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Extreme values of symmetri power L-funtions at 1by
Y.-K. Lau (Hong Kong) and J. Wu (Nany)

1. Introdution. The study of the extreme values of Dirihlet L-fun-tions at the point 1 has a long and rih history. Researh on this topiwas originated with a paper of Littlewood [15℄ in 1928 and was pursuedby many authors (f. [1℄, [2℄, [6℄, [7℄, [8℄, [23℄, [17℄ and [9℄). A very goodhistorial aount an be found in [9℄, where Granville & Soundararajanmade important progress on the distribution of the extreme values of L(1, χd)for a real primitive harater χd of modulus |d|.Among the family of L-funtions attahed to the automorphi uspidalrepresentations for GLn(Q) where n ≥ 1, the Dirihlet L-funtions onsti-tute only a small part orresponding to n = 1. The GL2 lass onsists ofthose L-funtions assoiated to holomorphi usp forms or Maass forms.The symmetri mth power of a GL2 L-funtion yields, under the Lang-lands funtoriality onjeture if m ≥ 5, an automorphi GLm+1 L-funtionwhih is de�ned as an Euler produt of degree m + 1 (and thus alled an
L-funtion of degree m+1). The properties of these L-funtions are of greaturrent interest and their values at 1 are reently delved. Luo [16℄ investi-gated the ase of symmetri square L-funtions for Maass forms with largeeigenvalue. Royer [18, 19℄, Habsieger & Royer [10℄, Royer & Wu [20℄ on-sidered the �rst two symmetri power L-funtions attahed to holomorphiusp forms with large squarefree level (1) while Cogdell & Mihel [3℄ andRoyer & Wu [21℄ onsidered all the symmetri power L-funtions. Moreover,Lau & Wu [14℄ studied similar problems in the weight aspet. In this paperwe shall further study the extreme values of symmetri power L-funtionsat 1.Let us introdue our notation. For a positive even integer k, we denoteby H∗

k(1) the set of all normalized Heke primitive eigenuspforms of weight
2000 Mathematis Subjet Classi�ation: Primary 11F30, 11N36.Key words and phrases: speial values of automorphi L-series.
(1) An integer n is alled squarefree if p2 ∤ n for all prime numbers p.[57℄
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k for the modular group Γ (1) = SL2(Z). It is a �nite set with ardinality
(1.1) |H∗

k(1)| = k/12 + O(1).Here the normalization is suh that the Fourier series expansion at the usp
∞,
(1.2) f(z) =

∞
∑

n=1

λf (n)n(k−1)/2e2πinz (Im z > 0),has its �rst oe�ient equal to one (i.e. λf (1) = 1). Inherited from the Hekeoperators, the Fourier oe�ient λf (n) satis�es the relation
(1.3) λf (m)λf (n) =

∑

d|(m,n)

λf

(

mn

d2

)

for all integers m ≥ 1 and n ≥ 1. Aording to Deligne [4℄, for any primenumber p there is a (omplex) number αf (p) suh that
(1.4) |αf (p)| = 1and
(1.5) λf (pν) = αf (p)ν + αf (p)ν−2 + · · · + αf (p)−νfor all integers ν ≥ 1. Hene λf (n) is a real multipliative funtion of n.Assoiated to eah f ∈ H∗

k(1), the symmetri mth power L-funtion (m ∈
N) is de�ned as
(1.6) L(s, symmf) :=

∏

p

∏

0≤j≤m

(1 − αf (p)m−2jp−s)−1

for σ > 1; here and throughout, σ and τ mean taitly the real and imaginaryparts of s, i.e. s = σ + iτ . Multiplying out the Euler produt, we see that itadmits a Dirihlet series representation
(1.7) L(s, symmf) =

∞
∑

n=1

λsymmf (n)n−s

for σ > 1, where λsymmf (n) is a multipliative funtion. By (1.4) and (1.6),we have for n ≥ 1,
(1.8) |λsymmf (n)| ≤ τm+1(n).As is ustomary, τm+1(n) denotes the number of solutions in positive integers
n1, . . . , nm+1 of the equation n = n1 · · ·nm+1. The ase m = 1 in (1.8) isommonly known as Deligne's inequality. For m = 1, 2, 3, 4, the symmetripower funtion L(s, symmf) an be analytially prolonged to C and satis�esthe funtional equation
L∞(s, symmf)L(s, symmf) = ε(symmf)L∞(1 − s, symmf)L(1 − s, symmf),



Extreme values of L-funtions 59where ε(symmf) = ±1 and L∞(s, symmf) is the orresponding gamma fa-tor (f. [3, Setion 1.1℄).In [14℄, Lau & Wu proved the following results on the extreme valuesof L(1, symmf) in the weight aspet. Let m = 1, 2, 3, 4 and 2 | k. For any
f ∈ H∗

k(1), under GRH for L(s, symmf), we have
{1 + o(1)}(2B−

m log2 k)−A−

m ≤ L(1, symmf)(1.9)

≤ {1 + o(1)}(2B+
m log2 k)A+

mas k → ∞. In the opposite diretion, it was shown unonditionally that thereare f±
m ∈ H∗

k(1) suh that for k → ∞,
L(1, symmf+

m) ≥ {1 + o(1)}(B+
m log2 k)A+

m ,(1.10)
L(1, symmf−

m) ≤ {1 + o(1)}(B−
m log2 k)−A−

m .(1.11)Here (and throughout) logj denotes the j-fold iterated logarithm. The on-stants A±
m and B±

m are expliitly evaluated,
(1.12)























