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1. Introduction. Let M = {γ1, . . . , γM} be a set of real numbers or-
dered increasingly and let

D(M) = {γi+1 − γi : 1 ≤ i ≤M − 1}
be the set of gaps between consecutive elements of M. Usually we think of
the elements of D(M) as being arranged in ascending order, keeping in the
list all the numbers with their multiplicities. A number d is called a jumping
champion of M (for short champion or JC) if the multiplicity of d is largest
among all elements of D(M). According to [12], the term jumping champion
was introduced by J. H. Conway in 1993.

Finding the JC of a set may be a very difficult problem. Certainly this
is the case when M = Pn, the set of primes less than or equal to n. This
problem has been investigated by Nelson [11], Erdős and Straus [2], and
Harley [9]. Assuming conjectures for counts of prime r-tuples, Gallagher [4],
[5] proved thatD(Pn) approaches a Poisson distribution as n→∞. Odlyzko,
Rubinstein and Wolf [12] give empirical and heuristic evidence that the JC

for primes are 1, 2, 4 and the primorials 6, 30, 210, 2310, . . . But as the
technical difficulties encountered when dealing with consecutive primes are
formidable enough, they cannot give a proof of this result even under the
assumption of the prime r-tuple conjecture.

Our object here is to study the JC problem for the Farey series. Unlike the
case of primes, in the case of Farey fractions we may prove, unconditionally,
the asymptotics for the size of champions, and understand some of their
arithmetical properties.

In the next two sections we introduce some terminology and state our
main results, which are then proved in the following sections. At the end of
the paper we attach samples from three tables showing the JC’s for Farey
sequences and related quantities.
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2. Notations. Let FQ be the sequence of Farey fractions of order Q.
Taking into account the symmetry of FQ with respect to 1/2, in what follows
we will only work withMQ = FQ∩[0, 1/2]. Then the number of gaps between
consecutive elements of MQ is |D(MQ)| = (|FQ| − 1)/2.

Looking at 1 ≤ Q ≤ 9, one finds that all the elements of D(MQ) are
distinct, so they all share the position of champion. When Q = 10, we have
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D(M10) =
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The gap 1/30 appears twice in D(M10), so it is the JC of F10.
We know that if a′/q′, a′′/q′′ are consecutive fractions in FQ, then the

gap between them is
a′′

q′′
− a′

q′
=

1

q′q′′
,

so we need to focus mainly on the pairs of consecutive denominators of Farey
fractions. Moreover, there is a bijection (see [6]) between these pairs and the
lattice points from

TQ = {(q1, q2) : 1 ≤ q1, q2 ≤ Q, q1 + q2 > Q, gcd(q1, q2) = 1}.

This motivates the following definitions. Denote by h(D,Q) the number of
gaps of length 1/D in MQ; this can be written as

h(D,Q) = |{(q1, q2) ∈ TQ : q1q2 = D, q1 < q2}|
= |{q |D : gcd(q,D/q) = 1, D/q < q ≤ Q, D/q + q > Q}|.

It is plain that

|D(MQ)| =
∑

D≥1

h(D,Q).

Then any JC is a solution of the maximum problem

M(Q) = max
D

h(D,Q).

We set

Champs(Q) = {D : h(D,Q) = M(Q)}.

Usually we refer to the elements of Champs(Q) as being champions, al-
though, strictly speaking, the champions are the inverses of the elements of
Champs(Q). Next, we denote by H(Q) the number of distinct gaps (partic-
ipants in the competition for JC), i.e.

H(Q) = |{D : h(D,Q) ≥ 1}|.
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Then we define Hr(Q) to be the number of gaps with multiplicity r, that is,

Hr(Q) = |{D : h(D,Q) = r}|.
Clearly H(Q) =

∑
r≥1Hr(Q). We also consider Gr(Q), the number of gaps

with multiplicity ≥ r, or

Gr(Q) = |{D : h(D,Q) ≥ r}| =
∑

i≥r
Hi(Q).

Note that G1(Q) = H(Q). There is another equivalent definition of h(D,Q)
which is more convenient in our problems. Let

β = β(D,Q) =

{√
D/Q2 if D ≥ 1

4Q
2,

1
2(1 +

√
1− 4D/Q2) if D < 1

4Q
2.

