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1. Introduction. One of the core problems in additive number theory
is to obtain estimates on the cardinality of sumsets. Given sets A and B in
a commutative group the sumset of A and B is defined by

A+B = {a+ b : a ∈ A, b ∈ B}.

In this paper we are concerned with obtaining upper bounds on the
cardinality of sumsets of the from A+ hB recursively defined by A+ hB =
(A + (h − 1)B) + B. It is easy to check that under no further restriction
the extremal examples are when A and B are disjoint sets consisting of
generators of a free commutative group.

Usually in additive number theory the sets A and B are not generic.
Very often a bound on |A+ B| is known: |A+ B| ≤ α|A| for some α ∈ R+

that could depend on A,B. Given the trivial lower bound |A+B| ≥ |A| this
extra condition measures how much adding B to A changes the cardinality.
The question we address is how much adding B repeatedly to A changes
the cardinality: we suppose that A and B are finite sets in a commutative
group and that both |A| and |A+B| are given and ask for an upper bound
on |A+ hB| in terms of |A| and |A+B|.

The special case when A = B has attracted most attention in the liter-
ature and the answer to our question is well understood. Helmut Plünnecke
established in [Pl] that |A+A| ≤ α|A| implies

(1.1) |hA| ≤ αh|A|.

The upper bound is sharp when A is a group and α = 1. More importantly,
it has the correct dependence on α and |A|: for infinitely many α ∈ Q+

there are examples (natural generalisations of Theorem 9.5 in Chapter 1 of
[Ru09]) where |hA| = c(h)αh|A|. In these examples c(h) is of the order h−h
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and so there is reason to believe that the dependence on h in Plünnecke’s
upper bound can be improved when α is large.

A particular feature of (1.1) is the multiplicativity of the upper bound.
By this we mean that replacing A by its r-fold tensor product gives the same
inequality. This is because |A| is then replaced by |A|r, α by αr, and |hA|
by |hA|r.

On the other hand we can get the correct dependence on h, and in
particular a submultiplicative upper bound, by not insisting on having the
best possible power dependence on α. Imre Ruzsa has shown in [Ru99] that
|A+A| ≤ α|A| implies

|hA| ≤ α2

(
α4 + h− 2

h− 1

)
|A|.

The outlook changes when a different set B is added repeatedly to A.
Ruzsa has studied the problem of bounding |A + 2B| in terms of |A| and
|A+B| thoroughly. He has shown (Section 6 of [Ru07] and Theorem 9.1 in
Chapter 1 of [Ru09]) that

|A+ 2B| ≤ α2|A|3/2.
The most significant difference with the A = B case is that the exponent
of |A| is no longer one. One may initially suspect that the upper bound must
therefore not be sharp, but Ruzsa has shown otherwise. In [Ru96] he gave
examples (for every positive rational α and infinitely many |A|) where

|A+ 2B| ≥
(
α− 1

4

)2

|A|.

Ruzsa’s method works equally well for h ≥ 2 and yields the multiplicative
upper bound

|A+ hB| ≤ αh|A|2−1/h.
The upper bound can also be derived from a (more general and more recent)
result of Balister and Bollobás (Theorem 5.1 in [BB]; for a different proof
see Corollary 3.7 in [MMT]).

Ruzsa’s upper bound is in the correct order of magnitude in α and |A|.
We demonstrate this by extending an example of his [Ru07] to larger h.

Example 1.1. Let h be a positive integer. There exist infinitely many
α ∈ Q+ with the following property. For each such α there exist infinitely
many m such that one can find finite sets A and B in a commutative group
with |A| = m, |A+B| ≤ αm and

|A+ hB| ≥ (1 + o(1))
αh

h(h+ 1)h
m2−1/h.

The o(1) term is om→∞(1).
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Ruzsa also noted that the behaviour of |A+2B| (and in fact of |A+hB|)
changes when α is close to one. He proved (Theorem 10.1 in Chapter 1 of
[Ru09])

|A+ 2B| ≤ αm+ 3
2α(α− 1)|A|3/2

for α ≤ 2. His method works equally well for h ≥ 2 and gives

|A+ hB| ≤ αm+
h+ 1

h
αh−1(α− 1)|A|2−1/h.

It is not clear whether the stated upper bound has the correct dependence
on α. Extending an example of Ruzsa [Ru09] to larger h nonetheless shows
that the dependence on α− 1 and |A| is correct.

Example 1.2. Let h be a positive integer and α a real in the interval
[1, 2]. For infinitely many m there exist finite sets A and B in a commutative
group such that |A| = m, |A+B| ≤ (1 + o(1))αm and

|A+ hB| ≥ (1 + o(1))

(
m+

(α− 1)

h
m2−1/h

)
.

The o(1) term is om→∞(1). The same notation will be used throughout.
The main goal of this paper is to improve Ruzsa’s upper bounds by

introducing a further term that decreases with h. This is a first step towards
determining the correct dependence of |A+hB| on h. We prove the following
result.

Theorem 1.3. Let h be a positive integer, α a positive real number and
m an arbitrarily large integer. Suppose that A, B are finite non-empty sets
in a commutative group that satisfy |A| = m and |A+B| ≤ αm. Then

|A+ hB| ≤ (1 + o(1))
e

2h2
αhm2−1/h.

We also have

|A+ hB| ≤ m+ (1 + o(1))
e

h
(α− 1)αh−1m2−1/h,

which is stronger for α ≤ 1 + 1/(2h− 1).
The o(1) term tends to zero as m gets arbitrarily large and is of the order

O(m−1/h).

