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On the produts of Heke L-funtions ofholomorphi usp formsby
Bogdan Szydło (Pozna«)

1. Introdution. There are many reasons to study the values of spei�
L-funtions at speial points of the omplex plane; f. [1℄, [4℄, [7℄, [8℄, [14℄.For example, for various appliations it is neessary to know that there arein�nitely many members of a relevant lass of L-funtions whih do notvanish at a speial point.In the present paper we onsider the aggregates

AN (u, v; k) =

ϑ(k)∑

j=1

αj,ktj,k(N)Hj,k(u)Hj,k(v)of produts of the Heke L-funtions Hj,k. Here u, v ∈ C, N ∈ N and theweights 2k of holomorphi usp forms vary over even integers ≥ 12; fornotation used, see Setion 3.Some relevane of the binary additive divisor problems to our subjet isto be notied. A spetral approah to these lassial problems is given in thefundamental paper [12℄ by Y. Motohashi. This paper and the monograph[13℄ by the same author are our main referenes.A brief desription of Motohashi's method in the ontext of the dualbinary additive divisor problem is given in Setion 4.1, where a spetraldeomposition for a weighted sum
BN (α, β; W0) =

N−1∑

n=1

σα(n)σβ(N − n)W0(n/N)is desribed in some detail. Here N ∈ N, α, β ∈ C and W0 : (0, 1) → Cis a weight funtion. In the present paper we do not disuss the nature ofsuh a deomposition; instead we refer the reader to [12℄. It is su�ient forus to notie that all holomorphi usp forms ontribute to a part of thespetral deomposition. Following [12℄ this part is denoted by Bh and alled2000 Mathematis Subjet Classi�ation: 11F66, 11F67, 11F72, 11M41, 11N75.[1℄



2 B. Szydªoholomorphi. From the formula (57) below, it is lear that the Bh is builtfrom the aggregates AN .If we study BN (α, β; W0) with α = β, then the hoie
W0(x) = Wp(x) =

{
(x(1 − x))p−1 if 0 < x < 1,

0 if x ≥ 1,where p ∈ C, seems to be natural enough. An expliit form of the holo-morphi part Bh of the spetral deomposition for BN (−̺,−̺; Wp) (with
0 < ℜ̺ < 1/2 and ℜp large enough) is given by the series HN (p, ̺) de�nedin (1) below; f. (96). In the present paper we solve the problem of analytiontinuation of HN (p, ̺) to the left of the omplex p-plane; f. also Remark 1in Setion 2.We desribe brie�y our main results, the Theorem and Corollaries 1 and 2from Setion 2. We prove that HN (p, ̺) has an arithmetial representation;see the Theorem. From it we obtain a meromorphi ontinuation of HN (p, ̺)to the whole omplex p-plane; see Corollary 1. A non-vanishing result for
AN (1/2, 1/2 + ̺; k) is derived; see Corollary 2.The organization of the paper is as follows. In Setion 2 the preise state-ments of the main results are given. We prove them in Setion 4. In theintermediate Setion 3 some general notation and fats from hypergeometrifuntion theory are olleted. In the rest of the present introdutory setionour method of proof is outlined.Motohashi's method is skethed in Setion 4.1. We use it in Setion 4.2to obtain a spetral deomposition for BN (α, β; W0), provided that (α, β)belongs to a su�iently small neighbourhood of (−̺,−̺) (0 < ℜ̺ < 1/2)and W0 is nie enough (see the beginning of Setion 4.2). If α = β = −̺ and
W0 is even (i.e. W0 satis�es the ondition (51) below), the deompositionobtained, exept for the holomorphi part Bh, resolves itself into two equal,arithmetially signi�ant parts. Using these observations, we separate Bhfrom the spetral deomposition. For a preise statement, see Proposition 1.In Setion 4.3, by reversing the order of steps in Motohashi's methodin the dual additive divisor problem, we express Bh in arithmetial terms,provided that α = β = −̺, W0 is nie enough, even and satis�es additionallythe ondition (58) (see Propositions 2 and 3).Beause of the requirement (58), the �ndings of Setion 4.3 annot bediretly applied to Wp. In Setion 4.4 we study instead �nite linear ombina-tions of Wp-funtions. We arrive at Proposition 4 whih is a weaker versionof our Theorem.In Setion 4.5 we show that the entral equality (7) of the Theoremholds for two speial values of the argument p; see Lemma 5. Suh on-rete veri�ations are possible beause we have arithmetial expressions forthe aggregates AN ; see [2℄, [3℄, [7℄, [10℄, [11℄. Relevant formulas are on-



Produts of Heke L-funtions 3sequenes of lassial Petersson's formulas, for whih one may onsult [13,Lemma 2.3℄.From Proposition 4 and Lemma 5 we get our Theorem diretly. Thedisussion in Setion 4.5 also yields Corollaries 1 and 2.We reall that HN (p, ̺), de�ned by (1), is idential with the holomorphipart Bh of the spetral deomposition for the binary additive divisor sum
BN (α, β; W0) with α = β = −̺ and W0 = Wp. The form of this deom-position is almost symmetrial, but not symmetrial, and therefore enablesus to separate Bh from it. This phenomenon of spetral asymmetry seemsto be of entral importane to the proof. It an be traed bak to the useof Kuznetsov's sum formulas in Motohashi's paper [12℄. For a thorough pre-sentation of this important tool of modern analyti number theory, one mayonsult [6℄ and [13℄.Aknowledgments. I thank the referees for valuable remarks on theearlier versions of the paper and Mr Jerzy Trzeiak for a great number ofsuggestions for the improvement of the presentation of my work.2. Statement of the results. Let N ∈ N, p, ̺ ∈ C. Under appropriateassumptions (see the Theorem below) and notations (see Setion 3), put

HN (p, ̺) = π−̺2−2p+̺N1/2−̺(1)
×

∞∑

k=6, k even

Γ (p)Γ (p − ̺)Γ ((k + ̺)/2)

Γ (p + (k − ̺)/2)Γ ((1 + k − ̺)/2)

× Γ (−p + (1 + k + ̺)/2) sin(π(p + (1 − ̺)/2))

×
ϑ(k)∑

j=1

αj,ktj,k(N)Hj,k(1/2)Hj,k(1/2 + ̺),

GN (p, ̺) =
cot(π̺/2)

π

(
N−̺σ−̺(N)ζ(−̺)

Γ (p)Γ (p − ̺ − 1)

Γ (2p − ̺ − 1)
(2)

− σ−̺(N)ζ(̺)
Γ (p − 1)Γ (p − ̺)

Γ (2p − ̺ − 1)

)
,

AN (p, ̺) =
∞∑

n=1

σ−̺(n)σ−̺(n + N)Ap,̺(n/N),(3)
DN (p, ̺) =

N−1∑

n=1

σ−̺(n)σ−̺(N − n)Dp,̺(n/N),(4)where
Ap,̺(x) =

cot(π̺/2)

π

Γ (p)Γ (p − ̺)

Γ (2p − ̺)
(F (1, p − ̺; 2p − ̺;−1/x)x̺−1(5)

