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K-finite Whittaker functions are of finite order one

by

Mark McKee (Providence, UT)

Introduction. Essentially, this paper is a vast revision of Chapter 2 of
the author’s thesis [14], with a much improved estimate. Relevant to this
discussion is the Introduction in McKee [15].

In Jacquet [9], the holomorphy of Whittaker functions attached to K-
finite sections of principal series representations of Chevalley groups is
proved. Later, Schiffmann [18] extended holomorphy to smooth sections of
real rank one groups, using intertwining estimates. Following ideas from
both papers, Shahidi [20] extended holomorphy to smooth sections of real
groups. Interwoven with these Whittaker functions is the meromorphy and
functional equation of certain Eisenstein series. In connection to this, the
early work of Shahidi [19]–[22] lets one see Jacquet’s functional equation
of Whittaker functions from a more representation-theoretic viewpoint.
This is Shahidi’s theory of “local coefficients” in connection with Whit-
taker functionals. Involved here is intertwining (coming from the functional
equation of Eisenstein series, cf. Langlands [13]) and multiplicity one (cf.
Shalika [25]).

More recently, in the paper of Gelbart and Shahidi [6], the boundedness
of automorphic L-functions (appearing in the Langlands–Shahidi method)
in vertical strips is proved. (This is a result which is necessary for the ap-
plication of a converse theorem, needed for the somewhat recent cases of
functoriality, as described in the Introduction to McKee [15].) These L-
functions appear in the Fourier coefficients of cuspidally induced Eisenstein
series. Whittaker functions appear in the generic coefficients. The paper [6]
actually proves the finite order of these L-functions using the theory of Eisen-
stein series. Since functional equations are used, all that is needed in [6] for
the Whittaker functions is a finite order bound of the archimedean Whit-
taker functions in a half-plane. It is here that the question arose as to if
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these Whittaker functions are of finite order globally. It turns out this is not
true for smooth sections; in McKee [15] an infinite order smooth Whittaker
function on SL2(R) is constructed.

For K-finite sections the result is true; in this paper we prove a finite
order type bound (actually, order one) for the archimedean K-finite Whit-
taker functions of Chevalley groups. This is the result of Theorem 5.2 below.
The proof follows that in Jacquet [9] closely, making effective estimates, and
using convexity in Cn. Here n is the split rank of the Chevalley group.

To be a bit more precise, the content of Theorem 5.2 is as follows. G is a
real or complex Chevalley group. By this we meanG is a real or complex split
reductive group. NAK is an Iwasawa decomposition where K is a maximal
compact subgroup, A is split, and N is a full unipotent radical. Let M0 be
the centralizer of A in K so that M0A is a maximal torus, and M0AN is a
minimal parabolic. Let V be the unipotent radical opposite N .

For our Whittaker function, denoted by ED,η,χ(g, λ), we have g ∈ G (it is
fixed), D is a K-type, η is a unitary character of M0, χ is a generic character
on V , while λ is in a∗C which is the complex dual of the real Lie algebra of A.
See (1.1), (1.2), and (1.4) and the surrounding discussion in Section 1 for
the definition (for appropriate λ) of the Whittaker function with the above
data. We are interested in ED,η,χ(g, λ) as a function of λ.

Jacquet’s Theorem 3.4 in [9] in this context says that ED,η,χ(g, λ) is
holomorphic in all of a∗C. Our Theorem 5.2 gives the estimate (for fixed g)

ED,η,χ(g, λ) = O(e‖λ‖
1+ε

)

for any ε > 0, with the constant depending on ε, as well as on the data with
which the Whittaker function is constructed. Here ‖λ‖ can be one of two
norms we use on a∗C (see Section 1.1).

The fundamental paper of Jacquet [9] is now 46 years old. From a
representation-theoretic standpoint, Jacquet’s functional equation of Whit-
taker functions has been eclipsed by Shahidi’s theory of local coefficients
quite some time ago. However, it is easy to get estimates from [9], and the
proof in [20] is somewhat ineffective. It looks possible to obtain the result
of this paper using the proof in [20]. This would require the computation
of Shahidi’s local coefficient C(s) (from [22]), along with an effective com-
putation of intertwining estimates. This can easily be done, for example in
rank one, using the Bernstein polynomial method of intertwining operators,
of which effective computations are made in the appendices of Cohn [3].

The following is an outline for this paper.

In Section 1, we discuss the general assumptions and structure theory of
the group G. In Sections 1–5 we assume G is real. The complex case will be
sketched in Section 6.2. Some structure theory is necessary to define the type
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of Whittaker function we study. For our estimates, we quote Shahidi [20]
and reduce to the case that G is semisimple and simply connected. We also
discuss our notations (for the first six sections) compared to Jacquet [9] and
Shahidi [20]. (To remain similar to other references, Section 7 does not use
the same notation as the first six sections.) In Section 1.1 we set up the
coordinate system on a∗C coming from the fundamental weights. However,
we will also use the “natural” coordinate system, due to the fact that the
Weyl chambers have simple Euclidean properties. We prove a small lemma
relating the norms of the two coordinate systems. In Section 1.2, we discuss
some simple finite order properties of functions on Cn, and also record a
trivial lemma, since it used many times below.

In Section 2, we discuss Jacquet’s proof of holomorphy of these Whit-
taker functions. In a nutshell, we are following this proof, making it effective.
What in particular we need to look at from Jacquet [9] is Lemma 3.2, Propo-
sition 3.3, and Theorem 3.4, with a few things from Sections 1 and 4.

The beginning of Section 2 serves as an introduction to the following
subsections. In Section 2.1, we discuss and record some basic representation-
theoretic facts pertaining to SL2(R) and SO(2). In Section 2.2 we discuss
how SL2(R) ↪→ G, for each independent root. (Sections 2.1 and 2.2 are
relevant for the functional equation of our higher rank Whittaker function.)
In Section 2.3 we discuss Lemma 3.2 of [9], and record an effective version
of this lemma. In Section 2.4, we discuss Proposition 3.3 of [9], actually
sketching its proof using the effective version of Lemma 3.2 of [9].

In Section 3, we prove many results which are effective versions of re-
sults from [9]. In Section 3.1 we prove an effective estimate (Lemma 3.1) for
the Whittaker function in Bε(V ). Here Bε(V ) is most of the positive Weyl
chamber (which we denote by B(V )), depending on ε > 0. In Section 3.2,
we prove effective estimates (Lemma 3.2 and Corollary 3.3) which corre-
spond to Proposition 3.3 of [9]. In Section 3.3, we prove effective estimates
(Proposition 3.4 and Corollary 3.5) which correspond to Theorem 3.4 of [9].
Indeed, Corollary 3.5 is an estimate on Mε. Here Mε is most of Cn. More
specifically, the complement of Mε is contained in a small region (depending
on ε) surrounding the intersection of walls of all Weyl chambers.

In Section 4, we discuss the simple geometry of Mε. We prove two simple
lemmas (4.1 and 4.2). These give a precise description of not only Mε, but
also of how the convex hull of Mε encloses the complement of Mε.

In Section 5, we prove our main result, Theorem 5.2. First, we prove
Proposition 5.1, which gives an estimate (in the scalar case) for our Whit-
taker function in the complement of Mε. This uses the results of Section 4,
of course. The combination of Proposition 5.1 with Corollary 3.5 gives us
Theorem 5.2. What is used in this section is effective convexity estimates
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in Cn. In particular, an estimate is obtained coming from a multi-variable
Cauchy integral, over different polydisks.

In Section 6, we record several long remarks about Theorem 5.2. Par-
ticularly, in Section 6.1, we discuss the estimates of Section 5 from a Cn
analysis perspective. We wished to show the reader that these are standard
convexity estimates within Cn. We have drawn a figure (Figure 5) that shows
all of this analysis for a rank 2 example. We also discuss what happens in
higher rank; some geometry is different (the proofs above are valid, though)
if n ≥ 3. In Section 6.2, we discuss the modifications necessary to extend
our main result to complex groups. In Section 6.3, we give a short sketch
that the main result is trivial if n = 1. (The type of convexity we use in
Section 5 does not exist in C1.)

In Section 7, we discuss an application of this result, in reference to
simplifying the proof of the known result of the boundedness in vertical
strips of Langlands–Shahidi L-functions originally proved in Gelbart and
Shahidi [6]. At the beginning of Section 7, we give credit where it is due of
this result. In Section 7.1, we review what we will need from the Langlands–
Shahidiv method. Due to the references for this method, our notation here
differs from the first six sections. In Section 7.2, we give in Theorem 7.1
a proof of this boundedness result, using our Theorem 5.2, and an important
result of Müller [17].

For the benefit of the reader, in Section 3, we have drawn four figures
to help illustrate our analysis. Some of this was to help with our defini-
tions of sets in Cn. We also wished to help illustrate what is happening
geometrically with this convexity estimate. All five figures picture the real
projection of the same rank 2 example, though not all are drawn to the same
scale.

1. Preliminaries. In this section we discuss some general assumptions
and structure theory of our group G. This is since some structure theory is
needed to define the type of Whittaker function we are studying. We also
discuss some notation used in this paper, as compared to [9].