A+
m = m + 1, B+

m = eγ (m = 1, 2, 3, 4),

A−
m = m + 1, B−

m = eγζ(2)−1 (m = 1, 3),

A−
2 = 1, B−

2 = eγζ(2)−2,

A−
4 = 5/4, B−

4 = eγB′−
4 ,where ζ(s) is the Riemann zeta funtion, γ denotes the Euler onstant and

B′−
4 is a positive onstant given by a rather ompliated Euler produt (f.[14, (1.16)℄).The results in (1.9)�(1.11) determine ompletely, at least under GRH,the order of magnitude of L(1, symmf). Then it is interesting and naturalto try to remove the assumption of GRH and lose up the gap oming fromthe fator 2. We shall prove an �almost all� result for this deliate problem,whih an be regarded as an analogue, in the higher degree L-funtion ase,of the results of Elliott ([6℄, [7℄) and Montgomery & Vaughan [17℄ on Dirihlet

L-funtions. It implies that the forms f satisfying (1.10) or (1.11) are ratherrare in the sense of having density zero.In what follows we shall assume k to be any su�iently large even integer(but the parity will be repeatedly emphasized).Theorem 1.1. Fix m ∈ {1, 2, 3, 4}, θ1, θ2 > 0 suh that 1− 2θ1 − θ2 > 0and θ3 ∈ (0, min{1/2θ1 − 1, 1}]. Then for 2 | k and z ≥ (log2 k)1/θ1, we have
L(1, symmf) =

{

1 + O

(

1

zθ2
+

1

(log k)θ3

)}

∏

p≤z

∏

0≤j≤m

(

1 − αf (p)m−2j

p

)−1

for all but O(ke−z
θ1
0 ) forms f ∈ H∗

k(1), where z0 := min{z, (log k)2} and theimplied onstants depend on θ1, θ2 and θ3 only.



60 Y.-K. Lau and J. WuCorollary 1.2. Let ε > 0 be an arbitrarily small positive number , m ∈
{1, 2, 3, 4} and 2 | k. Then there is a subset E∗

k of H∗
k(1) suh that

|E∗
k| ≪ ke−(log k)1/2−εand for eah f ∈ H∗

k(1)rE∗
k, we have

{1 + O((log k)−ε)}(B−
m log2 k)−A−

m ≤ L(1, symmf)

≤ {1 + O((log k)−ε)}(B+
m log2 k)A+

m.The implied onstants depend on ε only.
Remarks.(i) These results an be generalized (with a little extra e�ort) to H∗

k(N),where N is squarefree and H∗
k(N) denotes the set of all normalizedHeke primitive eigenuspforms of weight k for the ongruene sub-group Γ0(N). Our method an also be applied to establish similarresults in the level aspet for N squarefree and free of small primefators.(ii) We onsider the ase 1 ≤ m ≤ 4 beause the required properties ofthe high symmetri power L-funtions are only known in these ases.Other higher degree ases will follow along the same lines when the(expeted) orresponding properties are established.Our results above are analogues of Theorem 1 of [17℄ (see also [7℄), wherethe ase L(1, χd) was investigated. However, their methods do not seemto generalize diretly to the symmetri power L-funtions. Following theirapproah, one an see that the key point of the proof is to study the largesieve type inequality

(1.13)
∑

f∈H∗

k(1)

∣

∣

∣

∣

∑

P<p≤2P

λsymmf (p)

p

∣

∣

∣

∣

2j

.

But then two di�ulties ome up. First, λsymmf (n) is not ompletely mul-tipliative, and seond, the instantaneously available (almost) orthogonalityproperty following from the large sieve result (developed in [5℄ for the levelase and in [14℄ for the weight) is not adequate. As was indiated by Cogdell& Mihel in [3, Setion 1.3℄, the seond di�ulty was relatively more seri-ous. In order to get around it, we shall appeal to Petersson's trae formulawith the observation λsymmf (n) = λf (nm) for squarefree n. But then theharmoni weight (in the trae formula) needs further treatment as a trivialbound is not suitable for our purpose. To this end, we make use of (see (2.6)below)
1 =

k − 1

12
ωf

∑

n≤k7/2

λf (n2)

n
+ Oε(k

−1+ε),



Extreme values of L-funtions 61where ωf is the harmoni weight (see (2.5) below). However, only a shortinitial setion of the newly introdued sum is manageable by the Peterssontrae formula. The remaining part will be handled using an idea in [13,Lemma 6℄ by means of the large sieve result in [14℄. Clearly our result for(1.13) (see the proposition below) is of independent interest and has otherappliations whih will be presented elsewhere.2. A large sieve type inequality. This setion is devoted to establish-ing a large sieve type inequality, whih will be our key tool for the proof ofTheorem 1.1. For 2 | k, f ∈ H∗
k(1), m ∈ N and 1 ≤ P < Q ≤ 2P , we onsiderthe sum

Tsymmf (P, Q) :=
∑

P<p≤Q

λsymmf (p)

p
.Our aim is to prove the following result, whih gives a good ontrol over thetail part of the Dirihlet series representation of log L(1, symmf) for mostforms f .Proposition 2.1. Let m ∈ N be �xed. Then