Then

(1) h(D,Q) = |{q |D : gcd(q,D/q) = 1, βQ < q ≤ Q}|.
In other words, h(D,Q) counts certain divisors of D lying in a short inter-
val (note that β ≥ 1/2). To study divisors of numbers in short intervals,
Tenenbaum [14] introduced the functions

τ(n, y, z) = |{d |n : y < d ≤ z}|,
H(x, y, z) = |{n ≤ x : τ(n, y, z) ≥ 1}|.

We will be more concerned with slight variations of these, namely

τ∗(n, y, z) = |{d |n : gcd(d, n/d) = 1, y < d ≤ z}|,
H∗(x, y, z) = |{n ≤ x : τ ∗(n, y, z) ≥ 1}|.

Tenenbaum [14] (see also Theorem 21 of [7]) has determined the approximate
growth of H(x, y, z). If α, β are fixed with 0 < α < β ≤ 1, we have

(2) H(x2, αx, βx)� x2

(log x)θ
√

log log x
,

where θ = 1 − (1 + log log 2)/log 2 = 0.08607 . . . A simple modification of
the proof of Tenenbaum’s lower bound yields the following. If 0 < α < β ≤ 1
and 0 ≤ γ < δ ≤ 1, then

(3) H∗(δx2, αx, βx)−H∗(γx2, αx, βx)

� x2

(log x)θ
exp(−c1

√
log log x log log log x)

for x ≥ x0(α, β, γ, δ) and for some positive constant c1. Recently, the sec-
ond author [3] has improved Tenenbaum’s bounds for H(x, y, z). These new
results imply that the right sides of (2) and (3) may be replaced by

x2

(logx)θ(log log x)3/2
.
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Throughout, variables c1, c2, . . . denote positive absolute constants. We
also let ω(n) be the number of distinct prime factors of n and let [x] be the
greatest integer ≤ x.

3. Statements of results. We raise two problems related to the JC

problem for the Farey series. The first is to estimate M(Q) and determine
the multiplicative structure of the numbers in Champs(Q). The second is to
estimate the quantities H(Q),Hr(Q) and Gr(Q).

Theorem 1. We have

M(Q) = exp

(
2 log 2

logQ

log logQ
+O

(
logQ

(log logQ)2

))
.

Corollary 1. If D ∈ Champs(Q) then

ω(D) = 2
logQ

log logQ
+O

(
logQ

(log logQ)2

)
.

Since

ω(n) ≤ 2
logQ

log logQ
+O

(
logQ

(log logQ)2

)
for all n ≤ Q2,

the JC have close to the maximum possible number of prime factors for inte-
gers of their size. In particular, most of the prime factors of D ∈ Champs(Q)
are small.

Corollary 2. If R/logQ → ∞ as Q → ∞, then almost all the prime
factors of D are ≤ R.

An interesting problem would be to bound the largest prime factor of
any D ∈ Champs(Q).

For convenience in stating the next results, let

(4) L(x) = exp(c1

√
log log x log log log x)

be one of the factors in Tenenbaum’s lower bound (3) for H(x, y, z).

Theorem 2. We have

Q2

(logQ)θL(Q)
� H(Q)� Q2

(logQ)θ
√

log logQ
.

The new results of [3] imply that

(5) H(Q) � Q2

(logQ)θ(log logQ)3/2
,

where as usual � means both � and �.
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Theorem 3. For any r ≥ 2, we have

Gr(Q)� Q2

(
e log 2(log logQ+ c2)

log r

)log r/log 2

.

Notice that the upper bound given by Theorem 3 is useless when r �
(logQ)ξe log 2, where ξ log ξ = θ/e, since by Theorem 2 it follows that

Gr(Q) ≤ G1(Q)� Q2

(logQ)θ
√

log logQ
.

We give two lower bounds for Gr(Q).

Theorem 4. Let Q be sufficiently large. Suppose l is an integer with
1 ≤ l ≤ logQ/(log logQ+ c3), and put

r =

[
1

l

(
2l

l

)]
, K = c4(2 log logQ+ 2l) log(2 log logQ+ 2l).

Then

Gr(Q) ≥ c5
Q2

(logQ)θL(Q)
([2 log logQ]+2l+2

2l+2

)
K2l+2

.

For example, the case l = 1, r = 2 gives

G2(Q)� Q2

(logQ)θL(Q)
· 1

(log logQ)8(log log logQ)4
.

The results of [3] allow us to replace L(Q) in Theorem 4 by (log logQ)3/2.