Let us describe the Whittaker functions in [9]. Suppose G is a Chevalley
group defined over Q. That is, we assume G is split over Q and is reductive.
In this paper, we will be interested in only the real or complex points of G.
(Jacquet [9] also considers the p-adic and adelic points.) Let us first assume
G is real (i.e., G = G(R), and G is of course split over R). The case where
G is complex will be described in Section 6.2.

Let g be the Lie algebra of G = G(R). Let NAK be an Iwasawa de-
composition of this G. Here, K is a maximal compact subgroup, N is a full
unipotent subgroup, and A is split. Write n, a, and k for the Lie algebras of
N , A, and K respectively. As in Shahidi [20], let ψ denote the set of roots of
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g with respect to a. Let ∆, ψ+, and ψ− be the simple, positive and negative
roots respectively. Then

g = a⊕
⊕
α∈ψ

gα

for root spaces gα. We may assume those gα for α ∈ ψ+ generate n. Let us
define ρ = 1

2

∑
α∈ψ+ α.

Let a∗C denote the dual of the complexification of a. Let λ denote the
complex multi-variable of a∗C. We have a∗C

∼= Cn for n the dimension of a.
We assume n ≥ 2. (The case n = 1 is trivial, and will be discussed in
Section 6.3.) Let us take aλ to be defined as aλ = eλ log(a), where log : A→ a
is the inverse of the exponential map. Let M0 = ZK(a) denote the centralizer
in K of a so that P = M0AN is the Langlands decomposition of a minimal
parabolic subgroup P . Thus, G also has the factorization G = PK.

Let W be the Weyl group of G. For each α ∈ ∆ let wα be the correspond-
ing reflection. Let us define T = M0A. Then T is a maximal torus, and we
assume W acts on T in the standard way. Let us define wl to be the longest
element of W . We write l0 for the length of wl, and V for the unipotent
subgroup opposite N . In other words, V = wlNw

−1
l . The Lie algebra of V

is generated by those gα for α ∈ ψ−.
Let D be a unitary representation of K on a finite-dimensional Hilbert

space H. (So H is a complex vector space.) Let us denote the inner product
and norm on H by 〈·, ·〉H and | · |H, respectively. We will denote a vector in
H as v◦, to distinguish between elements of V .

Let η ∈ M̂0, i.e., a unitary character ofM0. Let P (D, η) be the orthogonal
projection of H onto the subspace H(D, η) consisting of all vectors v◦ ∈ H
so that

(1.1) η(mo)v
◦ = D(mo)v

◦ for all mo ∈M0.

(In [9], this condition also involves N , since N has nontrivial intersection
with K in the p-adic case. In the archimedean case, this does not concern
us.)

For any element g ∈ G written as g = m0ank let us define the function
LD,η(g, λ) (on G× Cn, that operates on H), with values in H(D, η), as

(1.2) LD,η(g, λ) = η(m0)D(k)aλ+ρP (D, η).

Having P (D, η) here is a technical necessity. We have different actions of M0

and K with M0 ⊂ K. The factor P (D, η) ensures these actions are compat-
ible. (Further, since there is no dependence on N , and M0 normalizes N ,
there is no ambiguity in the definition of LD,η.)

We can view (1.2) as defining a section of a principal series representation
of G, in a natural way. Let v◦, ṽ◦ ∈ H, and let us define

f(g, λ) = 〈LD,η(g, λ)v◦, ṽ◦〉H.
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Then f(g, λ) satisfies

(1.3) f(m0ang, λ) = η(m0)a
λ+ρf(g, λ)

for all m0 ∈ M0, a ∈ A, n ∈ N , and g ∈ G. In this sense, f(g, λ) is a
scalar-valued function, but is a section of a principal series representation
of G. Further, f(g, λ)|K (i.e., we restrict g to K) does not depend on λ (the
section is flat). More importantly, f(g, λ)|K is K-finite. Thus, (1.2) is the
vector-valued version of K-finite functions f(g, λ) that satisfy (1.3).

Let χ be a generic character of V . Let Vα denote the connected subgroup
of V with Lie algebra gα. Here χ being generic on V means the restriction
of χ to Vα is nontrivial for each −α ∈ ∆.

We can now define the Whittaker function ED,η,χ(g, λ) associated to the
data LD,η(g, λ) and χ. For λ in the positive Weyl chamber it is defined by

(1.4) ED,η,χ(g, λ) =
�

V

LD,η(vg, λ)χ(v) dv.

This is still operator-valued (acts on H). For any fixed g, the theorem of
Gindikin and Karpelevich gives absolute convergence of this integral for λ
in the positive Weyl chamber B(V ).

As explained in Shahidi [20, p. 103], in all of our estimates, we may
assume G is semisimple and simply connected, by passing to the simply
connected cover of the derived group of G. This is due to the fact that
the homomorphism from the simply connected cover of the derived group
of G to the derived group of G is an isomorphism on V ; ED,η,χ(g, λ) is by
definition, for appropriate λ, an absolutely convergent integral on V .

Remark 1.1 (Notation). The following four paragraphs refer to the first
six sections. We will be referring to Jacquet [9] many times. Let us remark
that many notations that are standard now are somewhat different than in
[9]. Specifically, K denotes a field in [9]. Further, M is a maximal compact
subgroup and A is a maximal torus in [9]. This differs from our notation,
where K is the maximal compact subgroup, A is the split component, and
M0A is a maximal torus. Further, the group action of a principal series
representation is on the left, in [9]. For us, the action is on the right. This
reverses the order of subgroups in the Iwasawa decomposition, in comparison
to [9].

Further, we have adopted some notations of Shahidi [20]. For example,
η is a character of M0 while χ is the generic character. There are some
differences to [20]; for us N is a full unipotent subgroup of G (the unipotent
radical of M0AN). In [20], this is denoted as U . For us χ is a character on V ,
but in [20], χ is a character on U .

Further, we use a capital letter R (along with other parameters) to
denote the meromorphic operator appearing in a functional equation of
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ED,η,χ(g, λ) (see equations (2.4) and (3.2)). Aside from the parameters, the
same operator is denoted by the capital Russian letter “che” in [9], and by Υ
in [20].

There will be many definitions of constants and parameters below. We
should mention that c and d will denote specific global constants depending
only on G. Other constants and parameters will depend upon ε, which could
be any positive number. Specifically, r1 and r2 below are specifically defined
parameters depending upon other parameters, including ε. We will use the
phrase “for all j” to mean “for all j ∈ {1, . . . , n}”.

Section 7 does not use the same notation of the previous six sections.
This was done to more accurately follow Langlands–Shahidi references. We
hope there is no confusion. All the necessary notation for the proof of The-
orem 7.1 in Section 7.2 can be found in Section 7.1.

1.1. Coordinates. In this section we set up a coordinate system on a∗C
which uses the fundamental weights as a basis. Since we will also be using
the “natural” coordinate system, due to the simple Euclidean properties
of the Weyl chambers, we prove a small lemma (Lemma 1.2 below) which
relates the two norms of these coordinate systems.

Let us set up our coordinates in a∗C. First let {αj}nj=1 be an ordering of
the roots in ∆. Now, there is already a natural inner product, 〈·, ·〉, on the
Euclidean space a∗R

∼= Rn, which is induced from the Killing form on aR.
This is the standard inner product on Rn (symmetric and positive definite)
in which the roots of ∆ are embedded with specific geometric characteristics
coming from the Dynkin diagram of G. Since each wα, α ∈ ∆, acts as a
reflection, it follows that 〈·, ·〉 is invariant by W . Without loss of generality,
let us assume we have an orthonormal basis e = {e1, . . . , en} of a∗R.

Let us define Λi ∈ a∗R by the relations 〈Λj1 , αj2〉 = 0 for j1 6= j2, and
〈Λj , αj〉 = 1

2〈αj , αj〉. (These are the fundamental weights.) The positive
Weyl chamber (denoted by B(V )) is of course given by

B(V ) = {λ ∈ a∗C | 〈<λ, αj〉 > 0 ∀αj}.

Now Λ = {Λ1, . . . , Λn} is a basis of a∗R. It follows that Λ is a basis (over C)
of a∗C. Let us denote λ =

∑n
j=1 sjΛj ∈ a∗C by λ = (s1, . . . , sn) ∈ Cn. This will

be our second coordinate system for a∗C. In all that follows, the parenthesis
notation λ = (s1, . . . , sn) is with respect to the Λ basis. Now, the positive
chamber in the Λ basis is given by B(V ) = {(s1, . . . , sn) ∈ Cn | <sj > 0 ∀j}.