The biggest qualitative improvement comes from having a term that
decreases with h while keeping the optimal dependence on α and m. The
bound is furthermore submultiplicative, a sharp contrast to many results in
the area when different sets are added to one another [B, GMR08, GMR10].
It should be noted that while it is easy to deduce a multiplicative upper
bound from a supermultipicative upper bound, it is not easy to turn a
multiplicative bound to submultiplicative. The former task can be done
by applying the tensor product trick, which has been applied by Ruzsa
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and others on many occasions. We will not discuss it any further. A good
summary of how powerful it is can be found in [T2].

As we will see, roughly speaking one factor of h is saved by strengthening
Plünnecke’s graph-theoretic method and another factor of h by replacing it
with a more efficient elementary counting argument.

The distinction between the values of α is essential as in the latter case
the difference between α and α−1 can be substantial. For example m is the
dominant term in the second upper bound for α ≤ 1 + he−hm−1+1/h.

Another observation is that setting B = A in Theorem 1.3 works better
than applying (1.1) when α ≥ m1−1/h (for example when A consists of
generators of a commutative group).

The paper is organised as follows. In Section 2 we strengthen Plünnecke’s
graph-theoretic method, a task which has interest in its own right. Sections
3 to 5 are devoted to motivating and presenting a proof of Theorem 1.3.
In Section 6 Examples 1.1 and 1.2 are constructed. In Section 7 we state
some graph-theoretic results that follow by a similar approach, but we do
not provide proofs. Finally in Section 8 we discuss how the material in this
paper relates to more recent advances in the subject.

2. Plünnecke’s inequality. We begin by recalling Plünnecke’s graph-
theoretic method and explaining the refinement necessary to obtain Theo-
rem 1.3. Much of the material in this section can be found in any of the
standard references [N, Ru09, TV]. The notation used is however slightly
different.

G will always be a directed layered graph with edge set E(G) and vertex
set V (G) = V0 ∪ · · · ∪ Vh, where the Vi are the layers of the graph. For any
S ⊆ Vi we write Sc = Vi \S for the complement of S in Vi and not in V (G).
We furthermore assume that directed edges exist only between Vi and Vi+1.

We are interested in a special class of such graphs which satisfy a graph-
theoretic version of commutativity, the so-called Plünnecke’s conditions.
Plünnecke’s upward condition states that if uv, vwi ∈ E(G) for 1 ≤ i ≤ k,
then there exists a vertex vi for all 1 ≤ i ≤ k such that both uvi and viwi
are in E(G). Plünnecke’s downward condition states that if vw, uiv ∈ E(G)
for 1 ≤ i ≤ k, then there exists a vertex vi for all 1 ≤ i ≤ k such that both
uivi and viw are in E(G). We call a graph G commutative when it satisfies
both conditions.

The most typical example is G+(A,B), the addition graph of two sets
A and B in an ambient commutative group. This is defined as the directed
graph whose layers are V0 = A and, for all i > 1, Vi = A + iB. A directed
edge exists between x ∈ Vi−1 and y ∈ Vi if and only if y − x ∈ B.
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A path of length l in G is a sequence of vertices v1, . . . , vl so that vivi+1 ∈
E(G) for all 1 ≤ i ≤ l − 1. For any subgraph H of G we define Im

(i)
H (Z) to

be the collection of vertices that can be reached from Z via paths of length
i in H. When the subscript is omitted we are taking H to be G and when
the superscript is omitted we are taking the neighbourhood of Z in H.

For i > j and U ⊆ Vi, V ⊆ Vj , the graph consisting of all paths in G
starting at U and ending in V is called a channel. A crucial observation
we will use repeatedly is that any channel of a commutative graph is a
commutative graph in its own right. For Z ⊆ V0 the channel of Z is the
graph consisting of all paths in G starting at Z and ending in Vh. It should
be noted that in this case ImH(v) = ImG(v) for all v ∈ V (H).

Ruzsa introduced restricted addition graphs, which are addition graphs
with a component removed. Given any three sets A, B and C we take
GR(A,B,C) to be the graph with V0 = A and Vi = (A+ iB)\ (C+(i−1)B)
for all i > 0. The edges between layers are determined similarly to addition
graphs: xy ∈ E(Vi, Vi+1) if and only if y − x ∈ B. Therefore GR(A,B,C)
consists of all the paths in G+(A,B) that end in (A+ hB) \ (C + (h− 1)B)
and so it is (a channel and in particular) a commutative graph.

For i = 1, . . . , h the ith magnification ratio of G is defined as

Di(G) = min
∅6=Z⊆V0

|Im(i)(Z)|
|Z|

.

Plünnecke established in [Pl] the following.

Theorem 2.1 (Plünnecke). Let G be a commutative graph. Then the

sequence D
1/i
i (G) is decreasing.

Other proofs can be found in [Ru89, Pe11]. The standard application of
the inequality highlights how powerful it is:

Corollary 2.2. Let A and B be finite sets in a commutative group and
h be a positive integer. Suppose that that |A| = m and |A+B| ≤ αm. Then

|hB| ≤ D1(G+(A,B))hm ≤ αhm.

Proof. We work in the addition graph G = G+(A,B). We know from
Theorem 2.1 that

Dh(G) ≤ D1(G)h ≤ αh

and so there is a non-empty X ⊆ V0 = A such that

|X + hB| = |Im(h)(X)| ≤ D1(G)h|X| ≤ αhm.
The claim follows as |hB| ≤ |X + hB|.

It should be noted that no information is given on the subset of V0 which
gives rise to Di(G). The first step towards the proof of Theorem 1.3 is to
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strengthen the inequality and prove that any Z ⊆ V0 which satisfies the
condition |Im(j)(Z)| = Dj(G)|Z| exhibits restricted growth.