− F (1, p; 2p − ̺;−1/x)(1 + x)̺x−1) (x > 0),



4 B. Szydªo
Dp,̺(x) = (1 + cot(π̺/2) cot(πp))(x(1 − x))p−1(6)

− cot(π̺/2)

π

Γ (p − ̺)Γ (p − 1)

Γ (2p − ̺ − 1)

×(1 − x)̺F (1, 2 + ̺ − 2p; 2 − p; x) (0 < x < 1).Theorem. Let N ∈ N, ̺, p ∈ C. Assume that
0 < ℜ̺ < 1/2, ℜp > 3/2 + ℜ̺/2.Then(7) HN (p, ̺) = GN (p, ̺) + AN (p, ̺) + DN (p, ̺).Fix ̺ ∈ C with 0 < ℜ̺ < 1/2. Consider both sides of (7) as funtions ofthe omplex parameter p. From the Theorem and the disussion in Setion4.5 we obtainCorollary 1. The funtion HN (p, ̺) ontinues meromorphially fromthe halfplane ℜp > 3/2 +ℜ̺/2 to the whole omplex plane C. The ontinua-tion is given by GN (p, ̺) + AN (p, ̺) + DN (p, ̺). It has only two poles in thehalfplane ℜp > 1/2, at p = 1 + ̺ and p = 1. They are simple and

Resp=1+̺
HN (p, ̺) =

cot(π̺/2)

π
N−̺σ−̺(N)ζ(−̺),

Resp=1
HN (p, ̺) = −cot(π̺/2)

π
σ−̺(N)ζ(̺).Corollary 2. Let N ∈ N and ̺ ∈ C with 0 < ℜ̺ < 1/2. Then thereare in�nitely many even integers k suh that

ϑ(k)∑

j=1

αj,ktj,k(N)Hj,k(1/2)Hj,k(1/2 + ̺) 6= 0.

Proof. Suppose the ontrary. Then the sum in (1) is �nite and the fun-tion HN (p, ̺)/(Γ (p)Γ (p − ̺)) is regular on C. Sine Resp=1+̺ HN (p, ̺) 6= 0,this is impossible.
Remarks. 1. As stated in the introdution, HN (p, ̺) is the holomor-phi part Bh of the spetral deomposition for the binary additive divisorsum BN (−̺,−̺; Wp) (see (1) and (96)) and, as suh, it an be representedby BN (−̺,−̺; Wp) and the other parts of the deomposition; see (29)�(31),(38), (39) below and, for further details, [12℄. However, beause of the onver-gene problems, suh a spetral representation gives no analyti ontinuationof HN (p, ̺) to the left of the omplex p-plane.



Produts of Heke L-funtions 52. Put p = 1/2+̺/2+ l, l being an integer ≥ 2. Then HN (p, ̺) simpli�esto a �nite linear ombination of the aggregates
AN (1/2, 1/2 + ̺; k) =

ϑ(k)∑

j=1

αj,ktj,k(N)Hj,k(1/2)Hj,k(1/2 + ̺).

It was mentioned in the introdution that there are arithmetial expres-sions for AN ; see [2℄, [3℄, [7℄, [10℄, [11℄. In fat, we dedue the Theoremfrom its weaker version, Proposition 4, by using the above observations; f.Setion 4.5.3. Let us note that the aggregates
AN (1/2, 1/2; k) =

ϑ(k)∑

j=1

αj,ktj,k(N)H2
j,k(1/2)

are also an objet of some reent researh; see, for example, [7℄. These ag-gregates form the funtion HN (p, 0) (in (1) let ̺ = 0).It is evident that from the results stated above and onerning HN (p, ̺),
0 < ℜ̺ < 1/2, we an derive those for HN (p, 0) by letting ̺ → 0.3. Notation. Fats from hypergeometri funtion theory. We usethe standard notations

e(x) = e2πix, σs(n) =
∑

d|n

ds,
\

(a)

. . . ds =

a+i∞\
a−i∞

. . . ds,

S(m, n; l) =
∑

1≤h≤l, (h,l)=1

e((mh + nh∗)/l), hh∗ ≡ 1 (mod l).

From the theory of modular forms we use just a few onventions; for moreinformation see, for example, [13℄. Let (ϕj,k)1≤j≤ϑ(k) denote the orthonormalbase of the Petersson unitary spae of holomorphi usp forms of weight 2kwith respet to SL2(Z). It is assumed that ϕj,k are eigenfuntions of allHeke operators Tk(n) with eigenvalues tj,k(n), n ≥ 1. Let ̺j,k(1) be the�rst Fourier oe�ient of ϕj,k. Set
αj,k = 16Γ (2k − 1)(4π)−2k−1|̺j,k(1)|2.The Heke L-funtion attahed to ϕj,k is de�ned by
Hj,k(s) =

∞∑

n=1

tj,k(n)n−s (ℜs > 1).We need the following fats from the theory of the Gauss hypergeometrifuntion F (a, b; c; z) (a, b, c, z ∈ C; c 6= 0,−1,−2, . . . ):



6 B. Szydªo
F (a, b; c; z) =

∞∑

n=1

Γ (c)Γ (a + n)Γ (b + n)

Γ (a)Γ (b)Γ (c + n)Γ (n + 1)
zn (|z| < 1),(8)

F (a, b; c; z) =
Γ (c)

Γ (b)Γ (c − b)

1\
0

tb−1(1 − t)c−b−1(1 − tz)−a dt(9)
(ℜc > ℜb > 0; |arg(1 − z)| < π),

F (a, b; c; z) =
Γ (c)

Γ (a)Γ (b)

1

2πi

\
(γ)

Γ (s)Γ (a − s)Γ (b − s)

Γ (c − s)
(−z)−s ds(10)

(0 < γ < ℜa,ℜb; |arg(−z)| < π),

F (a, b; c; z) =
Γ (c)

Γ (a)Γ (b)Γ (c − a)Γ (c − b)
(11)

× 1

2πi

\
(γ)

Γ (s)Γ (s + c − a − b)Γ (a − s)Γ (b − s)(1 − z)−s ds

(0,ℜ(a + b − c) < γ < ℜa,ℜb; |arg(1 − z)| < π),

F (a, b; c; z) =
Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
F (a, b; 1 + a + b − c; 1 − z)(12)

+
Γ (c)Γ (a + b − c)

Γ (a)Γ (b)

× (1 − z)c−a−bF (c − a, c − b; 1 + c − a − b; 1 − z)

(a + b − c /∈ Z; |arg(1 − z)| < π),

F (a, b; c; z) = (1 − z)−aF (a, c − b; c; z/(z − 1))(13)
= (1 − z)c−a−bF (c − a, c − b; c; z) (|arg(1 − z)| < π)(see, for example, [5, Chapter 2℄). It is easy to see that (a, b, c, z ∈ C; b 6= 1;

c 6= 0,−1,−2, . . . ; |arg(1 − z)| < π)

F (a, 0; c; z) = 1,(14)
F (a, c; c; z) = (1 − z)−a,(15)
F (1, b; 2; z) =

1

(b − 1)z
((1 − z)1−b − 1).(16)We need the quadrati transformation

(17) F (2a, 2b; a + b + 1/2; (1 − z)/2)

=
Γ (a + b + 1/2)Γ (1/2)

Γ (a + 1/2)Γ (b + 1/2)
F (a, b; 1/2; z2)

+
Γ (a + b + 1/2)Γ (−1/2)

Γ (a)Γ (b)
zF (a + 1/2, b + 1/2; 3/2; z2)

(a + b + 1/2 6= 0,−1,−2, . . . ; |arg(1 ± z)| < π)(see [5, 2.11(3)℄).