It will be useful to use the simple (Euclidean) geometric properties of
the Weyl chambers. (For example, Λ is not orthogonal with respect to the
given inner product.) Thus, Euclidean distance will be used, along with the
e basis. We need to relate the Cn-modulus of a given point in the Λ basis
to the Cn-modulus in the e basis. A simple inequality will suffice.
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Let us first define norms in both the Λ and the e bases. The e basis
already has a Euclidean norm, over a∗R. This is standard. If λ ∈ a∗R

∼= Rn, we

can put ‖λ‖ =
√
〈λ, λ〉. It follows that ‖λ1 − λ2‖ is the Euclidean distance

between λ1, λ2 ∈ a∗R. If λ =
∑n

j=1 xjej with xj ∈ R, since e is orthonormal,

we have ‖λ‖2 =
∑n

j=1 x
2
j . We need to extend this definition to a∗C

∼= Cn.
This is easy, and standard. Suppose λ1, λ2 ∈ a∗C. Then, for each j = 1, 2,

λj = <λj + i=λj , where <λj ,=λj ∈ a∗R. Let us define

〈λ1, λ2〉C = 〈<λ1,<λ2〉+ 〈=λ1,=λ2〉+ i〈<λ2,=λ1〉 − i〈<λ1,=λ2〉.
One can check this definition extends 〈·, ·〉 to a positive definite inner product
〈·, ·〉C on a∗C

∼= Cn, with the correct complex linear properties. We can now

define the norm ‖ · ‖Cn as follows. We define ‖λ‖Cn =
√
〈λ, λ〉C for λ ∈ a∗C.

It follows ‖λ‖Cn is the Cn-modulus of λ ∈ a∗C taken in the e basis induced
from a∗R. For λ =

∑n
j=1 xjej with xj ∈ C we have ‖λ‖2

Cn
=
∑n

j=1 |xj |2.
Further, the Cauchy–Schwarz inequality holds with this norm and inner
product on a∗C.

Defining a norm for a∗C in the Λ basis is also easy. If λ ∈ a∗C, we can write
λ = (s1, . . . , sn) uniquely, where sj ∈ C. Let us define

|λ|Λ =

√√√√ n∑
j=1

|sj |2,

where |sj | denotes the C-modulus of sj . It can easily be checked |λ|Λ is an
actual norm.

Lemma 1.2. There exists a constant c so that

‖λ‖Cn ≤ c|λ|Λ and |λ|Λ ≤ c‖λ‖Cn for all λ ∈ a∗C.

Here, c depends only on G.

Clearly, such a c must satisfy c ≥ 1. We will not need the minimum c
with the above properties, and we will assume later that c > 1. This lemma
is a standard argument in comparing norms of different bases. We will show
the first inequality directly and the other indirectly.

Proof. To prove the first inequality, as above, take λ =
∑n

j=1 sjΛj . Then

‖λ‖2
Cn

= 〈λ, λ〉C =
n∑
j=1

|sj |2‖Λj‖2 +
∑
j1<j2

(sj1sj2 + sj2sj1)〈Λj1 , Λj2〉

≤
( n∑
j=1

|sj | · ‖Λj‖
)2
≤ (max

j
‖Λj‖)2

( n∑
j=1

|sj |
)2

≤ n(max
j
‖Λj‖)2

( n∑
j=1

|sj |2
)

= n(max
j
‖Λj‖)2|λ|2Λ.
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The first inequality here uses the Cauchy–Schwarz inequality for the inner
product 〈Λj1 , Λj2〉C on Cn. (Notice this reduces to 〈Λj1 , Λj2〉 since each Λj
is in a∗R.) The second inequality is trivial. The third inequality uses the
Cauchy–Schwarz inequality for sums with n terms. We have shown the first
inequality of the lemma, where we could take c =

√
nmaxj ‖Λj‖.

To prove the second inequality, suppose there is no c > 0 such that
|λ|Λ ≤ c‖λ‖Cn for all λ ∈ a∗C. Then there is a sequence of points λh ∈ a∗C
with |λh|Λ > h‖λh‖Cn for h ∈ N. Both norms scale properly, that is, for
any real constant ξ ≥ 0 we have |ξλ|Λ = ξ|λ|Λ and ‖ξλ‖Cn = ξ‖λ‖Cn . By
rescaling, we may thus assume |λh|Λ = 1 for every h. Now the set {λ ∈ a∗C |
|λ|Λ = 1} is compact. Thus, {λh} has a convergent subsequence {λhk}. Put
limk→∞ λhk = λ∞. Then |λ∞|Λ = 1 but ‖λ∞‖Cn = 0. Clearly this cannot
happen, which shows the second inequality.

1.2. Finite order properties. In this section, we record some simple
finite order properties of functions. We record a lemma (Lemma 1.3) about
such functions on Cn. Lemma 1.3 is analytically trivial, but since it is used
many times below, we prove two of the conclusions.

Let ε > 0. From known properties of the classical Γ function, we have

(1.5)
1

|Γ (s)|
= Oε(e

|s|1+ε)

for all s ∈ C, where the constant depends only on ε. Further, if we restrict
to the half-plane <s ≥ 1/2, then Γ (s) is holomorphic, and (by Stirling’s
formula)

(1.6) |Γ (s)| ≤ Oε(e|s|
1+ε

),

once again with the constant depending on ε.
We extend this type of estimate to Cn in the obvious way. Specifically,

suppose Ω is a subset of Cn. Suppose the complex-valued function f(λ) is
either smooth on Ω, or holomorphic in a neighborhood of Ω. (Continuity
issues on the boundary of Ω will not come up for us, if f is not holomorphic.)
We define

f(λ) = Oε(e
|λ|1+εΛ ) for λ ∈ Ω

to mean |f(λ)|e−|λ|
1+ε
Λ is bounded on Ω for all ε > 0, with the bound depend-

ing only on ε. Clearly this estimate only has substance if Ω is unbounded.
We will use the following (trivial) principle.

Lemma 1.3. Suppose f1(λ), f2(λ) are two functions satisfying the as-

sumptions above, as well as the estimate Oε(e
|λ|1+εΛ ) on some set Ω ⊂ Cn for

any ε > 0. Then the product function (f1 · f2)(λ) is also Oε(e
|λ|1+εΛ ). Sup-

pose f3(λ) satisfies the continuity assumptions above on Ω. If f3 is either

Oε(e
|ξλ|1+εΛ ) or Oε(e

ξ|λ|1+εΛ ), for some constant ξ≥ 0, then it is also Oε(e
|λ|1+εΛ )
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on Ω, with the constant depending also on ξ. Suppose f4(λ) also satisfies the

assumptions above as well as the estimate Oε(e
|λ+λ0|1+εΛ ) where λ0 is a fixed

vector in Cn. Then f4 is also Oε(e
|λ|1+εΛ ), with the constant also depending

on λ0.

The conclusions here are similar, and we will show the first two.

Proof. Let ε > 0. Then ε/2 > 0, and by definition |f1(λ)|e−|λ|
1+ε/2
Λ and

|f2(λ)|e−|λ|
1+ε/2
Λ are bounded on Ω, with the bound depending only on ε/2.

On the set consisting of all λ in Ω with 2 ≤ |λ|ε/2Λ , we have

|f1 · f2(λ)|e−|λ|
1+ε
Λ ≤ |f1(λ)|e−|λ|

1+ε/2
Λ · |f2(λ)|e−|λ|

1+ε/2
Λ .

This shows |f1 · f2(λ)|e−|λ|
1+ε
Λ is bounded on this subset of Ω. This leaves

the set of all λ ∈ Ω with 2 ≥ |λ|ε/2Λ . So, |λ|Λ ≤ 22/ε (λ is contained in
the intersection of Ω with a compact set), and we can just plug this into

the particular estimate Oε(e
|λ|1+εΛ ) (taking into account the constant that

depends on ε) for each of f1 and f2. Taking the product of the maximum
constants from the two different estimates gives the estimate on Ω.

Let us assume f3 satisfies the continuity assumptions above, as well as

the estimate Oε(e
|ξλ|1+εΛ ) on Ω for all positive ε. The claim is trivial if ξ ≤ 1,

so let us assume ξ > 1. Let ε > 0. Then ε/2 > 0 and f3 is Oε/2(e
|ξλ|1+ε/2Λ )

on Ω. When λ ∈ Ω and |λ|Λ ≥ ξ2/ε+1 we have e|ξλ|
1+ε/2
Λ ≤ e|λ|

1+ε
Λ . Further,

on the intersection of Ω with λ such that |λ|Λ ≤ ξ2/ε+1, we deduce f3 is
bounded, since this region is contained in a compact set. Clearly this bound
depends upon f3, ξ, and ε.

Using the same reasoning, we remark that if f(λ) satisfies the estimate

Oε(e
|λ|1+εΛ ) on Ω then it also satisfies the estimate Oε(e

‖λ‖1+εCn ) on Ω (and
vice-versa). This of course uses Lemma 1.2.

2. Reduction to SL2. The key ingredient for the proof of holomorphy
of ED,η,χ(g, λ) for λ in all of Cn (this is the main result of [9], Theorem 3.4)
is that the functional equation, corresponding to λ 7→ wαjλ, mimics the
functional equation of an SL2 Whittaker function. What is particularly im-
portant for us from [9] is Lemma 3.2, Proposition 3.3, Theorem 3.4, and
some results from Sections 1 and 4. (Technically, ED,η,χ(g, λ) only has a
functional equation under λ 7→ wαjλ if the character χ restricted to V−αj
is nontrivial. Thus in the wording of Theorem 3.4 of [9], holomorphy of
ED,η,χ(g, λ) extends to the convex hull generated by B(V ) and all reflec-
tions wαj so that χ|V−αj is nontrivial. Since we are assuming χ is generic,

this is all of Cn.)
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To obtain effective estimates, we need to follow the proof in [9] closely.
What becomes relevant, is how D decomposes when restricted to various
subgroups of K, each of which is isomorphic to SO(2). The functional
equation is in some sense “vector-valued” on the different isotypic sub-
spaces. This was not really needed in [9]. Indeed, many results in [9] as-
sume these restrictions are irreducible. It is only stated that the results
do carry over to the general case (see p. 255 of [9]). This does not change
the basic ideas for us, neither the effective estimates nor convexity esti-
mates. Rather, we need to be careful in the bookkeeping of these decompo-
sitions.