Theorem 2.3. Let G be a commutative graph with vertex set V0∪· · ·∪Vh.
Suppose that Dj(G) = |Vj |/|V0|. Then

|Vj |h ≥ |V0|h−j |Vh|j .
In particular D1(G) = |V1|/|V0| implies

|Vh| ≤
⌊
|V1|h

|V0|h−1

⌋
= bD1(G)h|V0|c.

Proof. Suppose not. Let G be a counterexample where |V0| is minimum.
Plünnecke’s inequality implies that the collection

{Z ⊆ V0 : |Im(h)(Z)| ≤ Dh/j
j (G)|Z|}

is non-empty.
Let S ( V0 be a set of maximal cardinality in the collection and H be the

channel consisting of paths that start in Sc and end in Im(h)(S)c. Suppose
that U0 ∪ U1 ∪ · · · ∪ Uh are the layers of H.

Uj does not intersect Im(j)(S) as there would then exist a path in H

leading to Im(h)(S). We therefore have |U0| = |V0| − |S| and |Uj | ≤ |Vj | −
|Im(j)(S)| ≤ |Vj | − Dj(G)|S| = |Vj |(1 − |S|/|V0|) = |Vj |(|V0| − |S|)/|V0|.
Consequently,

(2.1) Dj(H) ≤ |Uj |/|U0| ≤ |Vj |/|V0| = Dj(G).

Let T ⊆ U0 be minimal subject to |Im(j)
H (T )| = Dj(H)|T |. Let us get a lower

bound on |Im(h)
H (T )|. We know from the maximality of |S| that

D
h/j
j (G) |S ∪ T | < |Im(h)(S ∪ T )| = |Im(h)(S)|+ |Im(h)(T ) \ Im(h)(S)|

= |Im(h)(S)|+ |Im(h)
H (T )| ≤ Dh/j

j (G) |S|+ |Im(h)
H (T )|.

This implies

(2.2) |Im(h)
H (T )| > D

h/j
j (G) |T |.

Finally, we consider H ′, the channel of T in H. This is a commutative
graph with layers T0∪· · ·∪Th, and by the defining properties of T and (2.1),

(2.3) |Tj |/|T0| = Dj(H) ≤ Dj(G).

By combining (2.2) and (2.3) we get

|T0|h−j |Th|j > (Dj(G)|T0|)h ≥ |Tj |h.
Thus H ′ is another counterexample. However, |T0| = |T | ≤ |Sc| < |V0|,
which contradicts the minimality of |V0|.

Remark. It is shown in [Pe11] that the upper bound is best possible.
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A disadvantage of the traditional form of Plünnecke’s inequality is that
it does not specify the subset of V0 that exhibits restricted growth at level i.
In addition it leaves the possibility open that different subsets need to be
considered for different i. One can get round both difficulties by selecting
any Z ⊆ V0 that satisfies |Im(Z)| = D1(G)|Z| and applying Theorem 2.3 to
the channel of Z. It follows that |Im(i)(Z)| ≤ Di

1(G)|Z| for all i = 1, . . . , h.
This is in fact the way we will apply the theorem: partition the vertices

of G into commutative subgraphs where the condition of the theorem is
satisfied.

Lemma 2.4. Let G be a commutative graph with vertex set V0 ∪ · · · ∪Vh.
Then V0 can be partitioned into Z1, . . . , Zk and the vertices of G into vertex
disjoint commutative subgraphs G1, . . . , Gk such that

(i) Zi is the bottom layer of Gi,
(ii) αi := D1(Gi) is a strictly increasing sequence,
(iii) |ImGi(Zi)| = D1(Gi)|Zi|.
Proof. We select the commutative subgraphs Gi as follows. We let

G?1 = G and pick Z1 ⊆ V0 of maximal cardinality subject to |ImG?
1
(Z1)| =

D1(G
?
1)|Z1|. We then define G1 to be the channel of Z1 in G?1 and α1 =

D1(G1) = D1(G
?
1).

We repeat this process in G?2, the channel consisting of all paths in G?1
that start in Zc1 and end in Im

(h)
G1

(Z1)
c. The layers of G1 and G?2 do not

intersect. We select Z2 ⊆ Zc1 of maximal cardinality subject to |ImG?
2
(Z2)| =

D1(G
?
2) |Z2|. We then take G2 to be the channel of Z2 in G?2 (and not in G)

and α2 = D1(G2) = D1(G
?
2). We carry on until V0 is partitioned into Z1 ∪

· · · ∪ Zk. Consequently, we get a partition of the vertices of G into vertex
disjoint commutative subgraphs G1, . . . , Gk.

The sequence {αi} is strictly increasing as the maximality of the Zi
implies

αi(|Zi|+ |Zi+1|) < |ImG?
i
(Zi ∪ Zi+1)| = |ImGi(Zi)|+ |ImGi+1(Zi+1)|

= αi|Zi|+ αi+1|Zi+1|.
Ruzsa combined Plünnecke’s inequality with some other elementary es-

timates in a clever way to bound |A + hB|. The next section is devoted to
explaining Ruzsa’s method and motivating the proof of Theorem 1.3. The
proof itself, found in Sections 4 and 5, is entirely self-contained.

3. Ruzsa’s upper bound. Let us begin by stating again the results
one gets by Ruzsa’s method.

Theorem 3.1 (Ruzsa). Let A and B be finite sets in a commutative
group and h a positive integer. Suppose that |A| = m and |A + B| ≤ αm.
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Then

(3.1) |A+ hB| ≤ αhm2−1/h.

For α ≤ 2,

|A+ hB| ≤ αm+ (α− 1)m2
h∑
j=2

(1 + 1/j)αj−1m−1/j

≤ m+ (1 + o(1))(1 + 1/h)αh−1(α− 1)m2−1/h.

What follows is a heuristic presentation of Ruzsa’s argument and the
means by which we improve it. Our aim is to help the reader keep the
bigger picture in mind in the coming sections and not to provide a detailed
presentation.