(2.1)
∑

f∈H∗

k(1)

|Tsymmf (P, Q)|2j ≪m k(log k)θ(m)e2j log jP−j + (j!)2k20/21

uniformly for
(2.2) 2 | k, j ∈ N, 1 ≤ P j ≤ k7/(6m+24), P < Q ≤ 2P,where θ(m) := (m+1)4+m+7 and the implied onstant depends on m only.To prove it, we need a ouple of preliminary lemmas.Although the funtion λsymmf (n) is not ompletely multipliative on N,its restrition to the subset of squarefree integers is, and furthermore
(2.3) λsymmf (n) =

∏

p|n

∑

0≤j≤m

αf (p)m−2j = λf (nm)

for n squarefree, whih follows immediately from (1.5)�(1.7). Thus we givean upper estimate for |Tsymmf (P, Q)|2j in terms of sums over squarefreeintegers.Lemma 2.2. Let j ∈ N, 2 | k, m ∈ N and 1 ≤ P < Q ≤ 2P . For any
f ∈ H∗

k(1), we have
|Tsymmf (P, Q)|2j

≪m (j log Q)(m+1)4
∑♮

n2≤Qj

1

n
3/2
2

∣

∣

∣

∣

∑♭

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (nm
1 )

aj(n1n2)

n1

∣

∣

∣

∣

2

,



62 Y.-K. Lau and J. Wuwhere
(2.4) aj(n) = aj(n; P, Q) := |{(p1, . . . , pj) : p1 · · · pj = n, P < pi ≤ Q}|.The summations ∑♮ and ∑♭ run over squarefull (2) and squarefree integers,respetively. The implied onstant depends on m only.Proof. Multiplying out the produt Tsymmf (P, Q)j, we obtain a summa-tion over integers in (P j , Qj ]. As every integer n deomposes uniquely into aprodut of oprime integers n = n1n2 with n1 squarefree and n2 squarefull,it then follows that

Tsymmf (P, Q)j

=
∑♮

n2≤Qj

1

n2

∏

pν‖n2

λsymmf (p)ν
∑♭

P j/n2<n1≤Qj/n2

(n1,n2)=1

λsymmf (n1)
aj(n1n2)

n1
.

Next we remove the produts of λsymmf (p) over squarefull integers by theCauhy�Shwarz inequality and (1.8):
|Tsymmf (P, Q)|2j

≤
∑♮

n≤Qj

(m + 1)2Ω(n)

n1/2

∑♮

n2≤Qj

1

n
3/2
2

∣

∣

∣

∣

∑♭

P j/n2<n1≤Qj/n2

(n1,n2)=1

λsymmf (n1)
aj(n1n2)

n1

∣

∣

∣

∣

2

.

Here Ω(n) denotes the number of prime fators of n ounted with multi-pliity. Consequently, we get our result with (2.3) and the estimate belowobtained by Rankin's trik
∑♮

n≤x

(m + 1)2Ω(n)

n1/2
≤

∏

p≤x

(

1 +
(m + 1)4

p
+ Om

(

1

p3/2

))

≪m (log x)(m+1)4

(see the proofs of Theorems II.1.2 & II.1.13 in [22℄ for paradigms).In view of Lemma 2.2, we invoke naturally the Petersson trae formulato prove our proposition. However, the summation on the left side of (2.1)runs over f ∈ H∗
k(1) without the harmoni weight

(2.5) ωf :=
Γ (k − 1)

(4π)k−1‖f‖ =
12ζ(2)

(k − 1)L(1, sym2f)
.(See [11, �2℄ for the last equality.) We borrow the tehnique of [13℄. Theunderlying priniple is built on approximating the fator L(1, sym2f) witha �nite Dirihlet series.

(2) An integer n is alled squarefull if p |n ⇒ p2 |n.



Extreme values of L-funtions 63Lemma 2.3. Let 2 | k, f ∈ H∗
k(1) and y ≥ 1. For any �xed ε > 0, we have

L(1, sym2f) = ζ(2)
∑

n≤y

λf (n2)n−1 + Oε(k
ε(k3/4y−1/2 + k−1)).The implied onstant depends on ε only.Proof. For σ > 1, we have

L(s, sym2f) = ζ(2s)
∑

n≥1

λf (n2)n−s.Applying the Perron formula ([22, Corollary II.2.1℄ with B(x) = xε and
α = 3), we dedue that
∑

n≤y

λf (n2)

n
=

1

2πi

1/log y+ik\
1/log y−ik

L(1 + s, sym2f)

ζ(2 + 2s)

ys

s
ds + Oε((ky)ε(k−1 + y−1)).