Therefore, in Section 2.1 we record some basic representation-theoretic
facts for SL2(R) and SO(2). Further, we record in particular the meromor-
phic operator appearing in the functional equation of an SL2(R) Whittaker
function. In Section 2.2 we record information on the meromorphic operator
appearing in the functional equation of ED,η,χ(g, λ), under λ 7→ wαjλ. It is
here that we see the decomposition of D under different subgroups of K.
These subgroups (and the functional equation) come from the embedding
SL2(R) ↪→ G, for each root αj ∈ ∆.

In Section 2.3, we review Lemma 3.2 of [9] closely. In particular, we cre-
ate a function Cj with effective estimates, which makes Lemma 3.2 effective,
even if D reduces on restriction. In Section 2.4 we review the proof of Propo-
sition 3.3 of [9]. This is done for the benefit of the reader. Our review uses
the effective version of Lemma 3.2 (from the previous section), so that the
proof will be easy to modify to make it effective. This is done in Section 3.2.
We also briefly discuss the proof of Theorem 3.4 of [9] using Proposition 3.3
of [9].

2.1. SL2 facts. In this section, we record some representation-theoretic
facts about SL2(R) and SO(2). In particular, we record some specifics about
the meromorphic projection operators appearing in the functional equation
of an SL2(R) Whittaker function.

First, we will take the Cartan involution on sl2 (the Lie algebra of SL2(R)
which consists of 2× 2 real matrices of trace zero) to be negative transpose.

With respect to this involution, the maximal compact subgroup is given by( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
for real θ. Let us denote this matrix by τ(θ). We denote the

split component by A0; it consists of diagonal matrices with positive entries.
If a0 denotes the corresponding Lie algebra, then a0 consists of diagonal
matrices with trace zero. The unipotent subgroup is denoted by N0, and is
generated by

(
1 x
0 1

)
for real x. One can see easily that ZSO(2)(a0) = ±I.

Suppose δ is an irreducible representation of SO(2) on a complex vector
space. Since SO(2) ∼= R/Z is abelian, it is well known the complex space has
dimension one, and δ(τ(θ)) = e2πiθqδ for a unique qδ ∈ Z.
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Let d be a unitary representation of SO(2) on the finite-dimensional
Hilbert space H. Then we can write H =

⊕
δ h

δ, an orthogonal direct sum,
where hδ denotes the δ-isotypic subspace of H. Here the (finite) sum is over
irreducible representations δ of SO(2), and hδ is the subspace of vectors
transforming according to δ. As above, each δ is indexed by a unique inte-
ger qδ. Let y be a character on ZSO(2)(a0) = ±I. Let Hy denote the subspace
of vectors v◦ ∈ H that satisfy

d(m)v◦ = y(m)v◦ for all m ∈ ZSO(2)(a0).

In the real case (which we are now assuming) y is determined by y(−I)
= (−1)ε, with ε ∈ {0, 1}. Let P (d, y) denote the orthogonal projection of H
on Hy. Then clearly, if qδ (corresponding to δ) and ε have the same parity,
P (d, y) fixes every vector (acts as the scalar 1) of hδ. Otherwise, if δ and ε
have different parity, P (d, y) = 0 on hδ.

For each δ occurring in the direct sum above, let qδ be the corresponding
integer. For each δ, let us define the function, for s ∈ C,

(2.1) φδ(s) = (−sgn(qδ))
qδπs

Γ
(1−s+|qδ|

2

)
Γ
(1+s+|qδ|

2

) ,
where Γ denotes the classical gamma function. Finally, we can define the
operator R(d, y, s) on H (with coefficients meromorphic in s ∈ C) as follows:

(2.2) R(d, y, s) =
⊕
δ

φδ(s)P (d, y).

Specifically, if we write any vector v ∈ H as v =
∑

δ vδ according to the
orthogonal direct sum H =

⊕
δ h

δ, then R(d, y, s)v =
∑
φδ(s)P (d, y)vδ.

Remark 2.1 (R(d, y, s) notation). Our operator R(d, y, s) here is the
same as in Shahidi [20] and Jacquet [9] when the field is R. However, in [9]
we first see it in Corollary 1.10, where our R is replaced by the capital
Russian letter “che”. In [20, equation (2.2.4)], Υ replaces our R.

2.2. SL2 ↪→ G. In this section, we discuss the specifics of the meromor-
phic projection operator appearing in the functional equation of ED,η,χ(g, λ).
What is relevant here is how the representation D of K reduces when re-
stricted to different subgroups Kj of K. So, we also need to review the
embedding of SL2(R) into G for each root α ∈ ∆.

For each α ∈ ψ+, let Nα denote the connected subgroup of N with Lie
algebra gα. Suppose αj ∈ ∆. Let Gαj denote the algebraic group (a subgroup
of G) generated by Nαj and V−αj . With our assumption that G is simply
connected, we have for each j ∈ {1, . . . , n} an isomorphism

Xj : SL2(R)→ Gαj .
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For each j ∈ {1, . . . , n}, let Kj denote the image under Xj of SO(2).

Then Kj = K ∩Gαj . Similarly, let us put M j
0 = M0 ∩Gαj . Then M j

0 is the
image of ±I. It can be easily seen that Nαj and V−αj are the images of N0

and of the lower triangular unipotent matrices respectively. Let Aj denote
A ∩Gαj . Then Aj is the image of A0.

Let X∗(M0A) denote the rational characters of the maximal torus M0A,
i.e., algebraic group homomorphisms ϑ : M0A → R∗. It is well known the
fundamental weights Λj are a basis for the Z-module X∗(M0A). Since M0

is compact, it follows the image of M0 under any such ϑ is contained in the
subgroup {±1} of R∗. We can thus factor η ∈ M̂0 as follows: for m ∈M0,

η(m) =
∏
j

ηj(Λj(m)),

where each character ηj maps {±1} → {±1}.
We know χ restricted to V−αj is nontrivial. We can thus write

χ
[
Xj
(
1 0
x 1

)]
= e2πixµj

for a unique nonzero µj ∈ R.

Recall D is a finite-dimensional representation of K on the (complex)
Hilbert space H. We have no reducibility assumptions on D. Let Hj denote
the subspace of H generated by all vectors of the form D(k)v◦ where k ∈ Kj

and v◦ ∈ H(D, η). Let Dj be the representation D ◦Xj of SO(2) on Hj . Let
Hj(ηj) denote the subspace consisting of all vectors v◦ ∈ Hj so that

(2.3) ηj(Λj(m))v◦ = D(m)v◦ for all m ∈M j
0 .

Let P (Dj , ηj) denote the orthogonal projection of Hj onto Hj(ηj). (Let us
identify the domain of ηj as defined above with ±I = ZSO(2)(a0) in the
obvious manner.)

It is easy to see by the definitions that Hj is invariant under the action
of SO(2) by Dj . Thus, we can write Hj =

⊕
δ Vδj , where Vδj denotes the

δ-isotypic subspace of Hj . Here, the sum is over irreducible representations
δ of SO(2), and Vδj denotes the (invariant) subspace of Hj transforming ac-
cording to δ under the action of SO(2) by Dj . Since Hj is finite-dimensional,
this direct sum is finite, and each Vδj is finite-dimensional. One can see us-

ing a standard argument that
⊕

δ Vδj is an orthogonal direct sum with re-
spect to the inner product on H. This can be shown using the fact that
D is unitary (in particular D restricted to Kj), as well as the particular
form of irreducible representations of SO(2), as described above. Clearly,
H(D, η) ⊂ Hj(ηj) ⊂ Hj by construction. Thus, if v◦ ∈ H(D, η), we can
write v◦ =

∑
δ v
◦
δ uniquely, with each v◦δ ∈ Vδj , according to this orthogonal

decomposition.
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For each δ occurring in the direct sum Hj =
⊕

δ Vδj , let qδ be the as-
sociated integer. We define the operator Rj(D, η, s) on H (with coefficients
meromorphic in s ∈ C) as follows. Recall

H(D, η) ⊂ Hj(ηj) ⊂ Hj ⊂ H.

First, we require Rj(D, η, s)(H⊥j ) = 0. Recall the subspace Hj is the
space for the representation Dj on SO(2). Further, we have the projec-
tion P (Dj , ηj) onto Hj(ηj). With notation (in particular φδ(s)) as above,
we define Rj(D, η, s) on Hj to be R(Dj , ηj , s), where in the notation
of (2.2), we have d = Dj , y = ηj , and H = Hj . More specifically, on Hj
we put

(2.4) Rj(D, η, s) =
⊕
δ

φδ(s)P (Dj , ηj),

where φδ(s) is as in (2.1).

