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I. Introduction. Suppose that a1 (mod q1), a2 (mod q2), . . . , ak (mod qk)
is a collection of arithmetic progressions, where 2 ≤ q1 < . . . < qk ≤ x, with
the property that

{ai (mod qi)} ∩ {aj (mod qj)} = ∅ if i 6= j.

We say that such a collection of arithmetic progressions is disjoint or non-
intersecting. Let f(x) be the maximum value for k, maximized over all
choices of progressions ai (mod qi). Define

L(c, x) := exp(c
√

log x log log x),

ψ(x, y) := #{n ≤ y : p prime, p |n⇒ p ≤ y},
ψ∗(x, y) := #{n ≤ y : p prime, pa |n⇒ pa ≤ y}.

In [3], Erdős and Szemerédi prove that
x

exp((logx)1/2+ε)
< f(x) <

x

(log x)c

for some constant c > 0. (This result is also mentioned in [2].) Their lower
bound can be refined by using more exact estimates for ψ(x,L(c, x)) than
was used in their paper. Specifically, as direct consequence of [1, Lemma 3.1],
we have the following estimate:

Lemma 1. For any constant c > 0,

(1) ψ(x,L(c, x)) =
x

L(1/(2c) + o(1), x)
.

We also have the same estimate for ψ∗(x,L(c, x)), since

ψ(x,L(c, x)) > ψ∗(x,L(c, x))(2)

> ψ(x,L(c, x))−
∑

n2>L(c,x)

ψ(x/n2, L(c, x))
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= ψ(x,L(c, x))−O
(

x

L(c/2 + 1/(2c) + o(1), x)

)
.

Now, let p be the largest prime number less than or equal to L(1/
√

2, x).
Let q1, . . . , qt be the collection of all integers ≤ x which are divisible by p,
and whose prime power factors are all < p. From (1) and (2), we deduce
that

t =
x

pL(1/
√

2 + o(1), x)
=

x

L(
√

2 + o(1), x)
.

For each qi = plhrr l
hr−1
r−1 . . . lh1

1 , where p > lhrr > l
hr−1
r−1 > . . . > lh1

1 are the
powers of the distinct primes dividing qi, we choose the residue class ai
(mod qi) using the Chinese Remainder Theorem as follows:

ai ≡ lhrr (mod p); ai ≡ lhj−1
j−1 (mod lhjj ) for 2 ≤ j ≤ r;

and finally,
ai ≡ 0 (mod lh1

1 ).

This is exactly the construction which appears in [3] (except that their
progressions were all square-free), and it is easy to see that our progressions
ai (mod qi) are disjoint. Thus, we have

f(x) >
x

L(
√

2 + o(1), x)
.

In this paper we will prove the following results:

Theorem 1. If a1 (mod q1), . . . , ak (mod qk) are a collection of disjoint
arithmetic progressions, where the qi’s are square-free and 2 ≤ q1 < . . . <
qk ≤ x, then

k <
x

L(1/2− o(1), x)
.

Corollary to Theorem 1.

f(x) <
x

L(1/6− o(1), x)
.

Thus, we will have shown that
x

L(
√

2 + o(1), x)
< f(x) <

x

L(1/6− o(1), x)
.

To see how the Corollary follows from Theorem 1, let b1 (mod r1), . . . , bf(x)
(mod rf(x)) be a maximal collection of disjoint arithmetic progressions with
2 ≤ r1 < . . . < rf(x) ≤ x. Suppose, for proof by contradiction, that for some
ε < 1/6,

(3) f(x) >
x

L(1/6− ε, x)
.

Write each ri = αiβi, where βi is square-free, gcd(αi, βi) = 1, and every
prime dividing αi divides to a power ≥ 2. (Note: we may have αi or βi = 1.)
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Now, at least half of αi’s must be ≤ L(1/3, x), for if not we would deduce
from our assumption (3) that

x

2L(1/6− ε, x)
< f(x)/2 < #{ri : αi > L(1/3, x)}

< x
∑

n2>L(1/3,x)

1
n2

∏

p prime

(
1 +

1
p2 +

1
p3 + . . .

)

� x

L(1/6, x)
,

which is impossible for x large enough in terms of ε. Thus, there must exist
an α < L(1/3, x) for which at least f(x)/(2L(1/3, x)) of the ri’s have αi = α.
Let R(α) ⊆ {r1, . . . , rf(x)} be such a collection of ri’s, where

|R(α)| > f(x)
2L(1/3, x)

>
x

2L(1/2− ε, x)
;

this last inequality follows from our assumption (3). Now there must exist
a residue class b (modα) for which at least |R(α)|/α of the progressions bi
(mod ri) satisfy

(4) ri ∈ R(α) and bi ≡ b (modα).

Thus, the arithmetic progressions bi (mod ri/α), where ri satisfies (4),
form a collection of ≥ |R(α)|/α� x/(αL(1/2− ε, x)) disjoint progressions,
with distinct square-free moduli ≤ x/α. This contradicts Theorem 1 for
x sufficiently large in terms of ε. We must conclude, therefore, that the
bound in (3) is false for all ε < 1/6 and x > x0(ε), and so the Corollary to
Theorem 1 follows.