By moving the segment of integration to σ = −1/2 + ε and using the on-vexity bound for L(s, sym2f) (see [14, Proposition 3.1℄):
L(s, sym2f) ≪ε (k + |τ |) 3

2
max{0,1−σ}+ε,it follows that

∑

n≤y

λf (n2)

n
=

L(1, sym2f)

ζ(2)
+ Oε((ky)ε(k−1 + k3/4y−1/2)),whih is equivalent to the required result.Taking y = k7/2 and using the bound ωf ≪ (log k)/k (f. [11℄), Lemma 2.3with (2.5) gives

(2.6) 1 =
k − 1

12
ωf

∑

n≤y

λf (n2)

n
+ Oε(k

−1+ε).As mentioned in the introdution, the (short enough) initial setion of thesum in (2.6) is under ontrol of the Petersson trae formula. For the remain-ing part, we apply an idea in [13℄ to dedue that this part is small on averagein virtue of the large sieve result developed in [14℄. De�ne
ω∗

f (x, y) :=
∑

x<n≤y

λf (n2)n−1.Below we give the analogues of Lemmas 4 and 3 in [13℄, where the sum
∑

λsym2f (n)n−1 is used instead but it seems that our hoie will lead tosimpler manipulations.Lemma 2.4. Let i ≥ 1, 2 | k and f ∈ H∗
k(1). Then

(2.7) ω∗
f (x, y)i =

∑

xi<dℓ≤yi

λf (ℓ2)
ci(d, ℓ)

dℓ
,



64 Y.-K. Lau and J. Wuwhere ci(d, ℓ) = 0 unless d = d♭d∗ with d♭ squarefree and d∗ squarefull suhthat d♭ | ℓ and (d♭, d∗) = 1. Furthermore,
(2.8) |ci(d, ℓ)| ≤ τi(dℓ)τi−1(d),where τi(·) is the divisor funtion de�ned as in (1.8).Proof. We proeed by indution on i. The ase of i = 1 is trivial sinewe have c1(1, ℓ) = 1 and c1(d, ℓ) = 0 for d ≥ 2. Assume that (2.7) holds for
i as laimed. Thus by (1.3) we have

ω∗
f (x, y)i+1 =

∑

x<ni+1≤y

1

ni+1

∑

xi<dℓ≤yi

ci(d, ℓ)

dℓ

∑

di|(ℓ,ni+1)2

λf

((

ℓni+1

di

)2)

=
∑

xi+1<d0ℓ0≤yi+1

λf (ℓ2
0)

d0ℓ0
ci+1(d0, ℓ0)with

ci+1(d0, ℓ0) =
∑

x<ni+1≤y

∑

xi<dℓ≤yi

∑

di|(ℓ,ni+1)2

ℓni+1=diℓ0, d0=ddi

ci(d, ℓ).

We write uniquely d0 as a produt d♭
0d

∗
0 of oprime integers with d♭

0squarefree and d∗0 squarefull. We laim that
ci+1(d0, ℓ0) 6= 0 ⇒ d♭

0 | ℓ0.Let d♭
0 = d′d′i with d′ ‖ d and d′i ‖ di (3). Then, (d′, di) = (d′i, d) = 1 as d♭

0 ‖ ddiand d♭
0 is squarefree. Sine di | (ℓ, ni+1)

2 and ℓni+1 = diℓ0, we have d′i | ℓ0 (bynoting d′i ‖ di). On the other hand, by the indution hypothesis we see that
ci(d, ℓ) 6= 0 implies d′ | ℓ, thus d′ | ℓ0 for (d′, di) = 1. This implies d♭

0 | ℓ0 as
d♭

0 = d′d′i is squarefree.It remains to verify (2.8), whih is an immediate onsequene of theformula
ci(d, ℓ) :=

∑

x<n1,...,ni≤y
dℓ=n1···ni

∑

d1|(n1,n2)2

∑

d2|(n1n2/d1,n3)2

· · ·
∑

di−1|(n1···ni−1/d1···di−2,ni)2

d=d1···di−1

1.

This ompletes the proof of Lemma 2.4.Lemma 2.5. For any A > 0, ε > 0 and integer i ≥ 1, we have
(2.9)

∑

f∈H∗

k(1)

ω∗
f (x, y)2i ≪A,ε,i kε

uniformly for 2 | k and k5 ≤ xi < yi ≤ kA.
(3) The notation d ‖n means that vp(d) = vp(n) for all p | d, where vp(n) is theexponent of p in the anonial fatorization of n.



Extreme values of L-funtions 65Proof. The main ingredients of the proof are Lemma 2.4 and the followinglarge sieve type inequality: Suppose a(n) ≪ε n−1+ε for any ε > 0. Then
(2.10)

∑

f∈H∗

k(1)

∣

∣

∣

∑

L<ℓ≤2L

a(ℓ)λf (ℓ2)
∣

∣

∣

2
≪ε (kL)ε(1 + k5/2L−1/2)

uniformly for 2 | k and L ≥ 1.The inequality (2.10) is a onsequene of the relation
(2.11) λf (ℓ2) =

∑

dn2=ℓ

λsym2f (d)µ(n),where µ(n) is the Möbius funtion, and the large sieve inequality in [14,Proposition 4.1℄ with m = 2: For any ε > 0 we have
∑

f∈H∗

k(1)

∣

∣

∣

∑

ℓ≤L

bℓλsym2f (ℓ)
∣

∣

∣

2
≪ε kε(L + k5/2L1/2+ε)

∑

ℓ≤L

|bℓ|2

uniformly for 2 | k, L ≥ 1 and {bℓ}1≤ℓ≤L ⊂ C.From (2.11), we write the inner sum in (2.10) as
∑

L<ℓ≤2L

a(ℓ)λf (ℓ2) =
∑

d≤2L

λsym2f (d)
∑

√
L/d<n≤

√
2L/d

µ(n)a(dn2)

and apply the large sieve inequality to the right side. Then (2.10) followsbeause the ondition a(n) ≪ n−1+ε yields
∑

d≤2L

∣

∣

∣

∑

√
L/d<n≤

√
2L/d

|a(dn2)|
∣

∣

∣

2
≪ L−1+ε.

