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I. Introduction. Suppose that a; (mod ¢),az (modgz), ..., ax (mod gx)
is a collection of arithmetic progressions, where 2 < ¢; < ... < qx < x, with
the property that

{a; (mod ¢;)} N{a; (modg;)} =0 ifi#j.
We say that such a collection of arithmetic progressions is disjoint or non-

intersecting. Let f(x) be the maximum value for k, maximized over all
choices of progressions a; (mod g;). Define

L(c,z) := exp(cy/logzloglogz),
Y(x,y) == #{n <y:pprime, p|n=p <y}
Y™ (z,y) := #{n <y : p prime, p” |n = p* <y}.
In [3], Erdés and Szemerédi prove that
T T

(g2 <) < Giogaye

for some constant ¢ > 0. (This result is also mentioned in [2].) Their lower
bound can be refined by using more exact estimates for ¢ (z, L(c, z)) than
was used in their paper. Specifically, as direct consequence of [1, Lemma 3.1],
we have the following estimate:

LEMMA 1. For any constant ¢ > 0,

1) Ue, Liea) =

(1/(2¢) + o(1),z)
We also have the same estimate for ¢*(x, L(c, )), since
(2) ¥(x, (e, x)) > ™ (2, L(c, x))
> ¢(va(Cyl’)) - Z ¢($/”27L(0737))

n?>L(c,xz)
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x
=y(x,L(c,z))— O .
vtor 20 =0 frrr iy o)
Now, let p be the largest prime number less than or equal to L(1/v/2, z).
Let q1,...,q: be the collection of all integers < = which are divisible by p,
and whose prime power factors are all < p. From (1) and (2), we deduce

that
x x

T LUVEto()r) | L(VEZto()a)

For each ¢; = plﬁrlffll M where p > I > lffll > ... > 1" are the
powers of the distinct primes dividing ¢;, we choose the residue class a;
(mod ¢;) using the Chinese Remainder Theorem as follows:

a; = 1" (modp); a; = l?i‘ll (mod l;”) for 2 <j <
and finally,
a; = 0 (mod ).

This is exactly the construction which appears in [3] (except that their
progressions were all square-free), and it is easy to see that our progressions
a; (mod g¢;) are disjoint. Thus, we have

1) > At ot),e)

In this paper we will prove the following results:

THEOREM 1. If a1 (mod¢q),...,ax (modgqy) are a collection of disjoint
arithmetic progressions, where the q;’s are square-free and 2 < ¢ < ... <
qr < x, then

k< z
L(1/2 =o0o(1),2)

COROLLARY TO THEOREM 1.
X

1@ < a7 —om o)

Thus, we will have shown that
x

x
< Jlz)< .

L2t on W S T —oma)
To see how the Corollary follows from Theorem 1, let by (modr1),...,bs(4)
(modr¢(,)) be a maximal collection of disjoint arithmetic progressions with
2<r; <...<7yps) <z Suppose, for proof by contradiction, that for some
e <1/6,
(3) f(@) >

x _—
L(1/6 —¢,x)

Write each r; = «;f3;, where 3; is square-free, ged(ay, 3;) = 1, and every
prime dividing «; divides to a power > 2. (Note: we may have «; or 3; = 1.)
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Now, at least half of a;’s must be < L(1/3, ), for if not we would deduce
from our assumption (3) that

- < fla)/2 < #{ri : op > L(1/3,2))

2L(1/6 — ¢, x)
1 1 1
< Y L1 (1+_2+—3+...)
, n? 2. P> p
n2>L(1/3,z) p prime
<« __*
L(1/6,x)’
which is impossible for = large enough in terms of €. Thus, there must exist
an o < L(1/3, ) for which at least f(x)/(2L(1/3,x)) of the r;’s have o; = «v.
Let R(a) C {r1,...,7¢@)} be such a collection of r;’s, where

f@ =
2L(1/3,z) = 2L(1/2—¢,z)’
this last inequality follows from our assumption (3). Now there must exist

a residue class b (mod «) for which at least |R(«)|/a of the progressions b;
(mod r;) satisfy

(4) ri € R(a) and b; =b (moda).

|R(a)| >

Thus, the arithmetic progressions b; (modr;/«), where r; satisfies (4),
form a collection of > |R(«)|/a > x/(aL(1/2 — ¢, z)) disjoint progressions,
with distinct square-free moduli < z/a. This contradicts Theorem 1 for
x sufficiently large in terms of £. We must conclude, therefore, that the
bound in (3) is false for all € < 1/6 and x > z(e), and so the Corollary to
Theorem 1 follows.