By Theorems 2 and 4, if l = o
( log logQ

log log logQ

)
, equivalently r = e

o
(

log logQ
log log logQ

)
,

it follows that

Gr(Q) =
Q2

(logQ)θ+o(1)
.

On the other hand, when l/log logQ → ∞, we get Gr(Q) ≥ Q2/l(2+o(1))l.
But since l ∼ log r/(2 log 2), this yields

Gr(Q) ≥ Q2(log r)−(1+o(1)) log r/log 2.

This should be compared with the upper bound in Theorem 3.
A better lower bound of Gr(Q) for intermediate l,

log logQ� l ≤ 1

2

logQ

log logQ
,

is given below.

Theorem 5. Suppose 2 log logQ ≤ l ≤ 1
2

logQ
log logQ and put

r =
1

11 logQ

(
2l

l

)
.
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For positive absolute constants c6, c7, we have

Gr(Q) ≥ c6
Q2

l5/2 log2Q

(
e

2l

(
log

logQ

l log l
− c7

log log l

log l

))2l

.

In this middle range for l, putting together Theorems 3 and 5, we obtain
the following.

Corollary 3. Suppose Q ≥ Q0,

log r

log logQ log log logQ
→∞ and log r = (logQ)o(1).

Then

Gr(Q) = Q2

(
(e log 2 + o(1)) log logQ

log r

)log r/log 2

.

An interesting problem would be to determine, if it exists, the limit

(6) lim
Q→∞

Hr(Q)

H(Q)

for each fixed r. The problem of comparing Hr(x, y, z) to H(x, y, z) (where
Hr(x, y, z) = |{n ≤ x : τ(n, y, z) = r}|) was studied by Tenenbaum [15] and
more recently by Ford [3], but the results are not strong enough to answer

our question. In particular, Theorem 1 of [15] requires z ≤ x1/(r+1). The
same question can be asked for the ratio Gr(Q)/H(Q). The results of [3]
imply that Gr(Q)�r H(Q), this being a consequence of the estimate

H∗(δx2, αx, βx)−H∗(γx2, αx, βx) � x2

(log x)θ(log log x)3/2

valid for every fixed quadruple α, β, γ, δ. Suppose r ≥ 2 and let p1 < . . . <
pr < 1.1p1, where p1, . . . , pr are primes. If τ(n, 2Q/(3p1), 3Q/(4p1)) ≥ 1,
then τ(p1 . . . prn, 2Q/3, Q) ≥ r and consequently by Lemma 1 below,

Gr(Q) ≥ H∗
(

4Q2

9p1 . . . pr
,

2Q

3p1
,

3Q

4p1

)
−H∗

(
Q2

4p1 . . . pr
,

2Q

3p1
,

3Q

4p1

)

�r
Q2

(logQ)θ(log logQ)3/2
�r H(Q).

4. Simple inequalities. By (1), we immediately get the upper bound

(7) h(D,Q) ≤ τ ∗(D,Q/2, Q) ≤ τ(D,Q/2, Q).

A useful lower bound is

(8) h(D,Q) ≥
{
τ∗(D, 2Q/3, Q) if Q2/4 < D ≤ 4Q2/9,

0 otherwise.

A consequence of these bounds is
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Lemma 1. We have

H(Q) ≤ H∗(Q2, Q/2, Q) ≤ H(Q2, Q/2, Q),

Hr(Q) ≤ Gr(Q) ≤ |{D ≤ Q2 : τ(D,Q/2, Q) ≥ r}|,
H(Q) ≥ H∗(4Q2/9, 2Q/3, Q)−H∗(Q2/4, 2Q/3, Q),

Gr(Q) ≥ |{Q2/4 < D ≤ 4Q2/9 : τ ∗(D, 2Q/3, Q) ≥ r}|.
Theorem 2 now follows immediately from (2), (3), and Lemma 1.
Suppose that ω(D) = k. Then h(D,Q) ≤ τ ∗(D,Q/2, Q) ≤ τ ∗(D, 0,D) =

2k. We can do a little bit better using Sperner’s Theorem. Let S = {pa :
pa ‖ D}. There is a natural bijection between the subsets of S and divisors q
of D satisfying gcd(q,D/q) = 1. Also, the relation ⊆ defines a partial order
on the subsets of S. In any chain of distinct subsets R1 ⊆ . . . ⊆ Rm, at
most one of the associated divisors is counted by τ ∗(D,Q/2, Q). Sperner’s
Theorem (e.g. [13, p. 732, fact # 7]) tells us that the subsets of S can be

partitioned into
( k
bk/2c

)
chains. We thus have the following.

