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1. Introduction. The estimation of mean-values of arithmetic func-
tions over sparse sequences and the detection of primes in arithmetically
interesting and sparse sets of natural numbers are often very hard and of
great interest to analytic number theorists. In [1], we investigated a problem
that addresses both of these questions, namely the distribution of Fourier
coefficients of cusp forms for the full modular group at Piatetski-Shapiro
primes. These are primes of the form [nc], where c > 1 is fixed. We success-
fully handled the c’s in the range 1 < c < 8/7. In this paper, we extend
our result in [1] to primes of the form [g(n)], where g(x) is a general “nice”
function that grows much faster than a linear function. However, our result
will be weaker in the sense that it covers the result in [1] only for the range
1 < c < 30/29.

We first introduce some notations and conditions. By F we denote a
holomorphic cusp form of weight κ for the full modular group SL2(Z) and
by λF (n) the normalized nth Fourier coefficient of F , i.e. we assume that

F (z) =

∞∑
n=1

λF (n)n(κ−1)/2e(nz)

for =z > 0. We note that the Ramanujan–Petersson conjecture, proved by
P. Deligne [2, 3], gives a bound for the modulus of λF . It states that for any
fixed ε > 0,

(1.1) λF (n)� d(n)� nε,

where d(n) is the number of divisors of n. If we assume, in addition, that F
is an eigenform of all the Hecke operators, then F can be normalized such
that λF (1) = 1 and with this normalization the implied constant in the first
“�” in (1.1) can be taken to be 1.
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Further, we assume that g : [1,∞) → [1,∞) is a function satisfying the
following conditions:

(i) g is increasing.
(ii) g is infinitely differentiable.

(iii) g satisfies the inequalities

(1.2) x ≤ g(x) ≤ x30/29−ε.

We note that then the inverse function f : range(g)→ [1,∞) of g exists and
has the following corresponding properties:

(a) f is increasing.
(b) f is infinitely differentiable.
(c) f satisfies the inequalities

(1.3) x29/30+ε ≤ f(x) ≤ x.

Moreover, we shall also suppose that the derivatives of f satisfy the
following conditions:

(d) The kth derivative of f satisfies

(1.4) f (k)(x) � f(x)/xk for all x in the image of g and k ∈ N,

where the implied constants depend on k alone.

(e) The second and third derivatives of f satisfy

(1.5) 2f ′′(x) + xf ′′′(x) � f(x)/x2 for all x in the image of g.

Furthermore, we denote the set of primes by P. The main result of this
paper is the following.

Theorem 1.1. Let g : [1,∞)→ [1,∞) be a function satisfying the con-
ditions (i)–(iii) above. Suppose that the inverse function of g satisfies the
condtions (a)–(e) above. Let λF (n) be the normalized nth Fourier coefficient
of a holomorphic cusp form F for the full modular group SL2(Z). Then there
exists a constant C > 0 depending on g and F such that

(1.6)
∑
n≤N

[g(n)]∈P

λF ([g(n)])� N exp(−C
√

logN),

where the implied �-constant depends on g and F .

For comparison, our main result in [1] was as follows.

Theorem 1.2. Let 1 < c < 8/7 and λF (n) be the normalized nth Fourier
coefficient of a holomorphic cusp form F for the full modular group SL2(Z).
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Then there exists a constant C > 0 depending on F such that

(1.7)
∑
n≤N
[nc]∈P

λF ([nc])� N exp(−C
√

logN),

where the implied �-constant depends on c and the cusp form F .