The best introduction may be to reflect on the limitations of Plünnecke’s
inequality. They appear clearly in the proof of Corollary 2.2. In general
there is no reason to assume that the magnification ratio is α, or that |hB|
is comparable to |X + hB|, or that |X| is comparable to |A|. There are
cases when all assertions hold, for example when A is a subgroup and B
consists of points in distinct cosets of A, but there is much to be gained by
a more careful analysis. With these remarks in mind, let us turn to Ruzsa’s
argument.

We work in G := G+(A,B), the addition graph of A and B. The first
step is to partition A into A1 ∪A2, which can be thought of as the slow and
fast expanding parts of A under addition with B. To bound |A2 + hB| we
start with the trivial estimate |A2+hB| ≤ |A2| |hB| and use Corollary 2.2 to
bound |hB|. The only known fact about D1(G) is that it is at most α, so it
is tempting to replace D1(G) with α. Note however that when D1(G) = α,
Theorem 2.3 can be applied and so |A+hB| ≤ αhm, which is small. We can
therefore assume that D1(G) = α1 < α. This is the first novel point of our
approach.

The second has to do with bounding |A1 + hB|. The standard way to
do this is to first apply Plünnecke’s inequality to G and get Z1 ⊆ A such
that |Z1 + hB| ≤ αh|Z1|. Next apply Plünnecke’s inequality to the channel

of A\Z1 and get Z2 ⊆ A\Z1 such that |Z2 +hB| ≤
(

αm
m−|Z1|

)h|Z2|. Another

application of Plünnecke’s inequality to the channel of A \ (Z1 ∪ Z2) gives

Z3 ⊆ A \ (Z1 ∪ Z2) such that |Z3 + hB| ≤
(

αm
m−|Z1|−|Z2|

)h|Z3|. Iterating

gives a subset A1 = Z1 ∪ · · · ∪ Zk ⊂ A which can be made arbitrarily large
(subject to being contained in A of course). The cardinality |A1+hB| can be
bounded by |Z1 +hB|+ · · ·+ |Zk +hB|. Ruzsa calls the resulting statement
Plünnecke’s inequality for a large subset.

The method is imbalanced. While V0 is partitioned, the same is not done
for V1. This is largely due to the nature of Plünnecke’s inequality, which
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gives no lower bounds on the image in V1 of the set that exhibits restricted
growth at level h. Using Theorem 2.3 instead works better. It introduces
the magnification ratio α1 into the calculations, which is welcome as |hB| is
bounded in terms of α1, and also helps us partition V1. As a consequence, the
numerator of the fractions found near the end of the preceding paragraph
gradually reduces. In fact we will show that a factor of α−α1 appears in the
main term. As a consequence, |A1 + hB| becomes rather small when α1 is
very close to α. On the other hand, the contribution coming from |A2 +hB|
becomes larger as α1 increases. The balancing that takes place is responsible
for reducing Ruzsa’s bound by a factor of h−1.

To save the additional factor of h−1 we have to find a more efficient way
to study the growth of A2 than Plünnecke’s inequality. To motivate it we
examine an example that is typical of sets A and B where A+hB grows fast.
Suppose that A is a group and B a collection of points in different cosets
of A. Then |A + B| = |A| |B| and so α = |B|. Plünnecke’s inequality gives
|A + hB| ≤ |A| |B|h, but an elementary counting argument shows that in

fact |A+hB| ≤ |A|
(|B|+h−1

h

)
. With a little care one can extend the counting

argument to a method of bounding Vh that works better for the fast growing
part of addition graphs than Plünnecke’s inequality.

Before presenting the details of our approach we note that Ruzsa’s trick
of bounding |A2 + hB| by |A2| |hB| for the “fast growing” A2 will be vital,
as will be the restricted addition graphs he introduced.

4. Restricted addition graphs. As we saw in Section 3, Plünnecke’s
inequality appears to not always be optimal to study the growth of addition
graphs. As noted, a much more elementary counting argument sometimes
works better. To make the most of this simple observation one needs to at the
very least achieve a similar improvement not only for addition graphs, but
for the commutative graphs that result once a component has been removed.
These are the restricted addition graphs we defined in Section 2. Our first
step is to prove that the refinement we are suggesting is not hopeless.

Lemma 4.1. Let A, B and C be finite non-empty sets in a commutative
group; G the restricted addition graph GR(A,B,C); and h a positive integer.
For all a ∈ V0,

|Im(h)(a)| ≤
(
|Im(a)|+ h− 1

h

)
.

Proof. The left hand side is the cardinality of the set

(a+ hB) \ (C + (h− 1)B).

Suppose that a + b1 + · · · + bh is an element of this set. If a + bi belonged
to C for any i, then this element would also belong to C + (h − 1)B. This
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does not happen and therefore

(a+ hB) \ (C + (h− 1)B) ⊆ {a+ b1 + · · ·+ bh : bi ∈ B, a+ bi /∈ C}
= {a+ b1 + · · ·+ bh : bi ∈ B \ (C − a)}.

The left hand side is therefore at most(
|B \ (C − a)|+ h− 1

h

)
=

(
|(a+B) \ C|+ h− 1

h

)
,

which is the right hand side.

We use the lemma to partition the vertices of a restricted addition graph
much like we did with Lemma 2.4 and get an estimate on the cardinality of
its layers.

Proposition 4.2. Let A, B and C be finite non-empty sets in a com-
mutative group, G = GR(A,B,C) and h a positive integer. Define β, the
pseudo-cardinality of B, to be the positive real number that satisfies(

β + h− 1

h

)
= |hB|.