Lemma 2. Let ω(D) = k. Then

h(D,Q) ≤
(

k

bk/2c

)
� 2k√

k
.

The inequality in Lemma 2 is nearly best possible, at least if k is not
too large as a function of Q. For example, let k be even, let p1, . . . , pk−1

be distinct primes in the interval
((2Q

3

)2/k
,
(4Q

5

)2/k]
, let pk be a prime in

the interval
(

9
16

(2Q
3

)2/k
, 9

16

(4Q
5

)2/k]
, and set D = p1 . . . pk. Then Q2/4 <

D ≤ 9Q2/25. Let q be any product of k/2 primes pi, 1 ≤ i ≤ k − 1. Then
2Q/3 < q < 4Q/5. By (8), q is counted in h(D,Q), therefore

h(D,Q) ≥
(
k − 1

k/2

)
=

1

2

(
k

k/2

)
� 2k√

k
.

5. The size of JC—Proof of Theorem 1. We turn to the problem of
finding the size of M(Q) as Q → ∞. Let qj be the jth prime and suppose
q1 . . . qm ≤ Q2 < q1q2 . . . qm+1. Then if D ≤ Q2, it follows that ω(D) ≤ m,
and by Lemma 2, M(Q) ≤

( m
[m/2]

)
≤ 2m. Now θ(qm) ≤ 2 logQ < θ(qm+1),

where θ is the Chebyshev function. By the Prime Number Theorem (with
classical error term), we have

qm = 2 logQ+O((logQ)e−c8
√

log logQ),

which implies

m =
2 logQ

log logQ
+O

(
logQ

(log logQ)2

)
.

This gives the upper bound.
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Let A = exp
(
c9

logQ
log logQ

)
, in which c9 is some large constant. Suppose

q1 . . . q2n ≤ Q2/A2 < q1 . . . q2n+2. By the Prime Number Theorem,

n =
logQ

log logQ
+O

(
logQ

(log logQ)2

)
.

If t is the product of any n primes ≤ q2n, then

t =
Q

A
exp

(
O

(
logQ

log logQ

))
.

Choose c9 so that for any such t,

Q/A3/2 ≤ q1 . . . qn ≤ t ≤ qn+1 . . . q2n ≤ Q/A1/2.

By the box principle, for some z ∈ [Q/A3/2, Q/A1/2], the interval [z, 1.1z]

contains � 1
logA

(
2n
n

)
numbers t. Let s1 be a prime in

(2Q/3
z , 0.7Q

z

]
and put

D0 = q1 . . . q2ns1. Such an s1 exists because Q/z ≥ A1/2 → ∞ as Q→∞.
Also s1 ≥ q2n, thus D0 has � 1

logA

(
2n
n

)
divisors in (2Q/3, 0.77Q]. Since

D0 ≤ Q2

A2
0.7Q
z ≤ Q2

A1/2 , there is a prime s2 6= s1 lying in
(Q2/4
D0

, Q
2/3
D0

]
. Put

D = s2D0. Using (8), we conclude that

h(D,Q)�
(

2n
n

)

logA
� 22n log logQ√

n logQ

= exp

(
(2 log 2)

logQ

log logQ
+O

(
logQ

(log logQ)2

))
.

This estimate concludes the proof of Theorem 1.

In order to prove Corollary 1, we see that if D is a champion, then
h(D,Q) = M(Q) ≤ 2ω(D) and therefore ω(D) ≥ (logM(Q))/log 2. This
gives the lower bound. The upper bound comes from the proof of Theorem 1.

6. The sizes of the prime factors of champions. Corollary 2 follows
from the next lemma.

Lemma 3. Suppose Q is large, R > 3 logQ and D ∈ Champs(Q). Then
the number of prime factors of D that are ≥ R is

� logQ

log logQ

1

log
(

R
3 logQ

) .