Some parts of [1] generalize directly in the present paper, while others
cannot be carried over. We indicate the differences in the following descrip-
tion of our method for the proof of Theorem 1.1. First, since every cusp form
can be written as a linear combination of finitely many Hecke eigenforms,
it will suffice to prove Theorem 1.1 for (normalized) Hecke eigenvalues. The
advantages of working with Hecke eigenvalues are that they are multiplica-
tive and real. Now we make a similar standard reduction of the problem to
exponential sums with Hecke eigenvalues and the von Mangoldt function as
in [1]. Then, just as in [1], we decompose the von Mangoldt function us-
ing a Vaughan-type identity, which leads to type I and type II sums. The
type II sums are then treated by simply using van der Corput’s method for
exponential sums. In contrast, in [1], we used sophisticated estimates for
exponential sums with monomials, which are not applicable in the present,
more general situation. For the type I sums, we need to estimate smooth
exponential sums with Hecke eigenvalues. Since we work with general func-
tions g(x) in place of xc, it is not possible to apply Jutila’s method utilized
in [1]. Instead, we estimate the said exponential sums using a Weyl shift
and a bound for shifted convolutions of Hecke eigenvalues with a weakly
oscillating weight, a result analogous to that of W. Duke, J. B. Friedlander
and H. Iwaniec [4] for the divisor function.

Notations. The following notations and conventions are used through-
out the paper.

• e(z) = exp(2πiz) = e2πiz.
• η and ε are small positive real numbers, where ε may not be the same

at each occurrence.
• c > 1 is a fixed number and we set γ = 1/c.
• λ(n) denotes the normalized nth Fourier coefficients of a Hecke eigen-

form for the full modular group. In the following, we shall suppress
the subscript F , used in the introduction, since the cusp form is fixed
throughout the paper.

• Λ(n) is the van Mangoldt function.
• d(n) is the divisor function.
• k ∼ K means K1 ≤ k ≤ K2 with K/2 ≤ K1 ≤ K2 ≤ 2K.
• f = O(g) or f � g means |f | ≤ cg for some unspecified positive

constant c.
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• f � g means f � g and g � f .
• [x] denotes the largest integer not exceeding x, and ψ(x) = x−[x]−1/2

denotes the saw-tooth function.

2. Preliminary lemmas. For the estimation of exponential sums with
Hecke eigenvalues, we need the following bound for shifted convolutions of
Hecke eigenvalues.

Lemma 2.1. Set

Dg(a, b;h) :=
∑

am∓bn=h
λ(m)λ(n)g(am, bn),

where a, b ≥ 1, (a, b) = 1, h 6= 0 and g is a smooth function on R+ × R+

satisfying

xiyjg(ij)(x, y)�
(

1 +
x

X

)−1(
1 +

y

Y

)−1
P i+j

with some P,X, Y ≥ 1 for all i, j ≥ 0, the implied constant depending on
i, j alone. Then

Dg(a, b;h)� P 5/4(X + Y )1/4(XY )1/4+ε,

where the implied constant depends on ε only.

Proof. In [4], an analogous result was proved for the divisor function
d(n) in place of λ(n). The same arguments based on the delta-method and
the Voronŏı summation formula lead to the above result.

To reduce our problem to the estimation of exponential sums, we shall
use the following approximation of the saw-tooth function ψ(x) due to J. D.
Vaaler.

Lemma 2.2 (Vaaler [9], [6, Theorem A6]). For 0 < |t| < 1, let

W (t) = πt(1− |t|) cotπt+ |t|.
Fix a positive integer J . For x ∈ R define

ψ∗(x) := −
∑

1≤|j|≤J

(2πij)−1W

(
j

J + 1

)
e(jx),

δ(x) :=
1

2J + 2

∑
|j|≤J

(
1− |j|

J + 1

)
e(jx).

Then δ is non-negative, and

|ψ∗(x)− ψ(x)| ≤ δ(x) for all real x.

At several places of the paper, we shall use the following classical estimate
for exponential sums due to van der Corput.
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Lemma 2.3 (van der Corput, [6, Theorem 2.2]). Suppose that f is a real-
valued function with two continuous derivatives on [N,N1]. Suppose also that
there are λ > 0 and α ≥ 1 such that

λ ≤ |f ′′(x)| ≤ αλ on [N,N1], where N1 ≥ N + 1.

Then ∑
N<n≤N1

e(f(n))� α(N1 −N)λ1/2 + λ−1/2.

The following is the prime number theorem for Hecke eigenvalues which
is used to bound the main term.

Lemma 2.4 (a special case of [8, Theorem 5.12]). There exists a positive
constant C such that∑

n≤N
Λ(n)λ(n)� N exp(−C

√
logN),

where the implied �-constant and the constant C depend on the cusp form.