II. Proof of Theorem 1. Before we prove Theorem 1, we will need
the following lemma:

Lemma 2. There are at most x/L(c/2 + o(1), x) positive integers n ≤ x
such that ω(n) > c

√
log x/log log x (recall : ω(n) =

∑
p|n, p prime 1), where c

is some positive constant.

Proof. We observe that

#{n ≤ x : ω(n) > c
√

log x/log log x} < x
∑

j>c
√

log x
log log x

(
∑
pa≤x, p prime 1/pa)j

j!

=
x

(c
√

log x/log log x){c+o(1)}
√

log x/log log x

=
x

L(c/2 + o(1), x)
.
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We now resume the proof of Theorem 1. Consider the collection of all
the qi’s with the properties:

(A) ω(qi) <
√

log x/log log x.
(B) There exists a prime p > L(1, x) such that p | qi.
Let {r1, . . . , rk′} be the collection of all qi’s satisfying (A) and (B), and

let {b(r1), . . . , b(rk′)} be their corresponding residue classes.
To prove our theorem, we start with the set S0 = {r1, . . . , rk′}, and

construct a sequence of subsets S0 ⊇ S1 ⊇ S2 ⊇ . . . , and a sequence of
primes p1, p2, . . . (and let p0 = 1), such that for each i ≥ 1, the following
three properties hold:

1. Each member of Si is divisible by the primes p1, . . . , pi.
2. There exists an integer Ai such that for each rj ∈Si, we have b(rj)≡Ai

(mod p1 . . . pi).
3. |Si| > |Si−1|/(pi

√
log x/log log x).

We continue constructing these subsets until we reach a subset St which has
the additional property:

4. There exists a prime p 6= p1, . . . , pt, p ≥ L(1, x), such that at least
|St|/

√
log x/log log x of the elements of St are divisible by p.

Let us suppose for the time being that we can construct these sets
S1, . . . , St. Applying property 3 iteratively, together with property 4, we
find that the number of elements of St which are divisible by p (which are
already divisible by p1 . . . pt by property 1) is at least

|S0|
p1 . . . pt(

√
log x/log log x)t+1

≥ |S0|
p1 . . . ptL(1/2 + o(1), x)

.

(Note: By property (A) above we have t ≤
√

log x/log log x since every ele-
ment of S0 has at most

√
log x/log log x prime factors.) From this, together

with the fact that p > L(1, x), we have

x

p1 . . . pkL(1, x)
≥ #{n ≤ x : pp1 . . . pt |n} > #{q ∈ St : p | q}

≥ |S0|
p1 . . . ptL(1/2 + o(1), x)

.

It follows that

|S0| <
x

L(1/2− o(1), x)
.

From this, together with Lemmas 1 and 2 and the fact that the elements of
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S0 satisfy (A) and (B) above, we have
x

L(1/2− o(1), x)
> |S0| > k −#{n ≤ x : ω(n) ≥

√
log x/log log x}

− ψ(x,L(1, x))

> k − x

L(1/2− o(1), x)
,

and so
k <

x

L(1/2− o(1), x)
,

which proves our theorem.
To construct our sets Si, we apply the following iterative procedure:

suppose we have constructed the sets S1, . . . , Si which satisfy 1 through 3
above. To construct Si+1, first pick any element r ∈ Si. Now let e1, . . . , ej
be all those primes dividing r/(p1 . . . pi) (note: j <

√
log x/log log x). Each

element s ∈ Si, s 6= r, is divisible by at least one of these primes, since
otherwise gcd(r, s) = p1 . . . pi and so we would have b(r) ≡ Ai ≡ b(s)
(mod gcd(r, s)), which would mean that {b(r) (mod r)}∩{b(s) (mod s)} 6= ∅.

Now, there must be at least |Si|/j > |Si|/
√

log x/log log x of the ele-
ments of Si which are divisible by one of these primes eh. Let Ci ⊆ Si
be the collection of all elements Si divisible by this prime eh. There ex-
ists at least one residue class B (mod eh) for which more than |Ci|/eh >
|Si|/(eh

√
log x/log log x) of the elements r ∈ Ci satisfy b(r) ≡ B (mod eh).

Now let Si+1 be the collection of all such r ∈ Ci, set pi+1 = eh, and let
Ai+1 ≡ Ai (mod p1 . . . pi) and Ai+1 ≡ B (mod pi+1) by the Chinese Re-
mainder Theorem. Then properties 1, 2, and 3 above follow immediately for
this set Si+1.

If there exists a prime p > L(1, x) which divides more than

|Si+1|√
log x/log log x

of the elements of Si+1, then we set t = i + 1 and we are finished. If not,
we continue constructing these sets Sj . We are guaranteed to eventually hit
upon such a prime p since all our rj ’s are divisible by at least one prime
p > L(1, x) by property (B).
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