Now we prove (2.9). Firstly, we divide the sum in (2.7) dyadially:
ω∗

f (x, y)i =
∑

j≤(log yi)/log 2

∑

xi/2j+1<ℓ≤yi/2j

λf (ℓ2)
cj(ℓ)

ℓ
,

where
cj(ℓ) :=

∑

2j<d≤2j+1

xi/ℓ<d≤yi/ℓ

ci(d, ℓ)

d
.

Then, by the Cauhy�Shwarz inequality, we obtain
∑

f∈H∗

k(1)

ω∗
f (x, y)2i(2.12)

≪A (log k)
∑

j≤(log yi)/log 2

∑

f∈H∗

k(1)

∣

∣

∣

∣

∑

xi/2j+1<ℓ≤yi/2j

λf (ℓ2)
cj(ℓ)

ℓ

∣

∣

∣

∣

2

.



66 Y.-K. Lau and J. WuFrom (2.8) and τi(dℓ) ≤ τi(d)τi(ℓ), we have
cj(ℓ) ≤ τi(ℓ)

3
∑

d|ℓ

1

d

∑♮

2j/d<d∗≤2j+1/d

τi(d
∗)2

d∗
.

By the Rankin trik again, it is easy to see that
∑♮

d≤t

τi(d)2√
d

≪ (log t)θ0(i)

with θ0(i) := ((i + 1)i/2)2, and hene
cj(ℓ) ≪ τi(ℓ)

3τ(ℓ)2−j/2(log 2j)θ0(i).From (2.12) and (2.10) with a(ℓ) = 2j/2(log 2j)−θ0(i)cj(ℓ)/ℓ, we infer that
∑

f∈H∗

k(1)

ω∗
f (x, y)2i

≪A,ε,i kε
∑

j≪log k

1

2j

∑

f∈H∗

k(1)

∣

∣

∣

∣

∑

xi/2j+1<ℓ≤yi/2j

2j/2(log 2j)−θ0(i)cj(ℓ)

ℓ
λf (ℓ2)

∣

∣

∣

∣

2

≪A,ε,i kε
∑

j≪log k

2−j{1 + k5/2(xi2−j−1)−1/2} ≪A,ε,i kε

for k5 ≤ xi ≤ yi ≤ kA.Now we are ready to prove Proposition 2.1.Proof of Proposition 2.1. By Lemma 2.2 and (2.6), we dedue that
(2.13)

∑

f∈H∗

k(1)

|Tsymmf (P, Q)|2j

≪m (log k)(m+1)4
(

k
∑♮

n2≤Qj

|M(n2)|
n

3/2
2

+ O(R)

)

,

where
M(n2) :=

∑

f∈H∗

k(1)

ωf

∑

n≤y

λf (n2)

n

∣

∣

∣

∣

∑♭

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (nm
1 )

aj(n1n2)

n1

∣

∣

∣

∣

2

with y = k7/2, and
R := k−1+ε

∑♮

n2≤Qj

1

n
3/2
2

∑

f∈H∗

k(1)

∣

∣

∣

∣

∑♭

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (nm
1 )

aj(n1n2)

n1

∣

∣

∣

∣

2(2.14)



Extreme values of L-funtions 67
≪ j!2kε

∑♮

n2≤Qj

1

n
3/2
2

(

∑

P j/n2<n≤Qj/n2

τ(nm)

n

)2

≪ j!2kε

by the Deligne inequality, (1.1) and the trivial estimate for (2.4),
(2.15) aj(n) ≤ j!.The remaining task is to estimate M(n2). We square out the innermostsum in M(n2) and explore the anellation through the Petersson trae for-mula. But this approah is only e�etive for small n, hene we split M(n2)into two parts,
(2.16) M(n2) = Sx + Sx,yaording to n ≤ x and x < n ≤ y respetively where x = k1/2. The seondterm Sx,y is handled by Lemma 2.5, as follows.From the estimate ωf ≪ (log k)/k, the Deligne inequality and (2.15), wehave

Sx,y ≪ k−1(log k)
∑

f∈H∗

k(1)

|ω∗
f (x, y)|

(

j!
∑

n≤Qj

τ(nm)n−1
)2

≪ (j!)2k−1(log k)2m+3
∑

f∈H∗

k(1)

|ω∗
f (x, y)|.

Applying Hölder's inequality and Lemma 2.5 with i = 10, we dedue that
Sx,y ≪ (j!)2k−1+ε

(

∑

f∈H∗

k(1)

1
)19/20( ∑

f∈H∗

k(1)

ω∗
f (x, y)20

)1/20
≪ (j!)2k−1/20+ε.

Now we treat Sx by the Petersson trae formula (see [12, Corollary 2.10℄)
∑

f∈H∗

k(1)

ωfλf (a)λf (b) = δ(a, b) + O(k−5/6(ab)1/4τ3((a, b)) log(2ab)),

where δ(a, b) is the Kroneker delta and the implied onstant is absolute.Squaring out and using (1.3) and (2.15), we obtain
Sx ≤ (j!)2

∑

n≤x

1

n

∑♭ ∑♭

P j/n2<n1,n′

1
≤Qj/n2

1

n1n′
1

×
∑

d|(n1,n′

1
)m

∣

∣

∣

∣

∑

f∈H∗

k(1)

ωfλf (n2)λf

(

(n1n
′
1)

m

d2

)∣

∣

∣

∣

.