To bound the error term, we shall see that it suffices to prove that

(2.1)
∑
n∼N

Λ(n)r(n) = O(N1−η)

for some fixed η > 0, where r is a certain function involving λ(n) and an
exponential sum. The following lemma reduces the above sum containing
the von Mangoldt function to so-called type I and type II sums.

Lemma 2.5 (Heath-Brown). Let r(n) be a complex-valued function de-
fined on the natural numbers. Suppose that u, v and z are real parameters
satisfying the conditions

3 ≤ u < v < z < 2N, z−1/2 ∈ N, z ≥ 4u2, N ≥ 32z2u, v3 ≥ 64N.

Suppose further that 1 ≤ Y ≤ N and XY = N . Assume that am and bn are
complex numbers. Write

K :=
∑
m∼X

∑
n∼Y

mn∼N

amr(mn),(2.2)

L :=
∑
m∼X

∑
n∼Y

mn∼N

ambnr(mn).(2.3)

Then the estimate (2.1) holds if we uniformly have

K � N1−2η for Y ≥ z and any complex am � 1,

L� N1−2η for u ≤ Y ≤ v and any complex am, bn � 1.

Proof. This is a consequence of Lemma 3 in [7].
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To separate the variables m and n appearing in Lemma 2.5, we shall
use the following lemmas. The first of them is the multiplicative property of
Hecke eigenvalues, and the second is a variant of Perron’s formula.

Lemma 2.6. Hecke eigenvalues are multiplicative and they satisfy

λ(mn) =
∑

d| gcd(m,n)

µ(d)λ

(
m

d

)
λ

(
n

d

)
.

Proof. This follows by applying the Möbius inversion formula to the
product formula for the Hecke eigenvalues. See, for example, Proposition
14.9 of [8].

Lemma 2.7 ([5, Lemma 6]). Let 0 < M ≤ N < νN < κM and let am
be complex numbers with |am| ≤ 1. Then∑

N<n<νN

an =
1

2π

M�

−M

( ∑
M<m<κM

amm
−it
)
N it(νit − 1)t−1 dt(2.4)

+O(log(2 +M)),

where the implied O-constant depends only on κ.

To bound a certain error term, we shall need the following.

Lemma 2.8. Assume that 1 ≤ N < N + 1 ≤ N1 ≤ 2N . Define the
function δ as in Lemma 2.2. If f satisfies

f(x) � f(N), f ′(x) � f(N)/N, f ′′(x) � f(N)/N2 for N < x ≤ N1,

then ∑
N<n≤N1

δ(−f(n))� J−1N + J1/2f(N)1/2 + J−1/2Nf(N)−1/2.

Proof. We prove this along the lines of [6, Lemma 2.8, p. 48]. Clearly,∑
N<n≤N1

δ(−f(n))� 1

J

∑
|j|≤J

∣∣∣ ∑
N<n≤N1

e(jf(n))
∣∣∣(2.5)

� N

J
+

1

J
·
∑

1≤j≤J

∣∣∣ ∑
N<n≤N1

e(jf(n))
∣∣∣.

Using Lemma 2.3, we get, for j ≥ 1,∑
N<n≤N1

e(jf(n))� j1/2f(N)1/2 + j−1/2Nf(N)−1/2.

Putting everything together, it follows that∑
N<n≤N1

δ(−f(n))� J−1N + J1/2f(N)1/2 + J−1/2Nf(N)−1/2.
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We shall also need the following “Weyl differencing” lemma.

Lemma 2.9 ([8, Lemma 8.17]). For any complex numbers zn, we have∣∣∣ ∑
a<n<b

zn

∣∣∣2 ≤ (1 +
b− a
Q

) ∑
|q|<Q

(
1− |q|

Q

) ∑
a<n,n+q<b

zn+qzn,

where Q is any positive integer.