Produts of Heke L-funtions 7The integral
(18)

1\
0

xα−1(1 − x)β−1F (a, b; c; x) dx =
Γ (α)Γ (β)

Γ (α + β)
3F2(a, b, α; c, α + β; 1)

(ℜα,ℜβ,ℜ(c − a − b + β) > 0)is easy to hek. Here the value at z = 1 of 3F2(a1, a2, a3; b1, b2; z) is used.For pFq-funtions, see [5, Chapter 4℄.We also need
(19) 3F2(a, b, c; (a + b + 1)/2, 2c; 1)

=
Γ (1/2)Γ (c + 1/2)Γ ((a + b + 1)/2)Γ ((1 − a − b)/2 + c)

Γ ((a + 1)/2)Γ ((b + 1)/2)Γ ((1 − a)/2 + c)Γ ((1 − b)/2 + c)

(ℜ(2c − a − b) > −1)(see [5, 4.4(6)℄).4. Proof of Theorem4.1.Motohashi's method in the dual additive divisor problem. In the on-text of the dual additive divisor problems Motohashi [12℄ investigates thefollowing sums:(20) BN (α, β; W0) =
N−1∑

n=1

σα(n)σβ(N − n)W0(n/N).Here N ∈ N, α, β ∈ C and the weight funtion W0 : (0, 1) → C is a smoothfuntion with ompat support. Motohashi shows a spetral deompositionof BN (α, β; W0) in the domain(21) R(b) = {(α, β) ∈ C
2 : 0 > ℜα > b, 2b − 2 > ℜ(α + β)},where b is an arbitrary �xed negative number (see [12, Setion 3℄). In Setion4 of [12℄ the deomposition obtained is ontinued analytially to a neighbour-hood of (0, 0) ∈ C

2.We will brie�y sketh Motohashi's method (see also N. V. Kuznetsov'searlier publiation [10℄). Our notation is lose to [12℄. Moreover, sometimeswe will ite some formulas without referring to [12℄ expliitly.For ℜν < 0 and n ∈ N we have an identity of Ramanujan(22) σν(n) = ζ(1 − ν)
∞∑

l=1

lν−1cl(n),where(23) cl(n) =
∑

1≤h≤l, (h,l)=1

e(hn/l).



8 B. SzydªoThe Mellin transform of W0 is denoted by(24) w0(s) =

1\
0

W0(x)xs−1 dx (s ∈ C),and its inversion is(25) W0(x) =
1

2πi

\
(a)

w0(s)x
−s ds (x > 0)with a ertain a ∈ R.Assume that (α, β) ∈ R(b). The appliation of (22), (23) and (25) trans-forms (20) into

BN (α, β; W0) = ζ(1 − β)
∞∑

l=1

lβ−1
∑

1≤h≤l, (h,l)=1

e(−Nh/l)(26)
× 1

2πi

\
(a)

N sw0(s)D(s, α; e(h/l)) ds,where a > 1 is su�iently large, and
(27) D(s, α; e(h/l)) =

∞∑

n=1

σα(n)e(hn/l)n−s

((h, l) = 1, ℜs > 1 + max(0,ℜα))is the Estermann�Heke zeta funtion (the D-funtion).The prinipal analytial properties of the D-funtion are given in thefollowing lemma; see, for example, [13, Lemma 3.7℄.Lemma 1. For eah �xed α 6= 0 the funtion D(s, α; e(h/l)) is a mero-morphi funtion of s, whih has simple poles at s = 1 and s = 1 + α withresidues ζ(1−α)lα−1 and ζ(1+α)l−α−1, respetively ; it is regular elsewhere.It satis�es the funtional equation
D(s, α; e(h/l)) = 2(2π)2s−2−αlα−2s+1Γ (1 − s)Γ (1 + α − s)(28)

× {cos(πα/2)D(1 − s,−α; e(h∗/l))

− cos(π(s − α/2))D(1 − s,−α; e(−h∗/l))},where hh∗ ≡ 1 (mod l). The funtion D(s, α; e(h/l)) is of polynomial orderwith respet to s if ℜs is bounded.Now the integration line in (26) an be translated to ℜs = b. The residuetheorem gives(29) BN (α, β; W0) = V1(α, β) + B1(α, β).Here V1(α, β) is the ontribution of the poles of the integrands in (26) at
s = 1 and s = 1 + α (see Lemma 1) and B1(α, β) is given by the right handside of (26) but with the new integration line ℜs = b.



Produts of Heke L-funtions 9Lemma 1, (22) and (23) imply that
V1(α, β) = Nα+βσ1−α−β(N)

ζ(1 − α)ζ(1 − β)

ζ(2 − α − β)
w0(1)(30)

+ Nβσ1+α−β(N)
ζ(1 + α)ζ(1 − β)

ζ(2 + α − β)
w0(1 + α).The funtional equation (28) of the D-funtion and its de�nition (27) give(31) B1(α, β) = B+

1 (α, β) + B−
1 (α, β),where

(32) B+
1 (α, β)

= − ζ(1 − β)
∞∑

l=1

lβ−1
∑

1≤h≤l, (h,l)=1

e(−Nh/l)

× 1

2πi

\
(b)

N sw0(s)2(2π)2s−2−αlα−2s+1Γ (1 − s)Γ (1 + α − s)

× cos(π(s − α/2))D(1 − s,−α; e(−h∗/l)) ds,

(33) B−
1 (α, β) = ζ(1 − β)

∞∑

l=1

lβ−1
∑

1≤h≤l, (h,l)=1

e(−Nh/l)

× cos(πα/2)

2πi

\
(b)

N sw0(s)2(2π)2s−2−αlα−2s+1

× Γ (1 − s)Γ (1 + α − s)D(1 − s,−α; e(h∗/l)) ds,and further
B±

1 (α, β) = 2(2π)β−1ζ(1 − β)N (α+β+1)/2(34)
×

∞∑

n=1

σ−α(n)n(α+β−1)/2L±(N, n; α, β),where(35) L±(N, n; α, β) =
∞∑

l=1

1

l
S(±N, n; l)ϕ±(4π

√
Nn/l; α, β)with (x > 0)

(36) ϕ+(x; α, β) = − 1

2πi

\
(b)

Γ (1 − s)Γ (1 + α − s) cos(π(s − α/2))

× w0(s)(x/2)2s−α−β−1 ds,

(37) ϕ−(x; α, β) =
cos(πα/2)

2πi

\
(b)

Γ (1 − s)Γ (1 + α − s)

× w0(s)(x/2)2s−α−β−1 ds.