Suppose that the layers of G are V0 ∪ · · · ∪ Vh. Then

|Vh| ≤
|V1| |hB|

β
≤
(

1 +
h

β

)
e|V1| |hB|1−1/h

h
.

Remark. The sets A and C, which have seemingly disappeared from
the conclusion, are implicit in the quantity |V1| = |(A+B) \ (B + C)|.

Proof of Proposition 4.2. Let x = |V0| and put an arbitrary order on the
elements of A so that A = {a1, . . . , ax}.

Define a sequence of graphs by G1 = GR(a1, B,C) and, for i > 1, Gi =
GR(ai, B,C∪ ({a1, . . . , ai−1}+B)). Hence, say, for i > 0, j > 1 the jth layer
of Gi is (ai + jB) \ (({a1, . . . ai−1}+ jB)∪ (C + (j − 1)B)). The vertex sets
of the Gi therefore partition the vertex set of G and so

|Vj | =
x∑
i=1

|Im(j)
Gi

(ai)| for j = 0, . . . , h.

To keep the notation simple we define the quantities ri = |ImGi(ai)| for
all i = 1, . . . , x. In particular |V1| =

∑x
i=1 ri.

Next we observe that

(4.1) |Im(h)
Gi

(ai)| ≤ min

{(
ri + h− 1

h

)
, |hB|

}
.

The inequality follows from Lemma 4.1 and the bound

|Im(h)
Gi

(ai)| ≤ |ai + hB| = |hB|.
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To bound the minimum in (4.1) we observe that(
r+h−1
h

)
r

=

h−1∑
i=0

cir
i for positive constants ci that depend on h.

So the function r 7→
(
r+h−1
h

)
/r is increasing. In particular

1

r
min

{(
r + h− 1

h

)
, |hB|

}
≤ |hB|

β
.

Consequently, for all 1 ≤ i ≤ x we have

|Im(h)
Gi

(ai)| ≤ min

{(
ri + h− 1

h

)
, |hB|

}
≤ |hB|

β
ri.

Summing over i = 1, . . . , x gives

|Vh| ≤
x∑
i=1

|hB|
β

ri =
|V1| |hB|

β
.

For the second inequality we observe

|hB| =
(
β + h− 1

h

)
≤
(
e(β + h)

h

)h
.

It follows that (β + h)−1 ≤ eh−1|hB|−1/h and so

|Vh| ≤
(

1 +
h

β

)
|V1| |hB|
β + h

≤
(

1 +
h

β

)
e|V1| |hB|1−1/h

h
.

Balister and Bollobás obtained a similar upper bound on |A + hB|. It
follows from Theorem 5.1 in [BB] that |Vh| ≤ |V1| |hB|1−1/h. The upper
bound in Proposition 4.2 is better by about a factor of 1/h when h = O(β).

The upper bound is furthermore sharp. Take A and B to be disjoint sets
that consist solely of generators of a free commutative group and C to be
the empty set. Then |V1| = |A+B| = |A| |B|, |Vh| = |A+hB| = |A| |hB| and
β = |B|. In other words, in the proposition we are essentially establishing
that |Vh| is maximum when B consists of points that are independent with
respect to addition with A.

It is also worth noting that the upper bound is sharp up to a constant
even if β is much smaller than |B|. For all α ∈ Q+ Ruzsa has constructed
examples (Theorem 5.5 in [Ru07]) of integer sets A that satisfy |2A| = α|A|
and |3A| ≥ c|2A|3 = cα3|A|3/2 for some absolute constant c > 0. In this case
β is

√
|2A| =

√
α|A| up to a constant and so the upper bound is, up to a

constant, attained.
Setting C = ∅ and applying Corollary 2.2 gives

|A+ hB| ≤
(

1 +
h

β

)
e

h
αhm2−1/h.
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For the purpose of proving Theorem 1.3 we can assume that β tends to
infinity with |A|. This is because

(
β+h−1

h

)
= |hB| can be taken to be at least

|A|1/3 (otherwise |A+ hB| ≤ |A| |hB| ≤ |A|2−2/3) and h is assumed to be a
constant.

So Lemma 4.1 can be used to improve Theorem 3.1. Lemma 2.4 also leads
to a similar upper bound on |A + hB|. We will not show how this is done,
but only present a sketch for the benefit of the reader familiar with Ruzsa’s
paper. In Section 7 it is discussed how Lemma 2.4 leads to a stronger form of
Plünnecke’s inequality for a large subset (the term is defined in Section 3).
Using the resulting Theorem 7.1 in Ruzsa’s proof allows one to treat the
magnification ratio α1 of G+(A,B) as a variable that is not automatically
assumed to equal α. This subtle change results in the additional factor of
1/h. The best bound however comes by combining the two lemmata.

5. Upper bounds. To prove Theorem 1.3 we will apply Theorem 2.3 to
the slowly growing part of the graph (where the magnification ratio plays a
role and thus enters the calculations) and Proposition 4.2 to the fast growing
part.

Proposition 5.1. Let h be a positive integer, α be a positive real number
and m an arbitrarily large integer. Suppose that A, B are finite non-empty
sets in a commutative group that satisfy |A| = m, |A + B| ≤ αm and
D1(G+(A,B)) = α1. Then

|A+ hB| ≤ e

h
αh−11 (α− α1)m

2−1/h +O(αhm2−2/h).

In particular

|A+ hB| ≤ e

h2

(
1− 1

h

)h−1
αhm2−1/h +O(αhm2−2/(h+1)).

Proof. We begin with some preliminary considerations. We set

s = |hB|/β
where the pseudocardinality β of B is defined in the statement of Proposi-
tion 4.2. If s ≤ αh−1, then we are done, as by Proposition 4.2,

|A+ hB| ≤ s|A+B| ≤ αhm.
So from now on we assume that α ≤ s1/(h−1).