3. Exponential sums with Hecke eigenvalues. In this section, we
consider exponential sums of the form

(3.1) S =
∑

N<n≤N ′

λ(n)e(f(n)),

where 3 ≤ N < N ′ ≤ 2N and f ∈ C∞([N/2, 3N ]) satisfies

(3.2) |f (k)(x)| �k T/N
k for all x ∈ [N/2, 3N ] and k ∈ N0

with some

(3.3) T ≥ N3/4.

We shall prove the following lemma.

Lemma 3.1. With S defined in (3.1) and the conditions (3.2) and (3.3)
satisfied, we have

(3.4) S � N2/3+εT 5/18 +N5/6T−5/18,

where the implied constant depends on ε only.

Proof. We first do a “Weyl differencing”, where we introduce an extra
smooth weight function Φ ∈ C∞(R), compactly supported in [N/2, 5N/2]
and satisfying

Φ(k)(x)�k N
−k for all x ∈ R+ and k ∈ N0

and

Φ(x) = 1 for N ≤ x ≤ N ′.
Let Q be any positive integer and set

zn :=

{
1 if N < n ≤ N ′,
0 otherwise.

Then

S =
∑
n

znλ(n)e(f(n)) =
∑
n

zn+qλ(n+ q)e(f(n+ q))

for any q ∈ Z. We sum this up over q with 0 ≤ q < Q ≤ N/2, getting

QS =
∑

N−Q<n<N ′

∑
0≤q<Q

zn+qλ(n+ q)e(f(n+ q)).
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Hence, by Cauchy’s inequality,

Q2|S|2 ≤ (N ′ −N +Q)
∑
n

∣∣∣ ∑
0≤q<Q

zn+qλ(n+ q)e(f(n+ q))
∣∣∣2.

It follows that

Q2|S|2 � N
∑

N<n≤N ′−Q

∣∣∣ ∑
0≤q<Q

λ(n+ q)e(f(n+ q))
∣∣∣2 +Q3N1+ε

and further

Q2|S|2 � N
∑
n

Φ(n)2
∣∣∣ ∑
0≤q<Q

λ(n+ q)e(f(n+ q))
∣∣∣2 +Q3N1+ε.

Expanding the square on the right-hand side and setting

Gq1,q2(m1,m2) := Φ(m1−q1)Φ(m2−q2), Fq1,q2(m) := f(m)−f(m+q1−q2)

gives

(3.5) Q2|S|2

� N
∑

0≤q1<Q

∑
0≤q2<Q

∑
m1,m2

m1−m2=q1−q2

Gq1,q2(m1,m2)λ(m1)λ(m2)e(Fq1,q2(m1))

+Q3N1+ε.

Now we impose the condition

Q ≥ N/T .

Then a simple computation shows that

d i+j

dxidyj
Gq1,q2(x, y)e(Fq1,q2(x))�i,j

(
TQ

N2

)i
N−j

for

0 ≤ q1, q2 < Q, N/2 + q1 ≤ x ≤ 5N/2 + q1, N/2 + q2 ≤ y ≤ 5N/2 + q2.

Now if q1 6= q2, we use Lemma 2.1 with

g(x, y) := Gq1,q2(x, y)e (Fq1,q2(x))

and

a = b = 1, X := N, Y := N, P := TQ/N

to deduce that the inner double sum on the right-hand side of (3.5) is

(3.6)
∑
m1,m2

m1−m2=q1−q2

Gq1,q2(m1,m2)λ(m1)λ(m2)e(Fq1,q2(m1))

� (TQ)5/4N−1/2+ε.
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If q1 = q2, then we have the trivial bound

(3.7)
∑
m1,m2

m1−m2=q1−q2

Gq1,q2(m1,m2)λ(m1)λ(m2)e(Fq1,q2(m1))

=
∑
m

Φ(m− q1)2λ(m1)
2 � N1+ε.

Combining everything in this section, we obtain

(3.8) S � (TQ)5/8N1/4+ε +
N

Q1/2
+N1/2Q1/2

under the condition

(3.9) N/T ≤ Q ≤ N/2.

Now we choose

Q :=
N2/3

T 5/9
.

Then, by N ≥ 3 and (3.3), the condition in (3.9) is satisfied, and we get
(3.4).