On the first page of Section 3 of [9] the representation Dj of SO(2) on Hj
is constructed exactly as we have done above (we have used slightly different
notation). Jacquet [9] then states that the restriction of P (D, η) to Hj is
the projection P (Dj , ηj) onto Hj(ηj), by Lemma 1.2 of [9].

In what follows, due to the functional equation, we will also be interested
in estimating ED,ηw,χ(g, λ). Here, w ∈ W and ηw denotes the character
on M0 given by ηw(m) = η(wmw−1). Notice that Vδj depends on η, since
the underlying generating subspace is H(D, η).

Let w ∈ W . Similar to the above, we can write ηw(m) =
∏
j η

w
j (Λj(m))

for m ∈ M0 and each ηwj is a character on {±1}. We also define H(D, ηw)
similarly to the above. We let Hwj denote the subspace of H generated by
D(k)v◦ for k ∈ Kj and v◦ ∈ H(D, ηw). LetDwj be the representation of SO(2)

on Hwj . With a similar definition to the above, Hwj decomposes as
⊕

δ Vδj (w).

Let Hwj (ηwj ) be the subset of vectors v◦ ∈ Hwj such that ηwj (Λj(m))v◦ =

D(m)v◦ for all m ∈ M j
0 . Finally, we denote the projection of Hwj onto the

subspace Hwj (ηwj ) as P (Dwj , ηwj ).

2.3. Lemma 3.2 of [9]. In this section, we review Lemma 3.2 of
Jacquet [9], in the case where the field is R. We actually create a func-
tion Cj below, which we have effective estimates on, that makes this lemma
effective. The bookkeeping that started in the last section, how D decom-
poses when restricted to Kj , is necessary to obtain an effective estimate for
this lemma. Due to the functional equation under λ 7→ wαj (λ) (see (2.7)
below), in estimating ED,η,χ at λ, we will need an estimate of ED,ηwαj ,χ at

wαj (λ). We accomplish this by keeping track of estimates for ED,ηw,χ for all
w ∈W .



K-finite Whittaker functions 373

Let us suppose λ ∈ B(V ) and w ∈ W . For αj ∈ ∆ and for each g ∈ G
let us define

EV−αj ,D,ηw(g, λ) =
�

V−αj

LD,ηw(vg, λ)χ(v) dv.

With this definition, EV−αj ,D,ηw(g, λ) is operator-valued; it still acts on H.

Absolute convergence is ensured, for λ ∈ B(V ). In fact, if we restrict
EV−αj ,D,ηw to g ∈ Gαj , by pulling back to SL2(R) by X−1j , we have a one-

dimensional Whittaker function, with data as follows (cf. equation (3.1.6)
of [9]). The complex parameter is sj ∈ C, the K-type is (contained in)⊕

δ Vδj (w) under the action of SO(2) by Dwj , the unitary character on
ZSO(2)(a0) is ηwj , and the generic character on V−αj is determined by µj .
The normalization of ρ inside a one-variable integral works precisely be-
cause sj is in the Λj direction.

In particular, we have a functional equation extending holomorphy to
<sj ≤ 0. This means EV−αj ,D,ηw (when restricted to Gαj ) can be extended

analytically to the convex closure of B(V ) ∪ wαj (B(V )). In other words,
holomorphy extends from B(V ) to the reflection of B(V ) by wαj , and also
includes the αj-wall, which is the common wall of these two chambers. Cru-
cial to Jacquet [9] is that this functional equation for EV−αj ,D,ηw , corre-

sponding to reflection of λ by wαj , remains valid for all g ∈ G, not just Gαj .
This is the computation of Lemma 3.2 of [9].

Before stating this lemma, let us briefly recall more notation from [9].
Let us further record some trivial estimates in the following paragraph.

For each j and for each w, let each δ be so that the projection (under
P (Dwj , ηwj )) of Vδj (w) onto Hwj (ηwj ) is nonzero, and let us define the function

Cwj,δ(s) for s ∈ C as

Cwj,δ(s) =
π

1
2
(qwδ +<s+1)∣∣Γ ( |qwδ |+s+1

2

)∣∣ .
Here qwδ is the integer corresponding to δ. Notice Cwj,δ(s) ≥ 0, and is C∞

on C, but of course not holomorphic. From the discussion above (including
equation (1.5) and an estimate similar to Lemma 1.3 for functions on C1),

Cwj,δ(s) = Oj,δ,ε(e
|s|1+ε), with the constant depending on ε and qwδ , and thus

on δ and j. Let us define the function

Cj(s) = max
w

(max
δ
Cwj,δ(s)).

Then clearly, Cj(s) satisfies the estimate Oε,j(e
|s|1+ε). Here, the constant

depends on ε, and all the possible SO(2)-types δ occurring in
⊕

δ Vδj (w);
and so depends implicitly on Kj , so on j. We record this:

(2.5) Cj(s) = Oε(e
|s|1+ε)
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for all s ∈ C, with the constant depending only on ε, and essentially on the
group G and D, since D is finite-dimensional.

For λ ∈ B(V ), let us define

(2.6) EV−αj (g, λ) =
�

V−αj

L1,1(vg, λ) dv.

The notation L1,1 simply means we are taking a function LD,η, as described
above, but we set both the K-type and the character on M0 to be trivial.
Since the relevant projection operator is the identity, in this situation, we
view L1,1(g, λ) and EV−αj (g, λ) to be complex-valued functions on G×B(V ).

We can now state what we will need from Lemma 3.2 of [9]:

Lemma 2.2 (Lemma 3.2 of [9]). Let µj 6= 0 be as above. Let v◦ ∈ H with
|v◦|H ≤ 1.

(ii) For g ∈ G, we have

EV−αj ,D,η(g, λ)

= ηj(sgn(µj))|µj |sjEV−αj ,D,wαj (η)(g, wαj (λ))Rj(D, η, sj).

(iii) For b > 0, and all w ∈W , there exists a constant B so that

|EV−αj ,D,ηw(g, λ)v◦|H ≤ BCj(sj)EV−α(g, λb)

in the region |<sj | ≤ b and λb = <λ− 1
2(<sj − b)αj.

Notice that wαj (η) = ηwαj . Our contribution here is that we have an
effective estimate for Cj(sj) (estimate (2.5) above), even if D is reducible.
We will refer to this lemma below either as Lemma 2.2, or the effective
version of Lemma 3.2 of [9].

Proof of Lemma 2.2. To see this result, we are using the explicit compu-
tations of Section 4 of [9] for Lϕ(η, s), for the privileged function ϕ, over R.
(See Section 1 of [9] for Lϕ.) Actually, B and Cj(sj) come from the max-
imum principle (see Sections 1 and 3 of [9]). B does not depend on D or
any ηw. This lemma needs the results of Section 1 of [9], most of which are
stated assuming that Dwj is irreducible. In Section 1 of [9], it is pointed out
that results do extend to the (finite) reducible case. We see this here, in that
the function Cj depends upon the possible SO(2)-types δ appearing in the
relevant projection of

⊕
Vδj (w).

Notice that, in part (iii), λ appears on the left hand side, but on the
right, Cj is only a function of sj . Further, in Λ coordinates, λb is exactly a
shift of <λ in the αj direction, until the sj coordinate becomes b. If <sj < 0,
so that λ ∈ wαj (B(V )), the map λ 7→ λb is a reflection of <λ (though not
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necessarily an isometry in either of our coordinate systems) through the
αj-wall.

2.4. Proposition 3.3 of [9]. In this section, we briefly review the proof
of Proposition 3.3 of Jacquet [9] in the case where the underlying field is R.
This was put in for the benefit of the reader, so it will be easy to see how
to modify this proof to obtain effective estimates. We do use the effective
version of Lemma 3.2 of [9] from the previous section.

Let us state Proposition 3.3 of [9]: Let Ψj denote the convex closure (or
hull) of B(V )∪wαj (B(V )). Then holomorphy of ED,η,χ(g, λ) extends to Ψj.
Further, for any λ ∈ Ψj, we have the functional equation

(2.7) ED,η,χ(g, λ) = ηj(sgn(µj))|µj |sjED,wαj (η),χ(g, wαj (λ))Rj(D, η, sj).

For the benefit of the reader, in the remainder of this section, we sketch
the proof of this proposition. Clearly, Ψj consists of the two chambers B(V )
and wαj (B(V )), and the common wall between them, the αj-wall. Fix g ∈ G.
(In [9], g is allowed to vary in a compact set, for uniform convergence issues
on G. This is relevant for continuity in the g variable, using Sections 1 and 3
of [9]. We will not need this.)

For each αj ∈ ∆, let V j be the subgroup of V generated by all nega-
tive roots distinct from −αj . Then V factors as V = V jV−αj . It is known
the Haar measure on V is the product of the Haar measures of these two
subgroups V j and V−αj (of course, suitably normalized).

Let us assume first λ ∈ B(V ). Due to the absolute convergence of
ED,η,χ(g, λ) as an integral over V , using the fact that V factors as above,
and that χ is a character on V , we can write

(2.8) ED,η,χ(g, λ) =
�

V j

EV−αj ,D,η(v
jg, λ)χ(vj) dvj .