Next we apply Lemma 2.4 and get a partition of A into Z1 ∪ · · · ∪ Zk
and a resulting partition of the vertices of G into the vertices of a sequence
of graphs G1, . . . , Gk. It follows that

(5.1) |A+ hB| =
k∑
i=1

|Im(h)
Gi

(Zi)|.
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To estimate this sum we choose an index j ∈ {1, . . . , k}. The value of j
will be determined later. Applying Theorem 2.3 for 1 ≤ i ≤ j gives

|(Z1 ∪ · · · ∪ Zj) + hB| =
j∑
i=1

|Im(h)
Gi

(Zi)| ≤
j∑
i=1

αhi |Zi|.

To bound the size of (A+hB)\((Z1∪· · ·∪Zj)+hB) we apply Proposition 4.2
with C = (Z1 ∪ · · · ∪ Zj) +B:

|(A+ hB) \ ((Z1 ∪ · · · ∪ Zj) + hB)| ≤ s|(A+B) \ ((Z1 ∪ · · · ∪ Zj) +B)|

= s
k∑

i=j+1

αi|Zi|.

It is therefore clear that the optimal cutting point j is the largest index
for which αj ≤ s1/(h−1). Note also that from the opening remarks we can
assume that α1 ≤ α ≤ s1/(h−1).

Equation (5.1) now becomes

(5.2) |A+ hB| ≤
k∑
i=1

min{αhi , sαi}|Zi|.

The minimum can be estimated by a linear function as follows.

Lemma 5.2. Let 1 ≤ i ≤ k. In the notation established above,

min{αhi , sαi} ≤ αhi + t(αi − α1),

where

t =
sh/(h−1) − αh1
s1/(h−1) − α1

.

Proof. For 1 ≤ i ≤ j the minimum is αhi . The inequality holds because
the function α 7→ αh is convex and the quantity t has been chosen so that
the linear function equals αh when α = α1 or s1/(h−1). For j < i ≤ k
the minimum is sαi and so we are comparing linear functions that meet at
α = s1/(h−1). It is therefore enough to observe that s ≤ t to conclude the
proof.

Substituting the estimate we get from the above lemma in (5.2) yields

|A+ hB| ≤
k∑
i=1

(αh1 + t(αi − α1))|Zi| = αh1m+ t(α− α1)m(5.3)

≤ αh1m+ (α− α1)m(s+ hs(h−2)/(h−1)α1).

In the last inequality we used the assumption that α1 ≤ s1/(h−1).
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Our next task is to bound s. The second inequality in Proposition 4.2
states

s ≤
(

1 +
h

β

)
e|hB|1−1/h

h
.

Very much as in the penultimate paragraph of Section 4 we can assume that
h is fixed and β tends to infinity with m. It follows that h/β = O(|hB|−1/h)
and consequently

s ≤ e|hB|1−1/h

h
+O(h−1|hB|1−2/h).

Corollary 2.2 gives |hB| ≤ αh1m and so

s ≤ eαh−11 m1−1/h

h
+O(αh−21 h−1m1−2/h).

Straightforward calculations give the first inequality:

|A+ hB| ≤ e(α− α1)α
h−1
1

h
m2−1/h +O(αhm1−2/h).

The expression is maximised when α− α1 = α/h and thus

|A+ hB| ≤ e

h2

(
1− 1

h

)h−1
αhm2−1/h +O(αhm2−2/(h+1)).

We can now deduce Theorem 1.3.

Proof of Theorem 1.3. For the first part we observe that the function
h 7→ (1−1/h)h−1 is decreasing. For large h the upper bound gets arbitrarily
close to

h−2αhm2−1/h.

For the second part of the theorem, when α is close to one, we prove by
induction that

(5.4) |A+ hB| ≤ αm+ (α− 1)m
h∑
i=2

si,

where si = |iB|/βi and βi is defined by
(
βi+i−1

i

)
= |iB|.

The h = 1 case is clear. For h > 1 we consider a different restricted
addition graph that was studied by Ruzsa in [Ru07].

We take any b ∈ B and observe that

|A+ hB| = |b+A+ (h− 1)B|+ |(A+ hB) \ (b+A+ (h− 1)B)|.
To bound the first term observe that |b+A+(h−1)B| = |A+(h−1)B|.

By the induction hypothesis

|A+ (h− 1)B| ≤ αm+ (α− 1)m
h−1∑
i=2

si.
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To bound the second term we apply Proposition 4.2 to GR(A,B, b+A).
The cardinality of V1, the second layer of this restricted addition graph, is
(α− 1)m and so

|(A+ hB) \ (b+A+ (h− 1)B)| ≤ (α− 1)msh.

This completes the proof of (5.4). To finish the proof of Theorem 1.3 we
note that

si ≤ (1 + o(1))
e

h
αh−1m1−1/h.

and that replacing the first summand in (5.4) by m makes no difference to
the asymptotic value.

6. Examples. We now present Examples 1.1 and 1.2 in detail. As noted
above, they are extensions of those given by Ruzsa in [Ru07, Ru09]. To keep
the notation as simple as possible we will assume that all values are integers,
as the construction works for sufficiently composite values of the parameters
which make the rational values integer if necessary.

We begin with Example 1.1. Let a and l be integers, which we consider
as variables with a assumed to be arbitrarily large. We let b = la and fix h.
We will work in Zkb , where k = h+ah−1/h. We write xi for the ith coordinate
of the vector x.

We consider A = A1 ∪A2 where

A1 = {x : xi ∈ {0, l, 2l, . . . , (a− 1)l} for 1 ≤ i ≤ h and xi = 0 otherwise}
and A2 is a collection of ah−1/h independent points,

A2 =

k⋃
j=h+1

{x : xi = δij for all i}.