4. Reduction to exponential sums. Using λ(n) � nε, partial sum-
mation, and the fact that every cusp form can be written as a linear combi-
nation of finitely many Hecke eigenforms, Theorem 1.1, our main result, can
be easily deduced from the following result whose proof will be the object
of the remainder of this paper.

Theorem 4.1. Let g : [1,∞) → [1,∞) be a function satisfying condi-
tions (i)–(iii) in Section 1. Suppose that the inverse function of g, f , satisfies
condtions (a)–(e) in Section 1. Let λ(n) be the normalized nth Fourier coef-
ficient of a Hecke eigenform for the full modular group. Let Λ(n) denote the
von Mangoldt function. Then there exists a positive constant C depending
on the cusp form such that

(4.1)
∑
n≤N

Λ([g(n)])λ([g(n)])� N exp(−C
√

logN),

where the implied �-constant depends only on C and the cusp form.

In this section, we reduce the left-hand side of (4.1) to exponential sums.
We recall that f := g−1 denotes the function inverse to g. Let m,n ∈ N.
Then [g(n)] = m is equivalent to

−f(m+ 1) < −n ≤ −f(m).
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Therefore,

(4.2)
∑
n≤N

Λ([g(n)])λ([g(n)])

=
∑

g(1)≤m≤g(N)

([−f(m)]− [−f(m+ 1)])Λ(m)λ(m) +O(logN).

Breaking into dyadic intervals and using the fact that g is increasing, it
hence suffices to prove that

(4.3) S :=
∑

n∼g(N)

([−f(n)]− [−f(n+ 1)])Λ(n)λ(n)� N exp(−C
√

logN)

for any N > 1. We write

(4.4) S = S1 + S2,

where

S1 =
∑

n∼g(N)

(f(n+ 1)− f(n))Λ(n)λ(n),

S2 =
∑

n∼g(N)

(
ψ(−f(n+ 1))− ψ(−f(n))

)
Λ(n)λ(n),

with ψ(n) being the saw-tooth function of Lemma 2.2.

By (1.4) and the mean value theorem, we have the bounds

f(x+ 1)− f(x)� f(x)

x
and

d

dx
(f(x+ 1)− f(x))� f(x)

x2

for all x in the image of g. Hence, using partial summation, f ◦ g(x) = x
and g(x)� x30/29−ε, we deduce from Lemma 2.4 that

S1 � N exp(−C
√

logN),

where the implied constant depends only on C and the cusp form.

Our treatment of the sum S2 begins as in [6]. By Lemma 2.2, for any
J > 0 there exist functions ψ∗ and δ, with δ non-negative, such that

ψ(x) = ψ∗(x) +O(δ(x)),

where

ψ∗(x) =
∑

1≤|j|≤J

a(j)e(jx), δ(x) =
∑
|j|≤J

b(j)e(jx)

with

a(j)� j−1, b(j)� J−1.
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Consequently,

S2 =
∑

n∼g(N)

(
ψ∗(−f(n+ 1))− ψ∗(−f(n))

)
Λ(n)λ(n)

+O
(

(logN)
∑

n∼g(N)

(
δ(−f(n+ 1)) + δ(−f(n))

))
= S3 +O(S4),

say. We fix a small η > 0 and set

(4.5) J :=
g(N)

N
·Nη.

Then, using (1.4), Lemma 2.8 and g(N)� N30/29−ε, we obtain

S4 � N1−η/2.

The remaining task is to prove that

S3 � N1−η/2

provided that η is sufficiently small. We write

S3 =
∑

1≤|j|≤J

∑
n∼g(N)

Λ(n)λ(n)a(j)φj(n)e(−jf(n)),

where φj(x) = 1− e(j(f(x)− f(x+ 1))). Using partial summation and the
bounds a(j)� j−1 and

φj(x)� jf(x)

x
and

d

dx
φj(x)� jf(x)

x2
,

we deduce that it suffices to prove that∑
1≤|j|≤J

∣∣∣ ∑
n∼g(N)

Λ(n)λ(n)e(−jf(n))
∣∣∣� g(N)N−η/2.