Using this integral expression for λ ∈ B(V ), we want to apply Lemma 3.2
of [9] to extend holomorphy to Ψj , with a functional equation.

Let b > 0, and v◦ ∈ H with |v◦|H ≤ 1. Let us assume Ω is a compact
set of Ψj , such that if λ ∈ Ω, then |<sj | ≤ b. With λb defined as above, we
(trivially) have λb ∈ B(V ). By Lemma 2.2 above (the effective version of
Lemma 3.2 of [9]), we have

(2.9) |EV−αj ,D,η(v
jg, λ)v◦|H ≤ BCj(sj)EV−α(vjg, λb).

If we restrict λ to Ω, we can replace the bound BCj(sj) above by just a
constant B′, since Cj is smooth and Ω is compact.

Now, let us suppose λ ∈ Ω. Equation (2.9) gives the estimate

|EV−αj ,D,η(v
jg, λ)v◦|H ≤ B′EV−α(vjg, λb)

for λ ∈ Ω. Notice that EV−αj ,D,η(v
jg, λ) has been analytically continued
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to Ω ⊂ Ψj . Up to the factor χ(vj), this is the integrand in (2.8) initially
defined only for λ ∈ B(V ). Now, we integrate EV−αj ,D,η(v

jg, λ)χ(vj) (which

is now analytic on Ω and satisfies the same bounds as above) over V j . This
gives

|ED,η,χ(g, λ)v◦|H ≤ B′
�

V j

EV−αj (v
jg, λb) dv

j

for λ ∈ Ω. Since λb ∈ B(V ), this integral converges absolutely. In particular,
ED,η,χ(g, λ) has been analytically continued to λ ∈ Ω. Further, convergence
is uniform on Ω.

Now, any point λ ∈ Ψj can be written as |<sj | ≤ b for λ ∈ Ω for some
positive b and some compact set Ω ⊂ Ψj . It follows ED,η,χ(g, λ) has analytic
continuation to Ψj (which, recall, is the convex closure of wαj (B(V ))∪B(V )).
Further, the functional equation (under λ 7→ wαjλ) for ED,η,χ(g, λ) comes
from (and is the same as) the functional equation for EV−αj ,D,η(g, λ) here.

The proof of Theorem 3.4 of [9] is now easy, in the case χ is generic. In
this case, we iterate the functional equation until all chambers are covered.
Lemma 3.4.2 of [9] guarantees us that at each step, the meromorphic oper-
ator Rj is holomorphic. In this way, we cover all (open) chambers, and all
walls between chambers in Cn. This set is connected. The points that the
functional equation cannot reach are the points which are on the intersec-
tion of walls of chambers. These are now covered, by applying the theorem
of Hartogs.

3. Effective estimates. A slight variant of the above sketch of Propo-
sition 3.3 of [9] will be suitable for our purposes. Recall we are fixing g ∈ G.

In the following three subsections we prove many results which are effec-
tive versions of results from [9]. In Section 3.1 we prove an effective estimate
(Lemma 3.1) for ED,ηw,χ(g, λ) in Bε(V ). Here Bε(V ) is most of the posi-
tive Weyl chamber (which we denote by B(V )), depending on ε > 0. In
Section 3.2, we prove effective estimates (Lemma 3.2 and Corollary 3.3)
which correspond to Proposition 3.3 of [9]. Section 3.2 also uses the effective
version (Lemma 2.2 above) of Lemma 3.2 of [9]. In Section 3.3, we prove
effective estimates (Proposition 3.4 and Corollary 3.5) which correspond to
Theorem 3.4 of [9]. Indeed, Corollary 3.5 is an estimate on Mε. Here Mε is
most of Cn. More specifically, the complement of Mε is contained in a small
region (depending on ε) surrounding the intersection of walls of all Weyl
chambers.

Due to the functional equation, we need to keep track of estimates of
ED,ηw,χ for w ∈ W . An estimate for ED,η,χ(g, λ), for λ /∈ Mε, will come in
Section 5. This will need the geometry of Section 4.
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3.1. Effective Lemma 3.2 of [9]. In this section, we prove an effective
estimate (Lemma 3.1) for the Whittaker function ED,ηw,χ(g, λ) in a set that
is close to the positive Weyl chamber.

Let us define Bε(V ) to be the closure of the set of points in B(V ) that
are at least a distance of ε away from the walls of B(V ). Here, we are taking
real Euclidean distance. We will be precise with coordinates, immediately
below.

For each j, and any ε > 0, let us define the function

bj(ε) = 2ε/‖αj‖.
In coordinates, using the defining properties of the Λj , along with the Eu-
clidean properties of the given inner product 〈·, ·〉 on a∗R, we have

Bε(V ) = {λ | <sj ≥ bj(ε) ∀j}.
See Figure 1 below, where the example of the real projection of rank 2 is
sketched.
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Fig. 1

Lemma 3.1. Suppose g ∈ G is fixed, and let v◦ ∈ H with |v◦|H ≤ 1. For

λ ∈ Bε(V ), and all w ∈ W , we have |ED,ηw,χ(g, λ)v◦|H = Oε(e
|Λ|1+εΛ ). The

bound depends on ε, g, and G.

Proof. This follows from the original integral expression for ED,ηw,χ(g, λ).
Let λ ∈ Bε(V ). Then <sj ≥ bj(ε). Using the integral expression

ED,ηw,χ(g, λ)v◦ =
�

V

LD,ηw(vg, λ)v◦ · χ(v) dv,

we can obtain a trivial bound by taking the H-norm inside the integral.
In doing this, D, ηw, χ all become trivial and λ becomes <λ. Now, this

new integral factors into rank one intertwining integrals, by the theorem of
Gindikin and Karpelevich. Let us assume (for this paragraph) that g, which
is fixed, equals the identity, i.e., g = e. Since all data are trivial, each factor is
(up to a constant) of the form Γ (t)/Γ (t+ 1/2) with t ∈ R depending on <λ.
(This is an explicit computation. See Theorem 6.14 of Helgason [8]. In this
computation, g = e is a technical necessity. Note this reference treats a more
general case, and uses different notation.) The number of factors appearing
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is equal to the dimension of n. We may thus associate each factor to a root
in ψ+. The t corresponding to a particular factor α depends upon how the
root α ∈ ψ+ is written as a sum of nonnegative roots from ∆. In all factors,
we have t � ε, with the constant depending only on G. Combining the
facts that Γ (t)/Γ (t+ 1/2) → 0 as t → ∞, and Γ (t)/Γ (t+ 1/2) ∼ 1/

√
πt

as t→ 0, we have the estimate |ED,ηw,χ(e, λ)v◦|H � 1/εdim n for λ ∈ Bε(V ).
So, actually |ED,ηw,χ(e, λ)v◦|H is bounded for λ ∈ Bε(V ). This shows the
lemma in the case g = e. So, the computation of Theorem 6.14 of [8] gives
an effective upper bound for the divergence rate of the trivial estimate of
ED,ηw,χ(e, λ) as λ approaches any wall of B(V ).

Let us now consider the case where g is still fixed, but g 6= e. Let us write
g = wlg̃w

−1
l . (Recall wl is the longest element in W , and V = wlNw

−1
l . We

assume wl ∈ K.) Let us write

g̃ = ñãm̃0k̃ in terms of the Iwasawa decomposition NAM0K.

(Since M0 commutes with A and normalizes N , we can write our minimal
parabolic subgroup M0AN as NAM0.) Since M0 ⊂ K, m̃0 and k̃ may not
be unique. So, we have

g = v(g)a′m′0(wlk̃w
−1
l ),

where clearly wlk̃w
−1
l ∈ K, v(g) = wlñw

−1
l ∈ V , a′ ∈ A, and m′0 ∈M0, since

a′m′0 equals the maximal torus element ãm̃0 acted on by wl. Let A(h) denote
the projection of any element h ∈ G to the split component part, when h
is written in its Iwasawa decomposition. Following the method above, it
follows we are interested in the integral�

V

(A(vg))<λ+ρ dv =
�

V

(A(v · v(g)a′))<λ+ρ dv.

Since V is unipotent, v(g) is absorbed into the measure, by a change of vari-
able without changing the integral. By the change of variable v 7→ a′v(a′)−1,
the above integral is

(a′)−2ρ
�

V

(A(a′v))<λ+ρ dv.

Now, clearly, any element v ∈ V has an N component in terms of its Iwasawa
decomposition. Since A normalizes N , we have easily A(a′v) = a′A(v). So,
the above expression is

(a′)<λ−ρ
�

V

(A(v))<λ+ρ dv.

This integral is exactly the computation of the last paragraph, and so we
know it is bounded, with the constant depending on ε and G. It follows that
|ED,ηw,χ(g, λ)|H = Oε(e

log(a′)<Λ), with the constant depending on ε, G, and
a′ (and so on g).
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For 0 < ε′ < ε we have Bε(V ) ⊂ Bε′(V ), so we can apply Lemma 1.3
on Bε(V ). This gives the estimate, i.e.,

|ED,ηw,χ(g, λ)v◦|H = Oε(e
|Λ|1+εΛ ),

with the constant depending on ε, G, and g, under the assumption |v◦|H
≤ 1.