Let us write n1 = dℓ and n′
1 = dℓ′ where d = (n1, n

′
1). Then d, ℓ and ℓ′ aresquarefree and pairwise oprime for squarefree n1 and n′

1. Therefore,
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Sx ≤ (j!)2

∑♭ ∑♭ ∑♭

P j/n2<dℓ,dℓ′≤Qj/n2

(ℓ,ℓ′)=1

1

d2ℓℓ′
(2.17)

×
∑

d1|dm

∑

n≤x

1

n

∣

∣

∣

∣

∑

f∈H∗

k(1)

ωfλf (n2)λf

(

(d2ℓℓ′)m

d2
1

)
∣

∣

∣

∣

.

The Petersson trae formula shows that the sum over f ∈ H∗
k(1) equals

δ(n2, (ℓℓ′)m(dm/d1)
2) + O

(

(d2ℓℓ′)m/4n1/2

d
1/2
1 k5/6

τ3(n
2) log k

)

.Clearly for d1 | dm and squarefree integers ℓ and ℓ′ with (ℓ, ℓ′) = 1, we have
n2 = (ℓℓ′)m(dm/d1)

2 ⇒ ℓℓ′(dm/d1) |n.Thus after summing over n, the δ-symbol ontributes
∑

n≤x

1

n
δ(n2, (ℓℓ′)m(dm/d1)

2) ≪ 1

ℓℓ′
d1

dm

∑

n≤x/ℓℓ′(dm/d1)

1

n
≪ log k

ℓℓ′
,while the O-term produes a term trivially bounded by

log k

ℓℓ′
Qj(m/2+2)

k5/6

∑

n≤x

τ3(n
2)√

n
≪ (log k)6ℓℓ′in view of our hoies of x, j and Q.Inserting these estimates into (2.17), it follows that

Sx ≪ (j!)2(log k)6
∑♭ ∑♭ ∑♭

P j/n2<dℓ,dℓ′≤Qj/n2

τ(dm)

(dℓℓ′)2

≪ (j!)2(log k)6
∑♭

d≤Qj/n2

τ(dm)

d2

(

∑♭

P j/dn2<ℓ≤Qj/dn2

1

ℓ2

)2

≪ (j!)2(log k)6
n2

2

P 2j

∑♭

d≤Qj/n2

τ(dm).

Together with the estimates of Sx,y and (2.17), we get an upper bound for
M(n2):

M(n2) ≪ (j!)2(log k)6
n2

2

P 2j

∑♭

d≤Qj/n2

τ(dm) + (j!)2k−1/20+ε.

In view of (2.13), we need to evaluate the following sum over squarefullintegers:
∑♮

n≤Qj

n1/2
∑♭

d≤Qj/n

τ(dm) ≪ Qj(log k)m
∑♮

n≤Qj

n−1/2 ≪ Qj(log k)m+1
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√

t) squarefull integers less than t and
∑

d≤t

τ(dm) ≪ t(log t)m.

Together with (2.13) and (2.14), we onlude that
∑

f∈H∗

k(1)

|Tsymmf (P, Q)|2j ≪ k(log k)(m+1)4+m+7(j!)2QjP−2j + (j!)2k19/20+ε,

whih gives our desired result, by Stirling's formula and Q ≤ 2P .3. Proof of Theorem 1.1. Let m ∈ N, 2 | k and f ∈ H∗
k(1). We have

(3.1) log L(s, symmf) =

∞
∑

n=1

Λsymmf (n)

ns log n
(σ > 1),where

(3.2) Λsymmf (n)

=

{

[αf (p)mν + αf (p)(m−2)ν + · · · + αf (p)−mν ] log p if n = pν ,

0 otherwise.Apparently |Λsymmf (n)| ≤ (m + 1) log n for n ≥ 1. To prove our theorem,we shall show that for almost all f , log L(1, symmf) is well approximatedby a short partial sum over primes. Atually, log L(1, symmf) has a goodapproximation by a partial sum of moderate length when L(s, symmf) hasa bigger zero-free region, whih is available for most f ∈ H∗
k(1).As in [14℄, for eah η ∈ (0, 1/100], we de�ne

(3.3) H+
k,symm(1; η) := {f ∈ H∗

k(1) : L(s, symmf) 6= 0 for s ∈ S},where S := {s : σ ≥ 1 − η, |τ | ≤ 100kη} ∪ {s : σ ≥ 1}, and
(3.4) H−

k,symm(1; η) := H∗
k(1)rH+

k,symm(1; η).Aording to (1.11) of [14℄, we have
(3.5) |H−

k,symm(1; η)| ≪η k31η.For f ∈ H+
k,symm(1; η), we have the following result.Lemma 3.1. Fix η ∈ (0, 1/100] and δ0 ∈ (0, 1] and let m ∈ {1, 2, 3, 4}.Let 2 | k and x = exp{[(log k)/7(m+ 4)]δ0}. Then for any f ∈ H+

k,symm(1; η),we have
log L(1, symmf) =

∑

p≤x

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

(log k)δ0

)

.The implied onstant depends on δ, η and m only.
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k(1), T ≥ 1 and x ≥ 1. By the Perron formula ([22,Corollary II.2.1℄ with B(x) = 1 and α = 1), we have