Proof. Let ω = ω(D) and let N be the number of prime factors of D
which are ≥ R. Then by Corollary 1 and the Prime Number Theorem,

q1 . . . qω ≥ Q2 exp

(
−c10

logQ

log logQ

)
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and qω ≤ 3 logQ if Q is large. Since

Q2 ≥ D ≥ q1 . . . qω−NRN ≥ q1 . . . qω

(
R

qω

)N

≥ Q2 exp

(
−c10

logQ

log logQ

)(
R

3 logQ

)N
,

we get the lemma.

Another corollary of Lemma 3 is that the champions are not too small.

Corollary 4. If D ∈ Champs(Q), then D � Q2/log3Q.

Proof. Assume D ≤ c11Q/log3Q, where c11 is a sufficiently small posi-
tive constant. If c12 is large enough, then at most ω(D)/10 prime factors ofD
are ≥ c12 logQ. Thus D has a divisor d ∈ (Q/(2c2

12 log2Q), Q/(2c12 logQ)].

Since Q/d > 2c12 logQ, there exists a prime number s ∈
(

2
3
Q
d ,

Q
d

]
which

does not divide D. Since Ds ≤ Q2/logQ, there exists a prime number t ∈(
0.24Q

2

Ds , 0.25Q
2

Ds

]
which does not divideD. LetD′ = Dst ∈ (0.24Q2, 0.25Q2].

By (1) and the inequalities β(D′, Q) < 0.6 < β(D,Q) and 2Q/3 < sd ≤ Q,
we have h(D′, Q) ≥ M(Q) + 1. We have obtained a contradiction, which
completes the proof of the corollary.

An interesting question arises. What is the approximate size range of
τ∗(D,βQ,Q)/τ ∗(D, 0,D) for championsD? Is this ratio always� (logQ)−B

for some B > 0?

7. Upper bounds on Gr(Q). In this section we prove Theorem 3.

Let l be the smallest integer with
(

l
[l/2]

)
≥ r. Denote by πk(x) the number

of integers ≤ x with exactly k distinct prime factors. In 1917, Hardy and
Ramanujan [8] proved the uniform upper bound

(9) πk(x)� x(log log x+ c2)k−1

(k − 1)! log x

for a constant c2. This bound suffices for our purposes, even though more
precise bounds for πk(x) are known (see e.g. the papers by Balazard [1] and
Hwang [10] for a survey of results and further references).

By Lemmas 1 and 2,

Gr(Q) ≤ |{D ≤ Q2 : ω(D) ≥ l}| �
∑

k≥l

Q2

logQ
· (log logQ+ c2)k−1

(k − 1)!
.

If l−1 ≤ log logQ+ c2, the bound in Theorem 3 is trivial, because the right
hand side of (3) is ≥ Q2 in that case. Otherwise, we write z = log logQ+c2,
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l − 1 = βz, and β ≥ 1. Then

logQ

Q2
Gr(Q)�

∑

h≥βz

zh

h!
≤ 1

ββz

∑

h≥βz

(βz)h

h!
≤
(
e

β

)βz

=

(
e(log logQ+ c2)

l − 1

)l−1

.

Lastly, l − 1 ≤ log r/log 2 and the theorem follows.

8. Lower bounds for Gr(Q)

Proof of Theorem 4. First, the upper bound on l gives K ≤ c13 logQ
and thus if B = Q/K l+1, then

B ≥ Q exp

(
−
[
1 +

logQ

log logQ+ c3

]
(log logQ+ log c13)

)

≥ exp

(
c14

logQ

log logQ

)

if c3 is large enough. By (3), it follows that

H∗(B2, B/2, B) ≥ c15
B2

(logB)θL(B)
.

Let

H̃ = {m ≤ B2 : τ∗(m,B/2, B) ≥ 1, ω(m) ≤ 2 log logB}.
By (9) and Stirling’s formula,

|H̃| ≥ H∗(B2, B/2, B)−
∑

k>2 log logB

πk(B
2)(10)

≥ c15
B2

(logB)θL(B)
− c16

B2

(logB)2 log 2−1

≥ c17
B2

(logB)θL(B)
≥ c17

B2

(logB)θL(Q)
.

Let m ∈ H̃, and let d |m, B/2 < d ≤ B, gcd(d,m/d) = 1. Also let

J =

(
1

c18

(
Q2

B2

)1/(2l+2)

,
1.1

c18

(
Q2

B2

)1/(2l+2)]
=

(
K

c18
,

1.1K

c18

)
.