I1. Proof of Theorem 1. Before we prove Theorem 1, we will need
the following lemma;:

LEMMA 2. There are at most x/L(c/2+ o(1),x) positive integers n < x

such that w(n) > cy/logz/loglogx (recall: w(n) = 2, , ime 1), where ¢

18 some positive constant.

Proof. We observe that

. (Zpagm,pprime 1/pa)J
#{n <z :w(n) > cy/logx/loglogz} < z Z

4!
j>c 101g?1g0z‘w
B T
(cy/log x/log log m){cJ”’(l)} Vlogz/loglog
T

~ L(c/2+o0(1),z)"
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We now resume the proof of Theorem 1. Consider the collection of all
the ¢;’s with the properties:

(A) w(q;) < +/logz/loglog .

(B) There exists a prime p > L(1, z) such that p|g;.
Let {r1,...,71} be the collection of all ¢;’s satisfying (A) and (B), and

let {b(r1),...,b(rx )} be their corresponding residue classes.
To prove our theorem, we start with the set So = {ry,...,r}, and
construct a sequence of subsets Sp D S1 D S D ..., and a sequence of

primes p1,ps,... (and let pg = 1), such that for each i > 1, the following
three properties hold:

1. Each member of S; is divisible by the primes p1, ..., p;.
2. There exists an integer A; such that for each r; € S;, we have b(r;) = A4,

3. |Si| > [Si-1l/(pi/log z/loglog x).

We continue constructing these subsets until we reach a subset S; which has
the additional property:

4. There exists a prime p # pi1,...,pt, p > L(1,x), such that at least
|St|/+/log x/log log x of the elements of S; are divisible by p.

Let us suppose for the time being that we can construct these sets
S1,...,5;. Applying property 3 iteratively, together with property 4, we
find that the number of elements of S; which are divisible by p (which are
already divisible by p; ...p; by property 1) is at least

S0 S |Sol
p1...pi(v/logz/loglogz)t+t — p1...pL(1/2+o(1),7)
(Note: By property (A) above we have ¢ < y/logx/loglog x since every ele-

ment of Sy has at most /log x/loglog x prime factors.) From this, together
with the fact that p > L(1,x), we have

X
> #{n<zipp... :
p1...pkL(1,x)_#{n—x pp1-..pe|n} > #{q € S :plq}

|:So|

T p1..peL(1/2 4+ 0(1),2)

It follows that

5ol < Za=oma)

From this, together with Lemmas 1 and 2 and the fact that the elements of
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So satisfy (A) and (B) above, we have

LA/a—o).a) 1Pl >k-#nsz:w) 2 Vlog z/loglog '}
_¢($’L(17$))

CL(1/2—o(1), )’

>k

and so
T

(1/2=o(1),z)’

k
S I

which proves our theorem.

To construct our sets S;, we apply the following iterative procedure:
suppose we have constructed the sets Sy, ...,S; which satisfy 1 through 3
above. To construct S;11, first pick any element r € S;. Now let eq,...,¢;
be all those primes dividing r/(p1 ...p;) (note: j < y/logz/loglogx). Each
element s € S;, s # r, is divisible by at least one of these primes, since
otherwise ged(r,s) = p1...p; and so we would have b(r) = A4; = b(s)
(mod ged(r, s)), which would mean that {b(r) (modr)}N{b(s) (mod s)} # 0.

Now, there must be at least |S;|/j > [Si|/+/logz/loglogz of the ele-
ments of S; which are divisible by one of these primes e;,. Let C; C S;
be the collection of all elements .S; divisible by this prime ep. There ex-
ists at least one residue class B (modey) for which more than |C;|/e, >
|Si|/(eny/log xz/loglog ) of the elements r € C; satisfy b(r) = B (modey,).
Now let S;+1 be the collection of all such r € C;, set p;+1 = ep, and let
Aiy1 = A; (modpy...p;) and A;411 = B (modp;4+1) by the Chinese Re-
mainder Theorem. Then properties 1, 2, and 3 above follow immediately for
this set S;41.

If there exists a prime p > L(1, ) which divides more than

|Sit1]

V/log z/log log x

of the elements of S;y1, then we set t = ¢ + 1 and we are finished. If not,
we continue constructing these sets S;. We are guaranteed to eventually hit
upon such a prime p since all our 7;’s are divisible by at least one prime
p > L(1,z) by property (B).
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