Replacing g(N) by N and N by f(N), taking the definition of J in (4.5) into
account, dividing the summation interval 1 ≤ |j| ≤ J into O(log 2J) dyadic

intervals, and using the facts that e(−x) = e(x) and the Hecke eigenvalues
are real, we see that the above bound holds if

(4.6)
∑
h∼H

∣∣∣ ∑
n∼N

Λ(n)λ(n)e(hf(n))
∣∣∣� N1−η

for any N ≥ 1 and 1 ≤ H ≤ N1+ηf(N)−1. The following lemma reduces
the term on the left-hand side of (4.6) to trilinear exponential sums.

Lemma 4.2. Suppose that u, v and z are real parameters satisfying the
conditions

(4.7)
3 ≤ u < v < z < 2N, z − 1/2 ∈ N, z ≥ 4u2,

N ≥ 32z2u, v3 ≥ 64N.
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Suppose further that 1 ≤ Y ≤ N , XY = N and H ≥ 1. Assume that Am,
Bn and Ch are complex numbers. For d ∈ N set

Kd :=
∑

m∼X/d

∑
n∼Y/d

mn∼N/d2

∑
h∼H

AmChλ(n)e(hf(d2mn)),(4.8)

Ld :=
∑

m∼X/d

∑
n∼Y/d

mn∼N/d2

∑
h∼H

AmBnChe(hf(d2mn)).(4.9)

Then the estimate (4.6) holds if we uniformly have

(4.10) Kd � N1−3ηd−1

for Y ≥ z, d ≤ 2Y and any complex Am, Ch � 1,

(4.11) Ld � N1−3ηd−1

for u ≤ Y ≤ v, d ≤ 2Y and any complex Am, Bn, Ch � 1.

Proof. We first write∑
h∼H

∣∣∣ ∑
n∼N

Λ(n)λ(n)e(hf(n))
∣∣∣ =

∑
h∼H

ch
∑
n∼N

Λ(n)λ(n)e(hf(n)),

where ch are suitable complex numbers with |ch| = 1. We further set

r(n) := λ(n)
∑
h∼H

che(hf(n))

so that ∑
h∼H

∣∣∣ ∑
n∼N

Λ(n)λ(n)e(hf(n))
∣∣∣ =

∑
n∼N

Λ(n)r(n).

Now, by Lemma 2.5, the bound (4.6) holds if

(4.12) K � N1−2η and L� N1−2η

under the conditions of the same lemma. Here K and L are defined as in
(2.2) and (2.3). We may rewrite these terms in the form

K =
∑
m∼X

∑
n∼Y

mn∼N

∑
h∼H

amchλ(mn)e(hf(mn)),

L =
∑
m∼X

∑
n∼Y

mn∼N

∑
h∼H

ambnchλ(mn)e(hf(mn)).
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Using the multiplicative property of Hecke eigenvalues, Lemma 2.6, we have

K =
∑
d≤2Y

µ(d)
∑

m∼X/d

∑
n∼Y/d

mn∼N/d2

∑
h∼H

admλ(m)chλ(n)e(hf(d2mn)),(4.13)

L =
∑
d≤2Y

µ(d)
∑

m∼X/d

∑
n∼Y/d

mn∼N/d2

∑
h∼H

admλ(m)bdnλ(n)che(hf(d2mn)).(4.14)

Now, (4.12) follows from (4.10), (4.11), (4.13), (4.14) and the bound λ(n)
� nε.

In the following sections, we shall estimate the terms Kd and Ld.

5. Estimation of Ld. Our task in this section is to estimate Ld, defined
in (4.9).

Lemma 5.1. For every sufficiently small and fixed η > 0, we have

(5.1) Ld � N1−3ηd−1

provided that f(N) ≥ N8/9+30η, 1 ≤ H ≤ N1+ηf(N)−1, 1 ≤ d ≤ 2Y and

(5.2)
N2+100η

f(N)2
≤ Y ≤ f(N)6

N5+100η
.

Proof. From (4.9), we have

Ld =
∑

m∼X/d

∑
n∼Y/d

mn∼N/d2

∑
h∼H

AmBnChe(hf(d2mn)),

with

Am � mε, Bn � nε, Ch � hε.