By hypothesis, K/c18 ≥ c4
c18

(2 log logQ + 2l) log(2 log logQ + 2l). By the

Prime Number Theorem, if c4/c18 is sufficiently large, then J contains ≥
2 log logQ+ 2l > 2 log logB+ 2l primes. Thus J contains primes s1, . . . , s2l

that do not divide m. Then

D0 := ms1 . . . s2l ≤
(

1.1

c18

)2l

Q2K−2.
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Each product of l of the primes si lies in the interval

I =

((
1

c18

)l
K l,

(
1.1

c18

)l
K l

]
.

By the box principle, for some z ∈ I, the interval (z, 1.1z] contains at least[
1
l

(2l
l

)]
= r such products. Let t be a prime in

(2Q/3
dz , Q

1.1dz

]
that does not

divide D0. Since

Q

dz
≥ Q

Bz
≥ K l+1

(1.1K/c18)l
=

(
c18

1.1

)l
K ≥ K if c18 ≥ 1.1,

the interval contains ≥ 2 log logB+ 2l+ 1 primes, so t exists. Then tD0 has
at least r divisors q with gcd(q, tD0/q) = 1 and 2Q/3 < q ≤ Q. Let u be a

prime in
(Q2/4
tD0

, 4Q2/9
tD0

]
that does not divide tD0. Since

Q2

tD0
≥
(
c18

1.1

)2l

K2 1.1dz

Q
≥ 0.55

(
c18

1.21

)l
K2 BK

l

Q
> K

if c18 ≥ 3, u exists. Finally let D = utD0 ∈ (Q2/4, 4Q2/9]. By (8), h(D,Q)

≥ 1
l

(2l
l

)
.

Since D = uts1 . . . s2lm, at most
(ω(D)

2l+2

)
values of m produce the same

value of D. Since ω(D) ≤ 2l + 2 + 2 log logQ, (8) implies the result.

Proof of Theorem 5. Let c19 be large enough so that π(c19l log l) ≥ 20l

for large l. Let B =
( Q
c19l log l

)1/l
. By hypothesis, B > c19l log l. Let s1 <

. . . < s2l be any primes ≤ B, and put m = s1s2 . . . s2l. There are
(2l
l

)

products si1 . . . sil , each lying in [1, Bl]. Thus, for some z ∈ [1, Bl], the
interval (z, 1.1z] contains at least r such products. Let q be a prime in(2Q

3z ,
Q

1.1z

]
that does not divide m. Such a q exists because Q/z ≥ Q/Bl =

c19l log l (i.e. π
( Q

1.1z

)
−π
(2Q

3z

)
≥ 2l+ 2). Let s be a prime in

( Q2

4qm ,
4Q2

9qm

]
that

does not divide qm. Such an s exists because 1.1z ≥ s1 . . . sl ≥ m/Bl and
thus

Q2

qm
≥ Qz

1.1m
≥ 1

1.21

Q

Bl
≥ c19

1.21
l log l.

Put D = sqm, so D ∈ (Q2/4, 4Q2/9]. Also,

τ∗(D, 2Q/3, Q) ≥ τ ∗(qm, 2Q/3, Q) ≥ r,

so h(D,Q) ≥ r. Now each D comes from at most
(2l+2

2

)
values of m. There-

fore,
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Gr(Q) ≥ 1(
2l+2

2

)
∑

m

∑

2Q/(3z)<q≤Q/(1.1z)
gcd(q,m)=1

∑

Q2/(4qm)<s≤4Q2/(9qm)

1

� 1

l2

∑

m

∑

q

Q2/(qm)

logQ
� Q2

l2 log2Q

∑

m

1

m
.

Lastly,
∑

m

1

m
≥ 1

(2l)!

∑

s1≤B

1

s1

∑

s2≤B
s2 6=s1

1

s2
· · ·

∑

s2l≤B
s2l /∈{s1,...,s2l−1}

1

s2l

≥ 1

(2l)!

∑

s1≤B

1

s1

∑

q2≤s2≤B

1

s2
· · ·

∑

q2l≤s2l≤B

1

s2l

≥ 1

(2l)!

( ∑

q2l≤s≤B

1

s

)2l

�
(
e

2l

)2l 1√
l

(
log logB − log log q2l +O

(
1

log q2l

))2l

.

Now

log logB = log
logQ

l
+O

(
log l

logQ

)
,

log log q2l = log log(2l(log l +O(log log l))) = log log l +O

(
log log l

log l

)

and the theorem follows.

