we show the assertion of the theorem when

vQ) _,

deg@ ~— °

lim sup
deg Q—o0 4

This means we can apply Lemma 7. We put
o0
E=() U Eeo
n=1degQ>n

Let R be an irreducible polynomial and consider

Y@

P
=51~ e

(9) 0

for n > 1. We put

Eo(n: R) ={f € L:(9) has infinitely many solutions P, Q) with R{1Q},
Ei(n: R)={f €L:(9) has infinitely many solutions P, Q with R| Q}.

Then

< (P,Q):l,

E(l1:R)CE;2:R)C..., E(1:R CE fori=0,1.
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From Lemma 7, we find that m(E;(n : R)) = m(E;(1: R)) for n > 1. Thus
m(U Ei(n - R)> — m(Ei(1: R)).
n>1
Let
Ti(f)=R-f~[R-f] forfeL.
Then
Tl(U Eo(n : R)) = |J Bo(n: R).

n>1 n>2
From Lemma 8, we have
m(U Ep(n : R)) =0or 1.
n>1

Next we let
T2(f)=R‘f+%— [R-er%} for f € L.
Suppose (9) holds. We have

1\ R-P+Q/R| _W(QIR" A
KR“+E)‘ Q '< Q- @*P+E@>‘L

and so

TQ(U Ei(n: R)) = | Ei(n: R).

n>1 n>2
Thus we have, again by Lemma 8,
m(U Ei(n: R)) =0or 1l
n>1
Hence, if either m(Ep(1 : R)) or m(E;1(1 : R)) is positive for some ir-
reducible polynomial R, then m(E) = 1. Assume that m(Ep(1 : R)) =
m(E1(1: R)) =0 for any irreducible polynomial R. We put
F(R) = {f € L: (2) has infinitely many solutions P,Q with R?|Q}.
If f € F(R), then
U\ P+QU/R| _4(Q) < QU )
+ = - < ) P + 5 Q = ]-7
(%) -5 Q R
for any polynomial U with 0 < degU < deg R. This means that f € F(R)
implies f + U/R € F(R). If we put S(U; R) = {f € L: [Rf] = U}, then
U S(U;R)U{f eL:degf < —degR} =L
U:0<degU<deg R




216 K. Inoue and H. Nakada

and each measure is equal to 1/¢q%°8 %, Since F(R) is (- + U/R)-invariant,

m(F(R
m(F(R) N S(U;R)) = %'
This implies
m(F(R)NS(U; R)) _ m(F(R)).

m(S(U; R))

By the density theorem, we have m(E) = m(F(R)) = 1 whenever m(F(R))
> 0 for some irreducible polynomial R; otherwise m(F) = 0, since £ =
F(R)U Ey(1,R) U E1(1, R). This concludes the proof of the theorem. =

REMARK. Note that the set E is the same as the one in the introduction.

Proof of Theorem 2. In what follows, we always assume that Q, Q1, Q'
and @} are monic. By the definition of Eq,

2(Q)
Q|
Now consider the measure of the intersection of Eg, and Eg (deg@i <

deg Q). We let N(Q1, Q@) be the number of pairs of polynomials P and P;.
For these polynomials, the conditions

(11) Al _v@Q)
Q @ Q| Q1]
(P’Q):(Pth):]-a degP<deng degP1<degQ1,

hold for given ) and ()1. Then

(10) m(Eq) = ¢(Q)

P(@Q) | $(@)

N ain(12), £0)
If
(12) PQ1-PQ=R

for some polynomial R, then D = (Q1, Q) divides R. Setting Q1 = DQ},Q =
DQ',R = DR, we have

(13) PQI-PQ =R, (Q1.Q)=1
If P’ and Py also satisfy (12), then

(14) P'Qy-PQ =R.

From (13) and (14),

(15) P=P +KQ', K apolynomial

From (12), we see that
[P —P'|=|K||Q] <|Ql=|D||Ql,
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which implies |K| < |D|. The number of possible polynomials P satisfy-
ing (12) for a given R is no greater than ¢°¢?. (11) implies

0# [R| < [Q1|¥(Q) + [Q(Q1)
and we can only take polynomials R divisible by D. We find that

N(Qu.Q) < ORI 15— 10,10(Q) + Q1w Q)

Then
m(Eq, N Eq) < 2¢(Q1)1(Q).
Since ) gep 0<n ¥(Q) diverges,

Y @< (Y v@)

degQ<n degQ<n
for sufficiently large n. Therefore

Y mBEeNnEg) <2 > $(@Q)vQ+ > ¥(Q)

deg Q1,deg Q<n deg Q1,deg Q<n deg Q<n
Q#Q

2
<3( 3 w@)
degQ<n
for all sufficiently large deg Q. From (3) and (10), we have

Z m(Eqg, N Eg) < 302< Z m(EQ)>2

deg Q1,deg Q<n deg Q<n
for infinitely many Q. Hence m(E) > (3C?)~!, by [9, Lemma 5, pp. 17-18].
Finally, applying Theorem 4, we have the assertion of the theorem. =
ExXAMPLE 2. Put
1 if @ is irreducible,
sig) - {1/Q1 rQs:

0 otherwise.

Then

oo oo 1

PR IRRICIED D=3

n=1Q:deg Q=n k=1
and it is easy to see that

Y ow@ <o D v —=.

degQ<n degQ<n <l
Thus there are infinitely many solutions P/Q of
P 1

e NToTES

@ is irreducible,

for a.e. f €.
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