3.2. Effective Proposition 3.3 of [9]. In this section, we prove ef-
fective estimates for ED,ηw,χ(g, λ) (Lemma 3.2 and Corollary 3.3) which
parallel Proposition 3.3 of [9]. Here, the effective version of Lemma 3.2 of [9]
is crucial.

For each each simple root αj , let us define Bj
ε (V ) to be the subset of Ψj

with the following properties. For each j, recall bj(ε) = 2ε/‖αj‖. For λ

to be in Bj
ε (V ), we require that λ ∈ Ψj , |<sj | ≤ bj(ε), and that λbj(ε) is

on the boundary of Bε(V ) closest (using real Euclidean distance) to the
αj-wall. Using the defining properties of {Λj}, the fact that |<sj | ≤ bj(ε)
automatically shows that the Euclidean distance from <λ to the αj-wall
is ≤ ε, but this alone does not guarantee λbj(ε) ∈ Bε(V ).

Let us define B̃ε(V ) =
⋃
j B

j
ε (V ). See Figure 2, where we have sketched

B̃ε(V ) for our previous rank 2 example. Note this is still the real projection
of a∗C. Here <s1 and <s2 are drawn in the directions of Λ1 and Λ2 respec-

tively. Moreover, B̃ε(V ) consists of the union of the “shaded” regions. In

Section 4, we will give a precise description in coordinates of each Bj
ε (V ).
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Lemma 3.2. Suppose g ∈ G is fixed, and let v◦ ∈ H with |v◦|H ≤ 1.
Then, for λ ∈ B̃ε(V ), and all w ∈W , we have the estimate

|ED,ηw,χ(g, λ)v◦|H = Oε(e
2|λ|1+εΛ ).

Here, the constant depends on ε, g, G, D, and χ.
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Proof. To see this, assume λ ∈ B̃ε(V ), and consider once again the inte-
gral representation

(3.1) ED,ηw,χ(g, λ)v◦ =
�

V j

EV−αj ,D,ηw(vjg, λ)v◦ · χ(vj) dvj .

(Since λ ∈ B̃ε(V ), there is a particular (possibly not unique) αj-wall so
that the real Euclidean distance from <λ to this αj-wall is minimal. We
assume the j above is from this wall.) By part (iii) of the effective version
of Lemma 3.2 of [9] (Lemma 2.2 above), we know

|EV−αj ,D,ηw(vjg, λ)v◦|H ≤ BjCj(sj)EV−α(vjg, λb).

Here λb = λbj(ε). This estimate is valid on all of B̃ε(V ), not just on a compact
subset of Ψj used in [9], which is relevant for uniform convergence issues, for
continuity in the G variable. A constant B appears in the original lemma,
which depends upon bj(ε) (for us), as well as on µj . We have denoted this
constant by Bj , and we see the dependence is on ε, G, and χ (since µj is
defined by χ).

Let us replace the integrand in (3.1) with this estimate. Since χ has
modulus 1, we have

|ED,ηw,χ(g, λ)v◦|H ≤ (max
j
Bj)(max

j
Cj(sj))

�

V j

EV−α(vjg, λb) dv
j .

Since we are taking maxj Cj(sj), it does not matter which Bj
ε (V ) the point

λ is in, for λ ∈ B̃ε(V ). Recall that the components of λb are real, and by
definition, λb = λbj(ε) is on the boundary of Bε(V ). Recall that in the integral

defining EV−αj (see (2.6) above) all data are trivial. Consequently, when we

integrate EV−αj (v
jg, λb), we obtain the exact estimate used in Lemma 3.1.

Thus, by Lemma 3.1, this integral term is Oε(e
|λ|1+εΛ ), since λbj(ε) ∈ Bε(V ).

Here the constant depends on ε, g, and G.

By estimate (2.5) above, the maxj C(sj) term here is Oε(e
|λ|1+εΛ ), with the

constant depending only on ε, G, and D. Combining these results shows the
lemma. Notice we have picked up a dependence on χ in our estimate. Since
D restricted to M0 is a direct sum of characters, if ηw is not a combination
of some of these characters, then H(D, ηw) is 0. Consequently, we can absorb
any dependence on ηw into a dependence on D.

Let us define Mε(V ) = (B(V )∩ B̃ε(V ))∪Bε(V ). Here B(V ) denotes the

closure of B(V ). In coordinates (in the Λ basis), B(V ) = {λ | <sj ≥ 0 ∀j}. In
Section 4, we will need to be more precise with the description of coordinates
of Mε(V ) and of each B(V ) ∩Bj

ε (V ).
See Figure 3 below, where we have drawn Mε(V ). Note this figure is

magnified slightly over the previous figures. Notice also that most of the
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walls of B(V ) are included in Mε(V ).
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If 0 < ε′ < ε then Mε(V ) ⊂Mε′(V ), so we may apply Lemma 1.3 to Mε(V ).
Combining Lemmas 3.1 and 3.2 and applying Lemma 1.3 gives us:

Corollary 3.3. Suppose g ∈ G is fixed, and let v◦ ∈ H with |v◦|H ≤ 1.

For λ ∈ Mε(V ), and all w ∈ W , we have |ED,ηw,χ(g, λ)v◦|H = Oε(e
|λ|1+εΛ ).

Here the constant depends on ε, g, G, D, and χ.

3.3. Effective Theorem 3.4 of [9]. In this section, we prove effective
estimates for ED,ηw,χ(g, λ) (Proposition 3.4 and Corollary 3.5) that parallel
Theorem 3.4 of [9]. This is done, of course, by iterating the functional equa-
tion. We actually obtain an estimate on the set Mε (see definition below)
which is most of Cn.

We must now obtain estimates for ED,ηw,χ(g, λ) in the other chambers.
For this, we of course need the functional equation. With our assumption χ is
generic (and g is fixed), let us state what we need from Theorem 3.4 of [9]:
Holomorphy of ED,ηw,χ(g, λ) extends to all of Cn. Further, the functional
equation, under λ 7→ wαjλ, is for any λ ∈ Cn,

(3.2) ED,ηw,χ(g, λ) = ηwj (sgn(µj))|µj |sjED,wαj (ηw),χ(g, wαj (λ))Rj(D, ηw, sj).

(Notice this is the same as (2.7) but with no restriction on λ.)

We need a bound on the operator Rj(D, ηw, sj). In the following few
paragraphs, we briefly record some trivial estimates.

Put s = sj . For w ∈W , Rj(D, ηw, s) is defined above; see the discussion
surrounding (2.4). We must recall how Rj(D, ηw, s) was constructed, so we
refer to (2.1) and (2.2) (with data d = Dwj , y = ηwj , and H = Hwj ). We see
by (2.1) that

|φwδ (s)| =
∣∣∣∣Γ(1− s+ |qwδ |

2

)∣∣∣∣ π<s∣∣Γ (1+s+|qwδ |2

)∣∣ .
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Here φwδ denotes φδ, where δ is an irreducible representation appearing in
Hwj =

⊕
δ Vδj (w). Each δ depends on j and w. Further, qwδ is the integer

corresponding to each such δ. The first Γ factor here is Oj,w,δ,ε(e
|s|1+ε) in

the half-plane <s ≤ 0, using (1.6). Obviously, the constant will depend on j,

w, ε, and qwδ (and so on δ). The fraction on the right above is Oj,w,δ,ε(e
|s|1+ε),

valid for s ∈ C in view of (1.5). Once again, the constant depends on j, w, ε,
and δ. Both estimates here are using estimates similar to Lemma 1.3 for
functions on C1.

Let us define

Φj(s) = max
w

(max
δ
|φwδ (s)|),

the inner maximum being taken over all δ in the direct sum Hwj =
⊕
Vδj (w),

so that Vδj (w) does not project to zero under P (Dwj , ηwj ). It follows, for
<s ≤ 0, that

(3.3) Φj(s) = Oε(e
|s|1+ε),

by the above paragraph. The constant depends on ε, G, and D.

For each w ∈ W and for each j, let γwj denote the number of isotypic

subspaces Vδj (w) occurring in the direct sum Hwj =
⊕
Vδj (w). Let us put

γ = maxj(maxw γ
w
j ). From (3.3), we have, by estimating trivially (if v◦ ∈ H

with |v◦|H ≤ 1),

(3.4) |Rj(D, ηw, sj)v◦|H = γOε(e
|λ|1+εΛ )

if <sj ≤ 0. Notice the right hand side above does not depend on j. (We
have done this just for convenience later.) Further, since γ depends on D
and K, we can absorb this into the constant in the Oε term. Moreover,
γ depends on η, but is bounded above depending on D alone, since D is
finite-dimensional. So, we see the dependence is once again on ε, G, and D.

We would like to use the functional equation (3.2), Corollary 3.3, and
estimate (3.4) to obtain an estimate for all of Cn. This is the estimate
generated by acting on Mε(V ) by the entire Weyl group. We will do this,
but the set generated this way contains holes. We will obtain an estimate
on the remaining region by an effective computation using convexity in Cn.

Let us define Mε =
⋃
w∈W w(Mε(V )). Let us put µ = maxj{|µj |, |µj |−1}.