We conclude by proving Corollary 3. The upper bound comes from The-
orem 3, while the lower bound follows from Theorem 5, by taking l =
log r/(2 log 2) +O(log logQ).

9. Tables of champions

Table 1. The H-values and the champions for a given Q

Q |D(MQ)| H(Q) H1(Q) H2(Q) H3(Q) H4(Q) H5(Q) 1/JC

2 1 1 1 0 0 0 0 2

3 2 2 2 0 0 0 0 3, 6

4 3 3 3 0 0 0 0 4, 6, 12

5 5 5 5 0 0 0 0 5, 10, 12, 15, 20

6 6 6 6 0 0 0 0 6, 10, 12, 15, 20, 30

7 9 9 9 0 0 0 0 7, 14, 15, 20, 21, 28,
30, 35, 42

8 11 11 11 0 0 0 0 8, 14, 20, 21, 24, 28,
30, 35, 40, 42, 56
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Table 1 (cont.)

Q |D(MQ)| H(Q) H1(Q) H2(Q) H3(Q) H4(Q) H5(Q) 1/JC

180 4940 4481 4069 372 33 7 0 8190, 8580, 9240,
9570, 9660, 10010,
10710

181 5030 4594 4199 360 29 6 0 8580, 9240, 9570,
9660, 10010, 10710

182 5066 4608 4200 366 35 6 1 10010

183 5126 4654 4235 374 38 6 1 10010

184 5170 4686 4257 382 40 6 1 10010

185 5242 4744 4301 396 40 6 1 10010

186 5272 4754 4299 401 46 7 1 10010

187 5352 4825 4365 402 50 7 1 10010

188 5398 4860 4390 411 51 7 1 10010

189 5452 4905 4426 420 51 7 1 10010

190 5488 4918 4422 433 53 9 1 10010

Table 2. Selected lists of champions

Champion Decomposition No. of appearances The values of Q

102 2 · 3 · 17 1 17

104 23 · 13 2 13, 17

105 3 · 5 · 7 2 17, 21

110 2 · 5 · 11 4 11–13, 17

112 24 · 7 1 17

117 32 · 13 2 13, 17

119 7 · 17 1 17

120 23 · 3 · 5 1 17

126 2 · 32 · 7 6 17–22

130 2 · 5 · 13 2 13, 17

132 22 · 3 · 11 3 12, 13, 17

136 23 · 17 1 17

143 11 · 13 2 13, 17

144 24 · 32 1 17

153 32 · 17 1 17

154 2 · 7 · 11 4 17, 22–24

156 22 · 3 · 13 2 13, 17

165 3 · 5 · 11 1 17

168 23 · 3 · 7 5 24–28

170 2 · 5 · 17 1 17
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Table 2 (cont.)