10 B. SzydªoThe formulas (29)�(37) show that the sum BN (α, β; W0) redues to adouble sum of the Kloosterman sums S(±N, n; l). Kuznetsov's sum formulas(see [9℄, [12, Lemmas 1 and 2℄ or [13, Chapter 2℄) are now applied to theinner sums L±(N, n; α, β). The assumption (α, β) ∈ R(b) is needed just atthis stage of Motohashi's proedure. The resulting spetral expressions anbe summed with the help of another formula by Ramanujan (µ, ν ∈ C; ℜslarge enough)
∞∑

n=1

σµ(n)σν(n)n−s = ζ(s)ζ(s − µ)ζ(s − ν)ζ(s − µ − ν)/ζ(2s − µ − ν)

and its appropriate analogs; f. [12, (2.3), (2.4), (2.9)℄.In this way a spetral deomposition of BN (α, β; W0) is obtained, pro-vided that (α, β) ∈ R(b); see [12, Setion 3℄. In Setion 4 of [12℄ Motohashishows how to ontinue analytially this deomposition to a neighbourhoodof (0, 0) ∈ C
2.In partiular, if α and β are su�iently small and α ± β 6= 0 one has

B+
1 (α, β) = V +

2 (α, β) + V +
3 (α, β) + B̃+

c (α, β) + B+
d (α, β)(38)

+ Bh(α, β),

B−
1 (α, β) = V −

2 (α, β) + V −
3 (α, β) + B̃−

c (α, β) + B−
d (α, β)(39)(see (29)�(31)). Expliit forms of the terms V ±

2 (α, β), V ±
3 (α, β), B̃±

c (α, β),and Bh(α, β) an be found in [12, (3.58), (4.33), (4.34)℄. For B±
d (α, β), see[12, (3.58)d℄, where

Bd(α, β) = B+
d (α, β) + B−

d (α, β)is displayed. The lower indies , d and h in the above formulas are usedto signal the fat that a given term depends on the ontinuous, disreteor holomorphi part of the spetrum of the hyperboli Laplaian, respe-tively.4.2. Spetral asymmetry. In order to prove the Theorem we use the justskethed Motohashi Ansatz in the additive divisor problem (see Setion 4.1).First of all we replae the assumptions on the weight funtion W0 byweaker ones; f. Motohashi's remark after Theorem 4 in [12℄.We say that a funtion W0 : (0, 1) → C is nie enough if W0 is smooth,
lim

x→0+
W0(x) = 0, lim

x→1−
W0(x) = 0,and the order of deay of W0 at x = 0 and x = 1 is su�iently high.Further on we assume that the funtion W0 is nie enough. We also �x

̺ ∈ C with 0 < ℜ̺ < 1/2.



Produts of Heke L-funtions 11By modifying the argument in Setions 3 and 4 of [12℄ one an show that
BN (α, β; W0) given by (20) and (29)�(37) an be spetrally deomposedin the domain R(−1/2) (see (21)), and then analytially ontinued to aneighbourhood of (−̺,−̺) ∈ C

2. In partiular, provided that (α, β) belongsto a su�iently small neighbourhood of (−̺,−̺), we have there the spetraldeomposition for B±
1 (α, β) of the type (38) and (39), the terms B̃±

c (α, β),
B±

d (α, β) and Bh(α, β) being regular. For the terms V ±
2 (α, β) + V ±

3 (α, β),we have the expressions (4.33) and (4.34) in [12℄; f. also (44) below. Butthese expressions are valid only under the additional assumption
α 6= β.(40)This assumption an be dispensed with. To show this, more details from [12℄are needed.In [12, (3.46), (3.52) and (3.48)℄ the following three funtions of omplexvariables ξ, u and v are introdued:

(41) Φ+(ξ; u, v) =
−1

4πi

+i∞\
−i∞

cos(π(s − u/2)) sin(π(s − (u + v)/2))

× Γ (s − (u + v + 1)/2 + ξ)Γ (s − (u + v + 1)/2 − ξ)

× Γ (1 − s)Γ (1 + u − s)w0(s) ds,

(42) Φ−(ξ; u, v)

=
1

4πi
cos(πξ) cos(πu/2)

+i∞\
−i∞

Γ (s − (u + v + 1)/2 + ξ)

× Γ (s − (u + v + 1)/2 − ξ)Γ (1 − s)Γ (1 + u − s)w0(s) ds,

(43) Ξ+(ξ; u, v) =
1

2πi

+i∞\
−i∞

Γ (ξ − (u + v + 1)/2 + s)

Γ (ξ + (u + v + 3)/2 − s)

× Γ (1 − s)Γ (1 + u − s)w0(s) cos(π(s − u/2)) ds.In (41) and (42) it is assumed that
(1 − v ± u)/2 ± ξ 6= 0,−1,−2, . . . .The path of integration starts from −i∞ and ends at +i∞ in suh a way thatthe poles of Γ (s− (u+v+1)/2±ξ) lie to the left and those of Γ (1−s)Γ (1+

u − s) to the right of it. Under the above assumptions on the variables ξ, uand v, suh a path exists. In (43) it is assumed that
(1 − v ± u)/2 + ξ 6= 0,−1,−2, . . . .Here the path of integration separates the poles of Γ (s− (u + v + 1)/2 + ξ)from the poles of Γ (1− s)Γ (1 + u− s). Suh a path exists. We remark thatthe funtion Φ+ is expressible by means of the funtion Ξ+ (see [12, (3.47)℄).



12 B. SzydªoAll the terms on the right hand side of (38) and (39) are expressible bymeans of the funtion Φ+, Φ−, respetively, in a symmetri way; see again[12, (3.58), (4.33) and (4.34)℄. In partiular, for α and β su�iently lose to
−̺ and provided that (40) holds, we have
(44) V ±

2 (α, β) + V ±
3 (α, β)

=
2

π cos(πβ/2)
σα+β+1(N)

ζ(1 + α)ζ(1 + β)

ζ(2 + α + β)

× Φ±((α + β + 1)/2; α, β) +
2

π cos(πβ/2)
Nασ−α+β+1(N)

× ζ(1 − α)ζ(1 + β)

ζ(2 − α + β)
Φ±((−α + β + 1)/2; α, β).Note that here the assumption (40) is really neessary if we adopt thede�nitions (41) and (42) of the funtions Φ±. But we have the followinglemma (f. also [10, Supplement to Theorem 3.5℄).Lemma 2. If W0 is nie enough, and ξ, u, v ∈ C are in generi position,then

(45) Φ+(ξ; u, v)

=
π sin(π(u + v)/2)

4 sin(πu/2)

Γ ((1 − u − v)/2 + ξ)Γ ((1 − u − v)/2 − ξ)

Γ (1 − u)

×
1\
0

W0(x)F ((1 − u − v)/2 + ξ, (1 − u − v)/2 − ξ; 1 − u; x) dx

+
π sin(π(u − v)/2)

4 sin(πu/2)

Γ ((1 + u − v)/2 + ξ)Γ ((1 + u − v)/2 − ξ)

Γ (1 + u)