∑

2≤n≤x

Λsymmf (n)

n log n
=

1

2πi

1/log x+iT\
1/log x−iT

log L(s + 1, symmf)
xs

s
ds

+ O

(

log(Tx)

T
+

1

x

)

.One f ∈ H+
k,symm(1; η), we have the upper estimate

(3.6) log L(s, symmf) ≪η log kuniformly for σ ≥ 1 − 1
4η and |τ | ≤ (log k)4/η. This is a partiular ase ofProposition 3.5 of [14℄ (with α = 1

4η).Now for f ∈ H+
k,symm(1; η), we move the line of integration to σ = −1

4ηand estimate log L(s + 1, symmf) by (3.6) over the ontour. We see that
(3.7)

∑

2≤n≤x

Λsymmf (n)

n log n

= log L(1, symmf) + O

(

log(kTx)

T
+

(log k)(log T )

xη/4

)

= log L(1, symmf) + O

(

1

(log k)4/η−1

)

by taking the parameters T = (log k)4/η and x = exp{[(log k)/7(m + 4)]δ0}.On the other hand, we have
∑

2≤n≤x

Λsymmf (n)

n log n
=

∑

p≤x

∑

ν≤(log x)/log p

Λsymmf (pν)

pν log pν
(3.8)

=
∑

p≤x

∑

0≤j≤m

∑

ν≤(log x)/log p

αf (p)(m−2j)ν

νpν

=
∑

p≤x

∑

0≤j≤m

{

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

x

)}

.Combining (3.7) and (3.8), we get the required result.The size of x given in Lemma 3.1, even though being quite small, is stillinsu�ient for our purpose. Making use of the proposition to remove the�exeptional forms�, we are able to further redue its size in the next twolemmas.Lemma 3.2. Fix m ∈ N and δ1, δ2 > 0 suh that δ1−δ2−2 > 0. Supposethat
(3.9) 2 | k and (log k)δ1 ≤ P ≤ Q ≤ 2P ≤ k14/15(m+4).
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(3.10) |Tsymmf (P, Q)| ≤ 1

(log k)δ2for all but Oδ1,δ2,m(k1−θ0) forms f ∈ H∗
k(1), where

θ0 := (δ1 − δ2 − 2)/10(m + 4)δ1 > 0.Proof. De�ne
(3.11) E1

m(P, Q) := {f ∈ H∗
k(1) : (3.10) fails}.We shall use Proposition 2.1 with the hoies

j =

[

c′
log k

log P

]

+ 1, c′ :=
1

5(m + 4)to ount |E1
m(P, Q)|. Plainly we have

k1/(3m+12) ≤ P j < (2P )j ≤ k7/(6m+24)by (3.9), whene the proposition is appliable. It follows that
(3.12) |E1

m(P, Q)| ≪ k((log k)θ(m)e2j log jP−j + e2j log jk−1/21)(log k)2δ2j .On the other hand, the lower bound for P in (3.9) yields
− j log P + j(2 log j + δ2 log2 k) + θ(m) log2 k

≤ −c′ log k + (c′(log k)/log P + 1)(2 + δ2) log2 k + θ(m) log2 k

≤ −c′{(δ1 − δ2 − 2)/δ1} log k + (θ(m) + 2 + δ2) log2 k

≤ −1
2c′{(δ1 − δ2 − 2)/δ1} log kand

− 1
21 log k + j(2 log j + δ2 log2 k)

≤ − 1
21 log k + (c′(log k)/log P + 1)(2 + δ2) log2 k

≤ −
(

1
21 − c′(2 + δ2)/δ1

)

log k + (2 + δ2) log2 k

≤ −1
2

(

1
21 − c′(2 + δ2)/δ1

)

log k.Inserting these two estimates into (3.12) and notiing 1
21 − c′(2 + δ2)/δ1 ≥

c′(δ1 − δ2 − 2)/δ1, we get the desired result. This ompletes the proof.Lemma 3.3. Fix m ∈ N and δ3, δ4 > 0 suh that 1−2δ3−δ4 > 0. Supposethat
(3.13) 2 | k and (log2 k)1/δ3 ≤ P ≤ Q ≤ 2P ≤ (c log k)1/δ3 ,where c = (1 − 2δ3 − δ4)/24(m + 4)(θ(m) + 2) > 0. Then
(3.14) |Tsymmf (P, Q)| ≤ P−δ4for all but Oδ3,δ4,m(ke−(θ(m)+2)P δ3 ) forms f ∈ H∗

k(1).
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(3.15) E2

m(P, Q) := {f ∈ H∗
k(1) : (3.14) fails}.This time we apply Proposition 2.1 with another hoie of parameters:

j =

[

c′
P δ3

log P

]

+ 1, c′ :=
2θ(m) + 4

1 − 2δ3 − δ4
.By (3.13), it is easy to verify that ec′P δ3 ≤ P j ≤ k2cc′ = k1/6(m+4) <

k7/(6m+24). Thus we dedue by the proposition that
(3.16) |E2

m(P, Q)| ≪ k((log k)θ(m)e2j log jP−j + e2j log jk−1/21)P 2δ4j .Now, in view of our hoies of c′ and c, we have
− (1 − δ4)j log P + 2j log j + θ(m) log2 k