B is taken to be a collection of h copies of Zb,

B =

h⋃
j=1

{x : 1 ≤ xi ≤ bδij for all i}.

We estimate the cardinality of the sets that interest us. We have

|A| = ah + ah−1/h = (1 + o(1))ah.

As h is fixed, different values of a lead to different values of m. To get an
upper bound on |A+B| we note that

|A1 +B| ≤
h∑
j=1

|A1 + {x : 1 ≤ xi ≤ bδij}| ≤ hbah−1

and

|A2 +B| ≤ |B| |A2| ≤ hbah−1/h = bah−1.
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Thus

|A+B| ≤ |A1 +B|+ |A2 +B| ≤ hbah−1 + bah−1

= (h+ 1)lah = (1 + o(1)) (h+ 1)lm.

Therefore α is about (h+ 1)l. Since h is fixed, different values of l result in
different α.

To bound |A + hB| from below observe that |hB| = bh and that for
a, a′ ∈ A2 the intersection (a+ hB) ∩ (a′ + hB) is trivial. Thus

|A+ hB| ≥ |A2 + hB| = 1 + (bh − 1)ah−1/h = (1 + o(1))bhah−1/h

= (1 + o(1))lha2h−1/h = (1 + o(1))
αh

h(h+ 1)h
m2−1/h.

We are done: we have constructed sets A and B with the desired property.
As a and l assume greater values so do respectively m and α. In other words,
the bounds of Theorems 1.3 and 3.1 are of the correct order of magnitude
in α and m.

The difference between Example 1.1 and Theorem 1.3 is huge in terms
of h. To get a feel of where the two calculations differ we look back at the
proof and examine the points where it could be generous. The only point
where the proof and the example agree is |A1 + hB| = |hB|. On the other
hand, the greatest disparity appears in the growth of |A1+hB|. By applying
Theorem 2.3 we assume the growth is exponential. This means that |A1+hB|
(and crucially also |hB|) should be in the order of(

|A1 + hB|
|A1|

)h
|A1| = (1 + o(1))

(
hb

a

)h
|A1|.

In the example, however,

|hB| = bh = (1 + o(1))

(
b

a

)h
|A1|.

We now turn to Example 1.2. This time we fix 1 < α ≤ 2 and h. We let
a be an arbitrarily large integer and set b = (α− 1)ah−1/h.

We work in a commutative group that has subgroups B1, . . . , Bh of car-
dinality a with pairwise trivial intersection. We take

A1 = B1 + · · ·+Bh

of cardinality ah and

A2 = {a1, . . . , ab}
to be a collection of points lying in distinct non-zero cosets of A1. We set

A = A1 ∪A2 and B =

h⋃
i=1

Bi.
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We estimate the cardinality of various sets as before. First,

|A| = ah + b = (1 + o(1))ah.

Thus different values of a result in different values of m. As we are free to
choose a, we are free to assign infinitely many values to m.

For A+B we observe that A1 +B = A1 and |A2 +B| ≤ |A2| |B| ≤ bha.
Thus

|A+B| ≤ |A1 +B|+ |A2 +B| ≤ ah + bha = αah = (1 + o(1))αm.

For A + hB we observe that hB = A1 and so A1 + hB = A1 and A2 + hB
consists of |A2| translates of A1. Therefore A + hB consists of |A2| + 1
translates of A1 whose pairwise intersections are trivial. We are done, as

|A+ hB| = 1 + ((b+ 1)ah − 1) = (1 + o(1))(ah + bah)

= (1 + o(1))

(
m+

(α− 1)

h
m2−1/h

)
.

7. Results about commutative graphs. In this section we present
three further results about general commutative graphs. All three are similar
to the results we have obtained thus far and can be proved by a similar
method to the proof of Theorem 1.3: a partitioning of the vertices of the
graph (similar to that given by Lemma 2.4 or Lemma 4.1) followed by an
optimisation process similar to the proof of Proposition 4.2.

The first result strengthens what was earlier referred to as Plünnecke’s
inequality for a large subset. Often in applications one is not solely interested
in a subset of V0 that exhibits restricted growth, but in a large subset with
this property. A repeated application of Plünnecke’s inequality as described
in Section 3 takes care of this (cf. Corollary 7.1 in [T1] and Theorem 3.2 in
[Ru07]). Our method is a little more efficient.

Theorem 7.1. Let G be a commutative graph with vertex set V0∪· · ·∪Vh.
Suppose that |V0| = m and |V1| = n. For any m > t ∈ R there exists non-
empty X ⊆ V0 with |X| > t such that

|Im(h)(X)| ≤ (|X| − t)
(

n

m− t

)h
.

If we furthermore suppose that D1(G) = α1, then

|Im(h)(X)| ≤ αh1 t+ (|X| − t)
(
n− α1t

m− t

)h
.

The first inequality is a small improvement over the above mentioned
results. As we have seen, the biggest potential gain comes by introducing the
magnification ratio of the graph in the second inequality. It should be noted
that the bound cannot be significantly improved even when we consider
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addition graphs. As mentioned in Section 4, combining Ruzsa’s argument in
[Ru07] with Theorem 7.1 leads to |A+ hB| � h−1αhm2−1/h.

The second result is the generalisation of Proposition 4.2 to general com-
mutative graphs.

Theorem 7.2. Let G be a commutative graph with vertex set V0∪· · ·∪Vh.
Suppose that M is the maximal cardinality of the images in Vh of one-
element sets

M = max
v∈V0
|Im(h)(v)|

and the quantity β is given by

M =

(
β + h− 1

h

)
.

Then

|Vh| ≤
M |V1|
β

.