×
1\
0

W0(x)xuF ((1 + u − v)/2 + ξ, (1 + u − v)/2 − ξ; 1 + u; x) dx,

(46) Φ−(ξ; u, v)

=
cos(πξ) cos(πu/2)

2

Γ ((1 − u − v)/2 + ξ)Γ ((1 − u − v)/2 − ξ)

Γ (1 − v)

× Γ ((1 + u − v)/2 + ξ)Γ ((1 + u − v)/2 − ξ)

×
1\
0

W0(x)F ((1 − u − v)/2 + ξ, (1 − u − v)/2 − ξ; 1 − v; 1 − x) dx.Proof. Under the assumption that u /∈ Z, translate the paths of integra-tion in (41) and (42) to ℜs = +∞. The residue theorem, (24), and (8) give(45) and, in the ase of Φ−,
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Φ−(ξ; u, v)

=
π cos(πξ)

4 sin(πu/2)

(
Γ ((1 − u − v)/2 + ξ)Γ ((1 − u − v)/2 − ξ)

Γ (1 − u)

×
1\
0

W0(x)F ((1 − u − v)/2 + ξ, (1 − u − v)/2 − ξ; 1 − u; x) dx

− Γ ((1 + u − v)/2 + ξ)Γ ((1 + u − v)/2 − ξ)

Γ (1 + u)

×
1\
0

W0(x)xuF ((1 + u − v)/2 + ξ, (1 + u − v)/2 − ξ); 1 + u; x) dx

)
.

By (12), this is idential with (46).Now it is lear from (41)�(46) that the assumption (40) an be droppedand the terms V ±
2 (α, β)+V ±

3 (α, β) are regular at (−̺,−̺). This also meansthat B±
1 (α, β) are regular at (−̺,−̺).Moreover, by using (15) and (14), we obtain from (45) and (46)

(47) Φ+(1/2 − ̺;−̺,−̺)

=
π cos(π̺/2)

2

Γ (2̺)

Γ (1 + ̺)

1\
0

W0(x)F (1, 2̺; 1 + ̺; x) dx,

(48) Φ+(1/2;−̺,−̺)

= lim
α→−̺, β→−̺

Φ+((β − α + 1)/2; α, β)

=
π

2
cos

(
π̺

2

)
Γ (̺)

1\
0

W0(x)

(
(1 − x)−̺ − 1

2
x−̺

)
dx,

(49) Φ−(1/2 − ̺;−̺,−̺)

=
π cos(π̺/2)

2

Γ (2̺)

Γ (1 + ̺)

1\
0

W0(x)F (1, 2̺; 1 + ̺; 1 − x) dx,(50) Φ−(1/2;−̺,−̺) = lim
α→−̺, β→−̺

Φ−((β − α + 1)/2; α, β)

=
π

4
cos

(
π̺

2

)
Γ (̺)

1\
0

W0(x)x−̺ dx.

Now we add a new assumption on W0.We say that W0 : (0, 1) → C is even (with respet to 1/2) if it satis�es(51) W0(x) = W0(1 − x) (0 < x < 1).



14 B. SzydªoIf W0 is nie enough and even, then from (47)�(51) we have
Φ+(1/2 − ̺;−̺,−̺) = Φ−(1/2 − ̺;−̺,−̺),

Φ+(1/2;−̺,−̺) = Φ−(1/2;−̺,−̺).This and (44) give(52) V +
2 (−̺,−̺) + V +

3 (−̺,−̺) = V −
2 (−̺,−̺) + V −

3 (−̺,−̺).Observe also that (45), (46) and (51) imply even more easily that(53) Φ+(ξ;−̺,−̺) = Φ−(ξ;−̺,−̺) (ℜξ = 0).From the expliit expressions for B̃±
c (α, β) and B±

d (α, β) (see [12, (3.58)℄),and (53) we get(54) B̃+
c (−̺,−̺) = B̃−

c (−̺,−̺), B+
d (−̺,−̺) = B−

d (−̺,−̺).Finally, reall the representations (38) and (39) for B±
1 (α, β), and use(52) and (54) to obtainProposition 1. De�ne(55) B•(α, β) = B+

1 (α, β) − B−
1 (α, β) ((α, β) ∈ R(−1/2)),where B±

1 (α, β) are given by (32) and (33). If the weight funtion W0 is nieenough, then B• has an analyti ontinuation from the domain R(−1/2) toa neighbourhood of (−̺,−̺) ∈ C
2. If W0 is also even (see (51)), then(56) B•(−̺,−̺) = Bh(−̺,−̺).From [12, (3.58)h℄ we quote (orreting a misprint) the expliit formulafor Bh(α, β):

(57) Bh(α, β)

=
1

2
(2π)βN (α+β+1)/2

∞∑

k=6

ϑ(k)∑

j=1

(−1)k−1αj,ktj,k(N)

× Hj,k((1 − α − β)/2)Hj,k((1 + α − β)/2)Ξ+(k − 1/2; α, β)with the funtion Ξ+ de�ned above by (43).4.3. Bak to the additive divisor problem. As before, let ̺ ∈ C with
0 < ℜ̺ < 1/2. Using Proposition 1, we obtain an analyti ontinuation ofthe funtion B•(−̺, β) (see (55)) from the domain

R−̺ = {β ∈ C : ℜβ < −3 + ℜ̺}to a neighbourhood of the point β = −̺. It is evident from Setions 4.1 and4.2 that the ontinuation is of a spetral nature. We propose a di�erent lookat B•(−̺, β).



Produts of Heke L-funtions 15Proposition 2. Let W0 be nie enough. Assume that
(58) w0(1) =

1\
0

W0(x) dx = 0, w0(1 − ̺) =

1\
0

W0(x)x−̺ dx = 0.

Then we have the representation
B•(−̺, β) = N−̺σβ(N)

cot(π̺/2)

π
ζ(−̺)w0(−̺)(59)

− σβ(N)
cot(π̺/2)

π
ζ(̺)w0(0) + σβ(N)ζ(−β)W−(1)

+
∞∑

n=1

σ−̺(n)σβ(n + N)W+(n/N)

+
∞∑

n=N+1

σ−̺(n)σβ(n − N)W−(n/N)

+
N−1∑

n=1

σ−̺(n)σβ(N − n)W−(n/N),

where for x > 0,

W+(x) = −2 cos(π̺/2)

π2

1

2πi

\
(1/2)

w0(s)Γ (s)Γ (1 − s)(60)
× Γ (s + ̺)Γ (1 − s − ̺) cos(π(s + ̺/2))x−s ds,

W−(x) = W0(x) − 2 cos2(π̺/2)

π2

1

2πi

\
(1/2)

w0(s)Γ (s)Γ (1 − s)(61)
× Γ (s + ̺)Γ (1 − s − ̺)x−s ds.The representation (59) gives a meromorphi ontinuation of B•(−̺, β) from

R−̺ to the domain ℜβ < 0, in partiular to a neighbourhood of −̺.From Propositions 1 and 2 we get immediatelyProposition 3. Let W0 be nie enough and even (see (51)). Assume
(58). Then
(62) Bh(−̺,−̺) = B•(−̺,−̺)