Champion Decomposition No. of appearances The values of Q

176 24 · 11 1 17

182 2 · 7 · 13 2 17, 26

187 11 · 17 1 17

195 3 · 5 · 13 1 17

198 2 · 32 · 11 7 22–28

1540 22 · 5 · 7 · 11 5 55, 59–62

1550 2 · 52 · 31 1 62

1566 2 · 33 · 29 4 59–62

1650 2 · 3 · 52 · 11 2 75, 76

1674 2 · 33 · 31 1 62

1716 22 · 3 · 11 · 13 5 55, 59–62

1798 2 · 29 · 31 1 62

1938 2 · 3 · 17 · 19 4 59–62

1980 22 · 32 · 5 · 11 5 55, 59–62

2310 2 · 3 · 5 · 7 · 11 27 70–96

2520 23 · 32 · 5 · 7 5 72–76

2730 2 · 3 · 5 · 7 · 13 18 91–108

3570 2 · 3 · 5 · 7 · 17 20 107–126

3990 2 · 3 · 5 · 7 · 19 15 114–118, 121–126, 133–136

4290 2 · 3 · 5 · 11 · 13 1 130

4620 22 · 3 · 5 · 7 · 11 5 132–136

4830 2 · 3 · 5 · 7 · 23 1 138

5460 22 · 3 · 5 · 7 · 13 9 140–148

6930 2 · 32 · 5 · 7 · 11 43 126–168

7140 22 · 3 · 5 · 7 · 17 16 140–153, 167, 168

7590 2 · 3 · 5 · 11 · 23 12 167–178

7980 22 · 3 · 5 · 7 · 19 26 140–153, 167–178

8190 2 · 32 · 5 · 7 · 13 38 130–153, 167–180

8580 22 · 3 · 5 · 11 · 13 19 167–181, 195, 196, 201, 202

9240 23 · 3 · 5 · 7 · 11 14 168–181

9570 2 · 3 · 5 · 11 · 29 8 174–181

9660 22 · 3 · 5 · 7 · 23 15 167–181

20910 2 · 3 · 5 · 17 · 41 4 269–272

21930 2 · 3 · 5 · 17 · 43 4 269–272

22230 2 · 32 · 5 · 13 · 19 4 269–272

22440 23 · 3 · 5 · 11 · 17 4 269–272
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Table 2 (cont.)

Champion Decomposition No. of appearances The values of Q

22610 2 · 5 · 7 · 17 · 19 4 269–272

22770 2 · 32 · 5 · 11 · 23 4 269–272

23562 2 · 32 · 7 · 11 · 17 4 269–272

26334 2 · 32 · 7 · 11 · 19 4 269–272

27846 2 · 32 · 7 · 13 · 17 4 269–272

30030 2 · 3 · 5 · 7 · 11 · 13 87 231–233, 269–352

31122 2 · 32 · 7 · 13 · 19 8 269–272, 349–352

39270 2 · 3 · 5 · 7 · 11 · 17 56 269–272, 349–400

40698 2 · 32 · 7 · 17 · 19 8 349–356

43890 2 · 3 · 5 · 7 · 11 · 19 17 349–356, 399–407

53130 2 · 3 · 5 · 7 · 11 · 23 8 349–356

Table 3. The H-values for a given Q

Q |D(MQ)| H1(Q)
H(Q)

H2(Q)
H(Q)

H3(Q)
H(Q)

H4(Q)
H(Q)

H5(Q)
H(Q)

H6(Q)
H(Q)

H7(Q)
H(Q)

31 154 0.9733 0.0267 0 0 0 0 0

32 162 0.9747 0.0253 0 0 0 0 0

33 172 0.9636 0.0303 0.0061 0 0 0 0

34 180 0.9408 0.0533 0.0059 0 0 0 0

35 192 0.956 0.033 0.011 0 0 0 0

100 1522 0.9059 0.0869 0.0065 0.0007 0 0 0

101 1572 0.9161 0.079 0.0042 0.0007 0 0 0

102 1588 0.9102 0.0829 0.0062 0.0007 0 0 0

103 1639 0.9233 0.0707 0.0053 0.0007 0 0 0

104 1663 0.9217 0.0718 0.0059 0.0007 0 0 0

105 1687 0.9156 0.0759 0.0071 0.0006 0.0006 0 0

106 1713 0.9108 0.0809 0.0071 0.0006 0.0006 0 0

107 1766 0.9212 0.0714 0.0062 0.0012 0 0 0

108 1784 0.9207 0.072 0.0061 0.0012 0 0 0

109 1838 0.9278 0.0658 0.0059 0.0006 0 0 0

110 1858 0.9216 0.0702 0.0076 0.0006 0 0 0

311 14770 0.89 0.0954 0.0121 0.0023 0.0001 0.0001 0

312 14818 0.8886 0.0965 0.0123 0.0025 0.0001 0.0001 0

313 14974 0.8927 0.0934 0.0117 0.0021 0.0001 0.0001 0

314 15052 0.8908 0.0954 0.0116 0.002 0.0001 0.0001 0

315 15124 0.8898 0.0959 0.0119 0.0022 0.0001 0.0001 0
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Table 3 (cont.)

Q |D(MQ)| H1(Q)
H(Q)

H2(Q)
H(Q)

H3(Q)
H(Q)

H4(Q)
H(Q)

H5(Q)
H(Q)

H6(Q)
H(Q)

H7(Q)
H(Q)

316 15202 0.8892 0.0964 0.012 0.0022 0.0001 0.0001 0

317 15360 0.8931 0.0934 0.0113 0.002 0.0001 0.0001 0

318 15412 0.8914 0.0945 0.0118 0.0021 0.0001 0.0001 0

319 15552 0.8906 0.0954 0.0117 0.0022 0.0001 0.0001 0

320 15616 0.8903 0.0957 0.0117 0.0022 0.0001 0.0001 0
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donné, Compositio Math. 51 (1984), 243–263.
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