The theorem can be used as an alternative to the trivial estimate |Vh| ≤
M |V0|. The proof is identical to that of Proposition 4.2 with only one differ-

ence: Lemma 4.1 no longer applies. The conclusion |Im(h)(v)| ≤
(|Im(v)|+h−1

h

)
nonetheless holds for all v ∈ V0 in general commutative graphs. It can be
proved by an inductive argument (e.g. Lemma 4.4 of [Pe11]). The rest of
the proof is identical to that of Proposition 4.2.

By combining the preceding two theorems one can bound the cardinality
of the layers of commutative graphs in terms of the cardinality of the bottom
two layers. This is a generalisation of what we have seen so far, as |A+ hB|
is simply the cardinality of the hth layer of G(A,B).

We can contract V0 to a single vertex and get another commutative
graph where the cardinality of the rest of the layers remains unchanged.
The generalisation of Lemma 4.1 to commutative graphs implies that |Vh| ≤(|V1|+h−1

h

)
for all commutative graphs. This upper bound is in fact best

possible under no further assumption on G as all but one elements of V0 may
have empty image. To eliminate this sort of examples we assume that Dh(G)
is non-zero. Even in this case the bound obtained from the contraction is
reasonably accurate. It can nonetheless be improved.

Theorem 7.3. Let G be a commutative graph with vertex set V0∪· · ·∪Vh.
Suppose that |V0| = m, |V1| = n and Dh(G) > 0. Then n ≥ m1−1/h and

|Vh| ≤ (1 + o(1))
(n−m1−1/h + 3h)h

h!
.

The o(1) term is as usual om→∞(1). The proof is very similar to the
proof of Theorem 1.3. The bound we get is much larger, as Ruzsa’s trick
of bounding the faster growing parts of V0 using Corollary 2.2 no longer
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applies. It should also be noted that the condition n ≥ m1−1/h follows
from the assumption Dh(G) > 0 and Theorem 2.3. The perhaps mysterious
m1−1/h term that appears in the numerator is the minimum value that α1m
can attain, where as usual α1 is the first magnification ratio of the graph.

The bound is furthermore reasonably sharp. An independent addition
graph is G+({0}, {γ1, . . . , γn}) where 0 is the identity and γ1, . . . , γn the
generators of a free commutative group. The inverse of a commutative graph
is the commutative graph we obtain by reversing the direction of the paths.
When we consider the union of a suitably chosen independent addition graph
and the inverse of another suitably independent addition graph, we see that
the bound in Theorem 7.3 cannot be improved much.

8. Further remarks about sumsets. We conclude the paper by dis-
cussing Theorem 2.3 in the context of set addition. Let A and B be finite
sets in an abelian group. We wish to apply Theorem 2.3 to the addition
graph G+(A,B). Note that in this context Im(i)(Z) = Z + iB for any
Z ⊆ A. There is no reason why D1(G+(A,B)) = |A + B|/|A| and so we
pick ∅ 6= X ⊆ A such that |X + B| = D1(G+(A,B))|X|. Applying Theo-
rem 2.3 to the addition graph G+(X,B) (the details can be found below in
the proof of Corollary 8.1) gives

|X + hB| ≤ D1(G+(A,B))h|X| =
(
|X +B|
|X|

)h
|X|.

The bound holds for all h. The traditional form of Plünnecke’s inequality
does not guarantee that the same X works for all h. The key property of X
which allows this is that for all ∅ 6= Z ⊆ X we have

|X +B|
|X|

≤ |Z +B|
|Z|

.

This property of the suitably chosen subset X was extended further in
[Pe]. It was shown there that X has an even stronger property,

(8.1) |S +X +B| ≤ |X +B|
|X|

|S +X|

for any finite set S. The inequality can also be extended to not necessarily
commutative groups.

Theorem 2.3 has a longer proof than (8.1) (one has to first establish
Plünnecke’s inequality), but on the other hand is much more general, as
it applies to commutative and not just to addition graphs. For example it
allows one to work in restricted addition graphs and/or compare |Vh|/|V0|
to |Vj |/|V0| for any 1 ≤ j ≤ h. As an illustration we present the following
application, which is a variation on Ruzsa’s restricted addition graphs.
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Corollary 8.1. Let h be a positive integer and X, B and J be finite
sets in a commutative group with J ∩X = ∅. Suppose that

|(X + jB) \ (J + jB)|
|X|

= αj

for some 1 ≤ j ≤ h, and

|(X + jB) \ (J + jB)|
|X|

≤ |Z + jB) \ (J + jB)|
|Z|

for all ∅ 6= Z ⊆ X. Then

|(X + hB) \ (J + hB)| ≤ αh|X|.

Proof. Let H be the commutative subgraph of G+(X,B) that consists
of all paths that end in (X + hB) \ (J + hB). The layers of H are V0 = X
and Vi = (X + iB) \ (J + iB) for i > 1. For Z ⊆ V0 = A we have Im(Z) =
(Z + iB) \ (J + iB). Thus the condition on X is equivalent to

Dj(H) =
|Vj |
|V0|

= αj .

Theorem 2.3 gives the desired bound on |Vh| = |(X + hB) \ (J + hB)|.

Christian Reiher [Re] has obtained a generalisation of the corollary in
the spirit of (8.1). He has shown that under the same assumptions on X,
B, J and α the following inequality holds for all finite sets S:

|(X + jB+S) \ (J + jB+S)| ≤ α|(X + (j− 1)B+S) \ (J + (j− 1)B+S)|.
The proof is relatively short and purely combinatorial. Corollary 8.1 can
easily be deduced by induction on h by setting S = B.

Reiher’s inequality could therefore have been used to derive Theorem 1.3
instead of the material in Section 2. We opted to present the graph-theoretic
approach, as Theorem 2.3 may be helpful in other contexts.
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