= N−̺σ−̺(N)
cot(π̺/2)

π
ζ(−̺)w0(−̺)

+ σ−̺(N)ζ(̺)

(
−cot(π̺/2)

π
w0(0) + W−(1)

)
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+

∞∑

n=1

σ−̺(n)σ−̺(n + N)(W+(n/N) + W−(1 + n/N))

+
N−1∑

n=1

σ−̺(n)σ−̺(N − n)W−(n/N),where Bh(−̺,−̺) is given by (57) with α = β = −̺, and for W±, see (60)and (61) above.Proof of Proposition 2. From (32), (33) and (55), for β ∈ R−̺ we get
(63) B•(−̺, β)

= − ζ(1 − β)
∞∑

l=1

lβ−1
∑

1≤h≤l, (h,l)=1

e(−Nh/l)
1

2πi

\
(−1/2)

N sw0(s)

× 2(2π)2s−2+̺l−̺−2s+1Γ (1 − s)Γ (1 − ̺ − s)

× {cos(π̺/2)D(1 − s, ̺; e(h∗/l))

+ cos(π(s + ̺/2))D(1 − s, ̺; e(−h∗/l))} ds.Translate the integration line above to ℜs = 3/2. Beause of (58), there areonly two poles of the integrand in the strip −1/2 ≤ ℜs ≤ 3/2, at s = −̺and s = 0. They ome from the D-funtions (see Lemma 1). Denote theontributions of s = −̺ and s = 0 to B•(−̺, β) by G−̺(β) and G0(β),respetively. From Lemma 1, (22), (23) and the funtional equation of theRiemann zeta funtion it follows that
G−̺(β) = −N−̺2−̺π−2−̺Γ (1 + ̺) cos(π̺/2)ζ(1 + ̺)w0(−̺)(64)

× ζ(1 − β)
∞∑

l=1

lβ−1
∑

1≤h≤l, (h,l)=1

e(−Nh/l)

= N−̺σβ(N)
cot(π̺/2)

π
ζ(−̺)w0(−̺)and similarly(65) G0(β) = −σβ(N)

cot(π̺/2)

π
ζ(̺)w0(0).The remainder(66) P (β) = B•(−̺, β) − G−̺(β) − G0(β)is given by the right hand side of (63) but with the new integration line

ℜs = 3/2.Applying the funtional equation (28) to D(1 − s, ̺; e(±h∗/l)) and thede�nition (27) of the D-funtions, and hanging the order of summation and



Produts of Heke L-funtions 17integration, we get(67) P (β) = P+(β) + P−(β)with(68) P±(β) =

∞∑

n=1

σ−̺(n)σβ(n ± N)W±(n/N).Here we put(69) σβ(0) = ζ(−β),whih is in aordane with the observation that for ℜβ < −1,

ζ(1 − β)
∞∑

l=1

lβ−1
∑

1≤h≤l, (h,l)=1

1 = ζ(−β)

(f. (22), (23)), and for x > 0,

W+(x) = −2 cos(π̺/2)

π2

1

2πi

\
(3/2)

w0(s)Γ (s)Γ (1 − s)(70)
× Γ (s + ̺)Γ (1 − s − ̺) cos(π(s + ̺/2))x−s ds,

(71) W−(x)

=

(
− 1

π2

)
1

2πi

\
(3/2)

w0(s)Γ (s)Γ (1 − s)

× Γ (s + ̺)Γ (1 − s − ̺)(cos2(π̺/2) + cos2(π(s + ̺/2)))x−s ds

= W0(x) − 2 cos2(π̺/2)

π2

1

2πi

\
(3/2)

w0(s)Γ (s)Γ (1 − s)

× Γ (s + ̺)Γ (1 − s − ̺)x−s ds.By translating the integration lines in (70) and (71) to ℜs = 1/2 and usingthe assumption (58), we obtain (60) and (61). Put together (63)�(69) inorder to get (59).4.4. A speial weight funtion. For p ∈ C let
Wp(x) =

{
(x(1 − x))p−1 if 0 < x < 1,

0 if x ≥ 1.
(72)We remark that the same de�nition is given in Setion 1.An individual Wp-funtion annot satisfy the assumption (58) of Propo-sitions 2 and 3, but a linear ombination of Wp's an. For a later purpose(see Setion 4.5) it is su�ient to onsider linear ombinations of just three
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Wp's. So, set(73) W0(x) =

3∑

i=1

ciWpi
(x) (x > 0)with c1, c2, c3, p1, p2, p3 ∈ C.Assume that ℜpi (i = 1, 2, 3) are su�iently large. Then the above fun-tion W0 is nie enough and even (see the beginning of Setion 4.2 and (51)).The Mellin transform of Wp is

wp(s) =

1\
0

Wp(x)xs−1 dx =
Γ (p)Γ (p + s − 1)

Γ (2p + s − 1)
(ℜs > 1 −ℜp).(74)

So, by (24) and (72)�(74),
w0(s) =

3∑

i=1

ciwpi
(s)(75)

=
3∑

i=1

ci
Γ (pi)Γ (pi + s − 1)

Γ (2pi + s − 1)
(ℜs > 1 −ℜpi; i = 1, 2, 3).

The ondition (58) of Propositions 2 and 3 is equivalent to the followinglinear system of two equations with respet to c1, c2 and c3:
3∑

i=1

ci
Γ (pi)Γ (pi)

Γ (2pi)
= 0,(76)

3∑

i=1

ci
Γ (pi)Γ (pi − ̺)

Γ (2pi − ̺)
= 0.Put

c1 =
Γ (p2)Γ (p2)Γ (p3)Γ (p3 − ̺)

Γ (2p2)Γ (2p3 − ̺)
− Γ (p3)Γ (p3)Γ (p2)Γ (p2 − ̺)

Γ (2p3)Γ (2p2 − ̺)
,

c2 =
Γ (p3)Γ (p3)Γ (p1)Γ (p1 − ̺)

Γ (2p3)Γ (2p1 − ̺)
− Γ (p1)Γ (p1)Γ (p3)Γ (p3 − ̺)

Γ (2p1)Γ (2p3 − ̺)
,(77)

c3 =
Γ (p1)Γ (p1)Γ (p2)Γ (p2 − ̺)

Γ (2p1)Γ (2p2 − ̺)
− Γ (p2)Γ (p2)Γ (p1)Γ (p1 − ̺)

Γ (2p2)Γ (2p1 − ̺)
.This is of ourse a solution of (76).Further on W0 denotes the onrete funtion de�ned by (72), (73) and(77) under all the assumptions made.Now we are going to determine an expliit form of the right and left handsides of the formula (62) of Proposition 3 with our W0.