≤ −(1 − δ4)c
′P δ3 + 2(c′P δ3/log P + 1)δ3 log P + θ(m) log2 k

≤ −c′(1 − 2δ3 − δ4)P
δ3 + (θ(m) + 2) log2 k

≤ −1
2c′(1 − 2δ3 − δ4)P

δ3by the lower bound for P in (3.13), and
− 1

21 log k + j(2 log j + δ4 log P )

≤ − 1
21 log k + (c′P δ3/log P + 1)(2δ3 + δ4) log P

≤ − 1
21 log k + 2c′(2δ3 + δ4)P

δ3

≤ −
(

1
21c − 2c′(2δ3 + δ4)

)

P δ3

≤ −1
2c′(1 − 2δ3 − δ4)P

δ3by the upper bound in (3.13). We get the required result by these two esti-mates and (3.16). This ompletes the proof.Now we �nish the proof of Theorem 1.1. Fix η ∈ (0, 1/100] and δ0 ∈ (0, 1]and let m ∈ {1, 2, 3, 4}. Take δi (1 ≤ i ≤ 4) suh that
1/θ1 > δ1 > 2/(1 − θ2), δ2 = 2δ0 = 2θ3, δ3 = θ1, δ4 = θ2.It is easy to verify that δ1 and δ3 ful�ll the onditions in Lemmas 2.4 and2.5 respetively, and 1/δ3 > δ1. De�ne

x = exp{[(log k)/7(m + 4)]δ0}, y1 := (log k)δ1 , y2 := (log2 k)1/δ3.Then we onsider the following three ases aording to the size of z.
1o The ase z ≥ x. The required formula follows immediately fromLemma 3.1 with a better upper bound O(k31η) for the exeptional set inview of (3.5).
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2o The ase y1≤z<x. By Lemma 3.1 with x=exp{[(log k)/7(m+4)]δ0},we an write

(3.17) log L(1, symmf)

=
∑

p≤z

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

(log k)δ0

)

+ R1(symmf)

for any f ∈ H+
k,symm(1; η), where

R1(symmf) := −
∑

z<p≤x

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)

.This ase will be done if we show that R1(symmf) is negligible apart froma small exeptional set of f . Clearly,
R1(symmf) =

∑

z<p≤x

{

λsymmf (p)

p
+ Om

(

1

p2

)}

=
∑

z<p≤x

λsymmf (p)

p
+ O

(

1

z

)

.De�ne
Pi := 2i−1z, Qi := min{2iz, x}, E1

m := H−
k,symm(1; η) ∪

⋃

i≪log x

E1
m(Pi, Qi),where E1

m(Pi, Qi) is de�ned as in (3.11). Aording to Lemma 3.2, we have
|E1

m| ≪ k31η +
∑

i≪log x

|E1
m(Pi, Qi)| ≪ (log k)δ0k1−θ0

and for f /∈ E1
m,

R1(symmf) ≪
∑

i≪log x

|Tsymmf (Pi, Qi)| +
1

z
≪ 1

(log k)δ2−δ0
+

1

z
.

Inserting this into (3.17), we �nd that for f /∈ E1
m,

log L(1, symmf) =
∑

p≤z

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1(3.18)
+ O

(

1

(log k)min{δ0, δ2−δ0}
+

1

z

)

,whih will give the required result.
3o The ase y2 ≤ z < y1. We trunate the tail as in (3.17), and use theestimate of the seond ase. Thus it remains to evaluate

R2(symmf) := −
∑

z<p≤y1

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)

.
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Pi := 2i−1z, Qi := min{2iz, y1}, E2

m := H−
k,symm(1; η)∪

⋃

i≪log2 k

E2
m(Pi, Qi).By Lemma 3.3, we have

|E2
m| ≪ k31η + ke−(θ(m)+2)zδ3

log2 k ≪ ke−θ(m)zδ3and
R2(symmf) ≪

∑

i≪log2 k

|Tsymmf (Pi, Qi)| +
1

z
(3.19)

≪
∑

i≪log2 k

1

(2i−1z)δ4
+

1

z
≪ 1

zδ4for all f /∈ E2
m.Finally, de�ne E∗

k := E1
m ∪ E2

m. Then we have
|E∗

k| ≪ ke−θ(m)zδ3
.In view of (3.19) and (3.18), we derive that

log L(1, symmf) =
∑

p≤z

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1(3.20)
+ O

(

1

(log k)δ5
+

1

zδ4

)

for f ∈ H∗
k(1)rE∗

k, where δ5 := min{δ0, δ1, δ2 − δ0}. Obviously this is equiv-alent to our required result. The proof of Theorem 1.1 is thus omplete.4. Proof of Corollary 1.2. By Theorem 1.1 with the hoie of
z = log k, θ1 = 1/2 − ε, θ2 = θ3 = ε,there is a subset E∗

k of H∗
k(1) suh that |E∗

k| ≪ ke−(log k)1/2−ε and
L(1, symmf) =

{

1 + O

(

1

(log k)ε

)}

∏

p≤z

∏

0≤j≤m

(

1 − αf (p)m−2j

p

)−1

for eah f ∈ H∗
k(1)rE∗

k. In view of (1.4) and the prime number theorem, itfollows that
L(1, symmf) ≤

{

1 + O

(

1

(log k)ε

)}

∏

p≤z

(

1 − 1

p

)−(m+1)

=

{

1 + O

(

1

(log k)ε

)}

(eγ log2 k)m+1
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k(1)rE∗

k. This proves the upper bound result in Corollary 1.2and one an treat the lower bound in the same way.
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