Using Cauchy’s inequality, we get

(5.3) L2
d � N εX

d
H
∑
h

∑
m

∣∣∣∑
n

Bne(hf(d2mn))
∣∣∣2.

Using the “Weyl differencing”, Lemma 2.9, we have

(5.4)
∣∣∣∑
n

Bne(hf(d2mn))
∣∣∣2

≤
(

1+
Y/d

Q

) ∑
|q|<Q

(
1−|q|

Q

) ∑
n∼Y/d
n+q∼Y/d

Bn+qBne
(
h(f(d2m(n+q))−f(d2mn))

)
,

where Q is a parameter to be chosen later and satisfying the condition

(5.5) Q ≤ Y/d.
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Inserting the above into (5.3), we have, since XY = N and Q < Y/d,

(5.6) L2
d � N ε

(
H2

Q

N2

d4

+
H

Q

N

d2

∑
h

∑
0<|q|<Q

∑
n∼Y/d
n+q∼Y/d

∣∣∣Bn+qBn∑
m∈I

e
(
h(f(d2m(n+q))−f(d2mn))

)∣∣∣).
The first term on the right-hand side of (5.6) is the contribution from q = 0,
and I denotes the interval defined by the conditions

m ∼ X/d, mn ∼ N/d2, m(n+ q) ∼ N/d2.
Note that

d2

dm2

(
f(d2m(n+q))−f(d2mn)

)
=d4(n+q)2f ′′(d2m(n+q))−d4n2f ′′(d2mn)

= d4qn0
(
2f ′′(d2n0m) + n0d

2mf ′′′(d2n0m)
)
,

by the mean-value theorem applied to the function f̃(x) = x2f ′′(d2xm), for
some n0 between n and n+ q. Using (1.5), it follows that

h
d2

dm2

(
f(d2m(n+ q))− f(d2mn)

)
� hd3|q|Y f(N)

N2
.

Hence, Lemma 2.3 gives∑
m

e
(
h(f(d2n1m)− f(d2n2m))

)
� Xh1/2d1/2|q|1/2Y 1/2 f(N)1/2

N
+

N

h1/2d3/2|q|1/2Y 1/2f(N)1/2
.

Now inserting the above estimate into (5.6), summing over all the relevant
variables and mindful of XY = N , we get

(5.7) L2
d�N2ε

(
H2N2

Qd4
+H5/2NQ1/2Y 1/2f(N)1/2d−5/2+

H3/2N2Y 1/2

Q1/2f(N)1/2d9/2

)
.

To equalize the first two terms above, we set

(5.8) Q = H−1/3N2/3f(N)−1/3Y −1/3.

If the lower bound for Y in (5.2) holds, this choice of Q is in accordance
with (5.5). It follows from (5.7) that

L2
d �

N2ε

d2
(
H7/3N4/3f(N)1/3Y 1/3 +H5/3N5/3Y 2/3f(N)−1/3

)
� N2ε

d2
(
N11/3+7/3ηf(N)−2Y 1/3 +N10/3+5/3ηf(N)−2Y 2/3

)
,
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since H ≤ N1+ηf(N)−1. Taking the square root, we have the desired esti-
mate in (5.1) provided that

(5.9)
N1/2+100η

f(N)1/4
≤ Y ≤ f(N)6

N5+100η
,

where we use that f(N) ≤ N .
If, instead of choosing Q as in (5.8), we simply set

(5.10) Q = Y/d,

which certainly satisfies the requirement in (5.5), then from (5.7), repeating
the above computations with this choice of Q, we arrive at the estimate

L2
d �

N2ε

d2
(
N2Y −1H2 +NYH5/2f(N)1/2 +N2H3/2f(N)−1/2

)
� N2ε

d2
(
N4+2ηf(N)−2Y −1 +N7/2+5/2ηY f(N)−2 +N7/2+3/2ηf(N)−2

)
.

This gives the desired majorant in (5.1) if

(5.11)
N2+100η

f(N)2
≤ Y ≤ f(N)2

N3/2+100η
.