Produts of Heke L-funtions 19For ℜp large enough and ̺ ∈ C with 0 < ℜ̺ < 1/2 put, for x > 0,

W+
p (x) = −2 cos(π̺/2)

π2

1

2πi

\
(1/2)

Γ (p)Γ (p + s − 1)

Γ (2p + s − 1)
Γ (s)Γ (1 − s)(78)

× Γ (s + ̺)Γ (1 − s − ̺) cos(π(s + ̺/2))x−s ds,

W−
p (x) = Wp(x) + W̃p(x)(79)

= Wp(x) − 2 cos2(π̺/2)

π2

1

2πi

\
(1/2)

Γ (p)Γ (p + s − 1)

Γ (2p + s − 1)

× Γ (s)Γ (1 − s)Γ (s + ̺)Γ (1 − s − ̺)x−s ds(f. (60), (61), (72)�(75)).Lemma 3. We have
(80) W+

p (x)

=
cot(π̺/2)

π

(
−Γ (p)Γ (p)

Γ (2p)
F (1, p; 2p;−1/x)x−1

+
Γ (p)Γ (p − ̺)

Γ (2p − ̺)
F (1, p − ̺; 2p − ̺;−1/x)x̺−1

)
(x > 0),

(81) W̃p(x)

=
cot(π̺/2)

π

(
Γ (p)Γ (p − 1)

Γ (2p − 1)
F (1, p; 2 − p; 1 − 1/x)x−1

− Γ (p − 1)Γ (p − ̺)

Γ (2p − 1 − ̺)
F (1, p − ̺; 2 − p; 1 − 1/x)x̺−1

)
(x > 0),

W̃p(x) =
cot(π̺/2)

π

(
Γ (p)Γ (p)

Γ (2p)
F (1, p; 2p; 1/x)x−1(82)

− Γ (p)Γ (p − ̺)

Γ (2p − ̺)
F (1, p − ̺; 2p − ̺; 1/x)x̺−1

)
(x > 1),

(83) W+
p (x) + W−

p (1 + x)

= W+
p (x) + W̃p(1 + x)

=
cot(π̺/2)

π

Γ (p)Γ (p − ̺)

Γ (2p − ̺)
(F (1, p − ̺; 2p − ̺;−1/x)x̺−1

− F (1, p; 2p − ̺;−1/x)(1 + x)̺x−1) (x > 0),

(84) W−
p (1 − x)

= (1 + cot(π̺/2) cot(πp))Wp(x) − cot(π̺/2)

π

Γ (p − ̺)Γ (p − 1)

Γ (2p − ̺ − 1)

× (1 − x)̺F (1, 2 + ̺ − 2p; 2 − p; x) + Np(x)
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Np(x) =

2

π
cot(π̺/2)

Γ (p)Γ (p)

Γ (2p − 1)
(85)

× (1 − 2x)F (1, 3/2 − p; 3/2; (1 − 2x)2) (0 < x < 1),

W−
p (1) = W̃p(1)(86)

=
cot(π̺/2)

π

(
Γ (p)Γ (p − 1)

Γ (2p − 1)
− Γ (p − 1)Γ (p − ̺)

Γ (2p − 1 − ̺)

)
.Proof. From the identity

cos(π(s + ̺/2))Γ (1 − s)Γ (1 − s − ̺)

=
π

2 sin(π̺/2)

(
Γ (1 − s)

Γ (s + ̺)
− Γ (1 − s − ̺)

Γ (s)

)

and (78) we get
W+

p (x) = − cot(π̺/2)

π

(
1

2πi

\
(1/2)

Γ (p)Γ (p + s − 1)Γ (s)Γ (1 − s)

Γ (2p + s − 1)
x−s ds

− 1

2πi

\
(1/2)

Γ (p)Γ (p + s − 1)Γ (s + ̺)Γ (1 − s − ̺)

Γ (2p + s − 1)
x−s ds

)
.

This and (10) give (80) after some alulation.By (79), for x > 0,

W̃p(x) = −2 cos2(π̺/2)

π2

1

2πi

\
(1/2)

Γ (p)Γ (p + s − 1)

Γ (2p + s − 1)
Γ (s)Γ (1 − s)

× Γ (s + ̺)Γ (1 − s − ̺)x−s ds.Consider the above integral as the value of the onvolution of Wp andan appropriate hypergeometri funtion at x (f. (74) and (11)). Use further(13) and (16) to obtain suessively, for x > 1,

W̃p(x) = −2 cos2(π̺/2)

π2
Γ (1 + ̺)Γ (1 − ̺)

1\
0

Wp(t)F (1, 1 − ̺; 2; 1 − x/t)
dt

t

= −cot(π̺/2)

π

̺

x

1\
0

Wp(t)F (1, 1 + ̺; 2; 1 − t/x) dt

=
cot(π̺/2)

π

1

x

1\
0

Wp(t)
1 − (t/x)−̺

1 − t/x
dt.This, (72) and (9) imply (82).Apply (12) to both terms of (82). The result is (81) valid for x > 1. Byanalyti ontinuation, (81) holds for x > 0.
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F (1, p; 2p; 1/(x + 1))(x + 1)−1 = F (1, p; 2p;−1/x)x−1and
F (1, p − ̺; 2p − ̺; 1/(x + 1))(x + 1)̺−1 = F (1, p; 2p − ̺;−1/x)(1 + x)̺x−1.So (83) is a onsequene of (80) and (82).By (13), for 0 < x < 1,(87) F (1, p; 2 − p; 1 − 1/(1 − x))(1 − x)−1 = F (1, 2 − 2p; 2 − p; x),

(88) F (1, p − ̺; 2 − p; 1 − 1/(1 − x))(1 − x)̺−1

= F (1, 2 + ̺ − 2p; 2 − p; x)(1 − x)̺.Use (17) to get, for 0 < x < 1,

(89) F (1, 2 − 2p; 2 − p; x)

=
Γ (2 − p)Γ (1/2)

Γ (3/2 − p)
F (1/2, 1 − p; 1/2; (1 − 2x)2)

+
Γ (2 − p)Γ (−1/2)

Γ (1/2)Γ (1 − p)
(1 − 2x)F (1, 3/2 − p; 3/2; (1 − 2x)2).By (15),(90) F (1/2, 1 − p; 1/2; (1 − 2x)2) = 22p−2(x(1 − x))p−1 (0 < x < 1).The formulas (84) and (85) now follow from (79), (81) and (87)�(90).Take x = 1 in (81) to get (86).For p, ̺ ∈ C with ℜp large enough, 0 < ℜ̺ < 1/2 and k even, k ≥ 6 weintrodue the notation

Ξ+
p (k − 1/2;−̺) =

1

2πi

\
(0)

Γ (k + ̺ − 1 + s)

Γ (k + 1 − ̺ − s)
Γ (1 − s)(91)

× Γ (1 − ̺ − s)wp(s) cos(π(s + ̺/2)) dswith wp(s) given by (74) (f. (43), (57), (62), (72), (73), (75)).Lemma 4. Under the above assumptions
Ξ+

p (k − 1/2;−̺) = −22̺−2p+1 Γ (p)Γ (p − ̺)Γ ((k + ̺)/2)

Γ (p + (k − ̺)/2)Γ ((1 + k − ̺)/2)
(92)

× Γ (−p + (1 + k + ̺)/2) sin(π(p + (1 − ̺)/2)).Proof. Translate the integration line in (91) to ℜs = +∞. The residuetheorem, (8) and (74) give
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(93) Ξ+

p (k − 1/2;−̺) =
π

2 sin(π̺/2)