We note that f(N) ≥ N8/9+50η implies

N2+100η

f(N)2
≤ N1/2+100η

f(N)1/4
≤ f(N)2

N3/2+100η
≤ f(N)6

N5+100η
.

Now joining the two Y -ranges in (5.9) and (5.11), we get the lemma.

6. Estimation of Kd. For small Y , we cannot directly exploit the
smooth exponential sum over n with Hecke eigenvalue λ(n). In this case,
we treat λ(n) like an arbitrary coefficient and hence Kd like Ld, obtaining
the following result.

Lemma 6.1. For every sufficiently small fixed η > 0, we have

(6.1) Kd � N1−3ηd−1

provided that f(N) ≥ N8/9+30η, 1 ≤ H ≤ N1+ηf(N)−1, 1 ≤ d ≤ 2Y and

(6.2)
N6+100η

f(N)6
≤ Y ≤ f(N)2

N1+100η
.

Proof. This can be proved in essentially the same way as Lemma 5.1,
but with the roles of X and Y reversed. Similarly to Lemma 5.1, we deduce
that Kd � N1−3ηd−1 provided that

N2+100η

f(N)2
≤ X ≤ f(N)6

N5+100η
.

These inequalities are equivalent to (6.2) since XY = N .
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For large Y , we employ Lemma 3.1 to deduce the following.

Lemma 6.2. For every sufficiently small fixed η > 0, we have

Kd � N1−3ηd−1

provided that f(N) ≥ N3/4+10η, 1 ≤ H ≤ N1+ηf(N)−1, 1 ≤ d ≤ 2Y and

(6.3) Y ≥ N23/6+100ηf(N)−3.

Proof. We note that for every k ∈ N, we have

(6.4)
dk

dyk
hf(d2my) � hf(N)

yk

by (1.4). Thus, we may apply Lemma 3.1 with N replaced by Y/d and
T = hf(N) to the sum over n provided that f(N) ≥ N3/4. Summing up the
resulting estimate trivially over h and m, we obtain

(6.5) Kd � H · X
d
·
(
Y 2/3+ε

d2/3
· (Hf(N))5/18 +

Y 5/6

d5/6
· (Hf(N))−5/18

)
.

Therefore, the lemma follows upon noting that H ≤ N1+ηf(N)−1, XY = N
and f(N) ≥ N3/4+10η.

Combining Lemmas 6.1 and 6.2, we arrive at the following conclusion.

Lemma 6.3. For every sufficiently small fixed η > 0, we have

Kd � N1−3ηd−1

provided that f(N) ≥ N29/30+100η, 1 ≤ H ≤ N1−γ+η, 1 ≤ d ≤ 2Y and

N6+100η

f(N)6
≤ Y ≤ 2N.

Proof. Clearly, the Y -ranges in Lemma 6.1 and 6.2 overlap if f(N) ≥
N29/30+100η. This yields the desired conclusion.

We point out that the condition (1.3) on f arises from Lemma 6.3.

7. Proof of Theorems 4.1 and 1.1. We recall that Theorem 4.1,
and hence Theorem 1.1, our main result, holds if (4.6) is valid for any
N ≥ 1 and 1 ≤ H ≤ N1+ηf(N)−1. Here f satisfies conditions (a)–(e) in the
introduction, and η is sufficiently small, which we assume in the following.
Furthermore, in Lemma 4.2 we formulated some conditions on bilinear sums
Kd and Ld under which (4.6) holds. In the following, we check that these
conditions are satisfied.

We choose the parameters u, v and z in Lemma 4.2 as follows:

u := N2+100ηf(N)−2, v := 4N1/3, z := [f(N)N−1/2−100η] + 1/2.

The parameters u, v and z so chosen indeed satisfy the conditions in (4.7) if
f(N) ≥ N9/10+ε and η is sufficiently small. Moreover, the conditions (4.10)
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and (4.11) hold by Lemmas 5.1 and 6.3 since

4N1/3 ≤ f(N)6

N5+100η
and

N6+100η

f(N)6
≤ f(N)

N1/2+100η

if f(N) ≥ N13/14+ε and η is sufficiently small. This completes the proof.
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