×
(

Γ (k + ̺)

Γ (k − ̺)Γ (1 + ̺)

1\
0

Wp(x)F (k + ̺, 1 − k + ̺; 1 + ̺; x) dx

− 1

Γ (1 − ̺)

1\
0

Wp(x)x−̺F (k, 1 − k; 1 − ̺; x) dx

)
.Apply (13) to the last hypergeometri funtion to get(94) F (k, 1 − k; 1 − ̺; x) = (1 − x)−̺F (k − ̺, 1 − k − ̺; 1 − ̺; x).From (18), (93) and (94) it follows that

(95) Ξ+
p (k − 1/2;−̺) =

π

2 sin(π̺/2)

×
(

Γ (k + ̺)Γ (p)Γ (p)

Γ (k − ̺)Γ (1 + ̺)Γ (2p)
3F2(k + ̺, 1 − k + ̺, p; 1 + ̺, 2p; 1)

− Γ (p − ̺)Γ (p − ̺)

Γ (1 − ̺)Γ (2p − 2̺)

× 3F2(k − ̺, 1 − k − ̺, p − ̺; 1 − ̺, 2p − 2̺; 1)

)
.Use (19) in order to evaluate the two 3F2's in (95). After some alulationswe �nd that (92) holds.For ℜp large enough and ̺ ∈ C with 0 < ℜ̺ < 1/2 denote by Bhthe holomorphi part of the spetral deomposition for the binary additivedivisor sum BN (−̺,−̺; Wp) with Wp given by (72). By (43), (57), (72),(74), (91), (92), the prinipal analytial properties of the L-funtions Hj,k(see [13, Lemma 3.6℄), the estimate [13, (2.26)℄ and Stirling's asymptotiformula, we have(96) Bh = HN (p, ̺),where HN (p, ̺) is de�ned by (1) in Setion 2.Beause of (73), the statement (96) implies(97) Bh(−̺,−̺) =

3∑

i=1

ciHN (pi, ̺).We remark that here c1, c2 and c3 an be any omplex numbers, not justgiven by (77).By (85), the funtion Np is odd with respet to 1/2:
Np(x) = −Np(1 − x) (0 < x < 1).



Produts of Heke L-funtions 23Hene,(98) N−1∑

n=1

σ−̺(n)σ−̺(N − n)Np(1 − n/N) = 0.Use (8) and (83) to see that(99) W+
p (x) + W−

p (1 + x) ≪ x−2+ℜ̺ (x → +∞).From (60), (61), (72)�(75), (78), (79), (98), (99) and Lemma 3 it followsthat the right hand side of (62) in Proposition 3 an be rewritten as(100) B•(−̺,−̺) =
3∑

i=1

ci(GN(pi, ̺) + AN (pi, ̺) + DN (pi, ̺))with c1, c2 and c3 given by (77) and the notation introdued in Setion 2.Reall that (77) ensures that our W0 satis�es the assumption (58) of Propo-sitions 2 and 3 (f. (75)�(77)).Finally, from Proposition 3, (97) and (100) we obtain the following weakversion of the Theorem.Proposition 4. Let N ∈ N, ̺, p1, p2, p3 ∈ C. Assume that
0 < ℜ̺ < 1/2and(101) ℜpi is su�iently large (i = 1, 2, 3).Then(102) 3∑

i=1

ci(HN (pi, ̺) − GN (pi, ̺) − AN (pi, ̺) − DN (pi, ̺)) = 0with c1, c2 and c3 given by (77).4.5. End of proof of Theorem. We need a onrete version of the assump-tion (101) of Proposition 4.Consider HN (p, ̺) as a funtion of p. Convexity bounds for Hj,k withrespet to k (f. [13, Lemma 3.6℄), the estimate
ϑ(k)∑

j=1

αj,k ≪ k(f. [12, (2.2.10)℄) and Deligne's bound
|tj,k(N)| ≤ d(N) = σ0(N)an be applied to the series de�ning HN (p, ̺), showing that this series isabsolutely and uniformly onvergent on ompat subsets of the halfplane

ℜp > p0, where p0 = 3/2 + ℜ̺/2. Hene HN (p, ̺) is regular there.



24 B. SzydªoConsider the series AN (p, ̺) de�ned by (3) and (5). By using (8) and theratio onvergene test, we onlude that AN (p, ̺)/(Γ (p)Γ (p − ̺)) is abso-lutely and uniformly onvergent on ompat subsets of the whole omplexplane C. Hene AN (p, ̺)/(Γ (p)Γ (p − ̺)) is regular on C.Fix x ∈ (0, 1). Then F (1, 2 + ̺ − 2p; 2 − p; x)/Γ (2 − p) is an entirefuntion of p (see [5, Subsetion 2.1.6℄). So the �nite sum DN (p, ̺), de-�ned by (4) and (6), is meromorphi on C. In order to see more, replae in(4) the Dp,q-funtion by the W−
p -funtion given by (79). Observe that thisdoes not hange DN (p, ̺). The funtion de�ned by the integral in (79) isregular in the halfplane ℜp > 1/2. We onlude that DN (p, ̺) is regularthere.It is lear from (2) that GN (p, ̺) is meromorphi on C. It has only simplepoles. In the halfplane ℜp > 1/2 there are only two of them, at p = 1 + ̺and p = 1. The respetive residues are given in Corollary 1.We an therefore replae the assumption (101) of Proposition 4 by(103) ℜpi > p0 = 3/2 + ℜ̺/2 (i = 1, 2, 3).Lemma 5. The equality (7) of the Theorem holds for p = 5/2 + ̺/2 and

p = 7/2 + ̺/2.Proof. Observe that with speial p = 1/2 + ̺/2 + l, l being an integer,the series in (1) de�ning HN (p, ̺) simpli�es to a �nite sum ∑2l
k=6, k even(. . . )with a general term involving

(104) ϑ(k)∑

j=1

αj,ktj,k(N)Hj,k(1/2)Hj,k(1/2 + ̺).

By the preeding disussion, it is also safe to assume that l ≥ 2 (f.(103)).A trae formula of Bykovsky [3, Lemma 6℄ gives an arithmetial expres-sion for (104); f. also [10, Setion 4.3℄, [11, Theorem 2.4℄, [2, Theorem 1℄, [7,Theorem 17℄. (The results we are referring to are onsequenes of versionsof Petersson's lassial sum formulas; see, for example, [13, Lemma 2.3℄.)This arithmetial expression an be written in terms of the divisor funtion
σs(n) and the hypergeometri funtion. Its struture is quite similar to thatof GN (p, ̺) + AN (p, ̺) + DN (p, ̺), provided that p = 1/2 + ̺/2 + l, l beingan integer. The lemma atually follows from the above result of Bykovskyby diret veri�ation.In Proposition 4 put p1 = 5/2 + ̺/2, p2 = 7/2 + ̺/2 and p3 = p with
ℜp > 3/2 + ℜ̺/2; f. the disussion preeding Lemma 5. This lemma and(102) give (7), beause c3 6= 0 in (77). The Theorem is proved.
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