Recall the notion of the length of a Weyl element: l(w) is the smallest
number of simple reflections wαj needed to write w as a product of these wαj .
Let us extend this notion to Mε as follows. For λ ∈ Mε, let us put l(λ) =
min{l(w) | w−1(λ) ∈ Mε(V )}. If λ ∈ Mε(V ), then l(λ) = 0. Recall l0
denotes the length of the longest Weyl element. For integers q between 0
and l0, define Bq to be

⋃
w w(Mε(V )) where the union is over all elements w

of length q. Then B0 = Mε(V ).
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In Figure 4 below, the real projection of our rank 2 example is sketched.
Here, Mε consists of all of R2, with the (open) octagon at the origin removed.
Since Mε is a tube domain, the octagon is the real projection of the comple-
ment in C2 of Mε, i.e., C2 \Mε. We discuss briefly the simple geometry of
what happens in higher rank after our final figure, in Section 6.1. (If n ≥ 3
then the real projection of Cn \Mε is not compact.)
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Proposition 3.4. Suppose g ∈ G is fixed, and let v◦ ∈ H with |v◦|H ≤ 1.
Then for λ ∈Mε and all w ∈W , we have

|ED,ηw,χ(g, λ)v◦|H = µ
c2l(λ)−1

c2−1
|λ|Λ ·Oε(e(c

2(l(λ)+1)|λ|Λ)1+ε).

Here the constant depends on ε, g, G, D, and χ.

Proof. This can be seen using induction on l(λ), in a similar way to [9].
Since c > 1, the inductive step (λ ∈ B0) is taken care of by Corollary 3.3.
(We also see a dependence of the constant, from Corollary 3.3.) Let us
assume the result is true for all λ ∈ Bq.

Let us assume now λ ∈ Mε with l(λ) = q + 1. Let us assume λ is in a
chamber, and not on a wall. Then there exists w′ ∈ W with l(w′) = q + 1
and (w′)−1(λ) ∈Mε(V ) ∩B(V ).

Since l(w′) = q+1, by definition there exist j and w′′ ∈W with l(w′′) = q
such that we can write w′ = wαjw

′′. By Lemma 3.4.2 of [9], we have <sj ≤ 0.
Further, l(wαj (λ)) = q since wαj (λ) ∈ w′′(B(V )); within the Weyl group,
since each wαj is a reflection, w2

αj = 1. Thus (wαj )
−1 = wαj . We can now use

the functional equation (3.2). (This equation in general is not scalar-valued.
The estimate (3.4) and the estimate of Corollary 3.3 are using the norm
in H.)

By the inductive hypothesis (recall l(wαj (λ)) = q), the functional equa-
tion (3.2), and (3.4) (in which <sj ≤ 0 is crucial), we have, estimating
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trivially,

|ED,ηw,χ(g, λ)v◦|H ≤ µ|λ|Λ
(
µ
c2q−1

c2−1
|wαj (λ)|Λ ·Oε(e(c

2(q+1)|wαj (λ)|Λ)
1+ε

)
)
.

Here we are applying the inductive hypothesis to the character wαj (η
w)

= ηwαj ·w, with wαj (λ) ∈ Bq. Since the given inner product 〈·, ·〉 on a∗R is
invariant under W , so is 〈·, ·〉C on a∗C. Thus,

|wαj (λ)|Λ ≤ c‖wαj (λ)‖Cn = c‖λ‖Cn ≤ c2|λ|Λ,
by two applications of Lemma 1.2. Inserting these estimates above, we have

|ED,ηw,χ(g, λ)v◦|H ≤ µ
( c

2q−1

c2−1
c2+1)|λ|Λ ·Oε(e(c

2(q+1)c2|λ|Λ)1+ε).

This is exactly the estimate of the proposition, with λ ∈ Bq+1. The only
restriction for λ ∈ Mε, with l(λ) = q + 1, is that we assumed λ was in a
chamber, not on a wall. This restriction can now be removed, just by the
continuity of |ED,ηw,χ(g, λ)|H, since we know ED,ηw,χ(g, λ) is holomorphic on
all of Cn. Consequently, the proposition holds for λ ∈Mε with l(w) = q+ 1,
and the full result follows by induction.

As a consequence, we have:

Corollary 3.5. Suppose g ∈ G is fixed, and let v◦ ∈ H with
|v◦|H ≤ 1. Then for λ ∈Mε(V ), and all w ∈W , we have |ED,ηw,χ(g, λ)v◦|H
= Oε(e

|λ|1+εΛ ). Here the constant depends on ε, g, G, D, and χ.

Proof. To see this, recall l0 denotes the length of the longest element
of W . By Proposition 3.4, since c > 1, it follows that an upper bound for
|ED,ηw,χ(g, λ)v◦|H for λ ∈Mε is

Oε
(
e
[(2(l0+1))1+ε+ c2l0−1

c2−1
log µ]|λ|1+εΛ

)
,

where the constant is the same as in Corollary 3.3. Now, l0 depends on W ,
hence G. Trivially, c depends on G. Moreover, µ depends on χ and V ,
hence G. Consequently, the constant term in brackets depends on ε, χ,
and G.

Now, if 0 < ε′ < ε we have Mε ⊂Mε′ and so we can apply Lemma 1.3 to
the set Mε. Thus by Lemma 1.3, the estimate above can be absorbed into

an estimate of the form Oε(e
|λ|1+εΛ ), for λ ∈Mε.

Since |λ|Λ ≤ c‖λ‖Cn by Lemma 1.2, we will also have

|ED,ηw,χ(g, λ)v◦|H = Oε(e
‖λ‖1+εCn )

using the comments following Lemma 1.3. This is under the same assump-
tions as above: λ ∈ Mε, g is fixed, and all w ∈ W . The constant is not the
same as in Corollary 3.5, but will still depend on ε, g, G, D, and χ.
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4. Simple geometry of a∗C. In this section, we prove results (Lem-
mas 4.1 and 4.2) concerning the geometry of Mε, and in particular how the
convex closure of Mε contains Cn \Mε. Recall we have defined above

Mε(V ) = (B(V ) ∩ B̃ε(V )) ∪Bε(V ) and Mε =
⋃
w∈W

w(Mε(V )).

Recall Corollary 3.5 above gives us the desired estimate for ED,η,χ(g, λ),
with λ ∈Mε.

Thus, we need an estimate in Cn \Mε. It turns out the real projection
of this set is contained within a small Euclidean distance of a finite number
of hyperplanes in Rn. This is the conclusion of Lemma 4.1 below, where of
course ε is relevant. So, in essence, the real projection of Mε is already most
of Rn.

We still need to be precise in how the convex closure of Mε contains
Cn \Mε. We will be using simple Euclidean geometry for Lemma 4.1, that
is, Mε is invariant under W . Lemma 4.2 gives us a precise description of this.
It is needed for an effective estimate for |ED,η,χ(g, λ)v◦|H, for λ ∈ Cn \Mε,
in the following section.

In what follows, it will be useful to have a precise description in coordi-
nates of Mε(V ), and thus of B(V ) ∩ B̃ε(V ). Now

B(V ) ∩ B̃ε(V ) = B(V ) ∩
⋃
j

Bj
ε (V ) =

⋃
j

(B(V ) ∩Bj
ε (V )).

Let us therefore describe in coordinates each B(V ) ∩Bj
ε (V ).

Thus, fix j1 and suppose λ ∈ B(V ) ∩ Bj1
ε (V ). Recall Ψj1 is the convex

closure of B(V ) and wαj1 (B(V )). From the above, if λ ∈ Bj1
ε (V ), we have

first λ ∈ Ψj1 , with the restrictions

|<sj1 | ≤ bj1(ε) and λbj1 (ε) ∈ Bε(V ).

Recall
λbj1 (ε) = <λ+ 1

2(bj1(ε)−<sj1)αj1 .

Now, we can write

αj1 =

n∑
j=1

βj(j1)Λj , with the real coefficients βj(j1) =
2〈αj1 , αj〉
‖αj‖2

.

Consequently,

λbj1 (ε) =
n∑
j=1

(
<sj + (bj1(ε)−<sj1)

〈αj1 , αj〉
‖αj‖2

)
Λj .

(Notice the coefficient of Λj1 is bj1(ε).) The condition λbj1 (ε) ∈ Bε(V ) then
forces

<sj + (bj1(ε)−<sj1)
〈αj1 , αj〉
‖αj‖2

≥ bj(ε) for each j 6= j1.
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Thus, we can finally write

(4.1) λ ∈ B(V ) ∩Bj1
ε (V )⇒ 0 ≤ <sj1 ≤ bj1(ε) and

<sj ≥ bj(ε)− (bj1(ε)−<sj1)
〈αj1 , αj〉
‖αj‖2

∀j 6= j1.

Let us proceed with a few more definitions. For j1 6= j2, let Qj1,j2 denote
the intersection of the αj1-wall and αj2-wall of B(V ). Let us define

F =
⋃
w∈W

w(Qj1,j2),

where the union is also over all j1 6= j2. Now, each <Qj1,j2 is a hyperplane
of Rn of corank 2. (This is why the geometry is a little trivial in the n = 2
case.) There are

(
n
2

)
such hyperplanes <Qj1,j2 . It follows that the number

of corank 2 hyperplanes that <F consists of is trivially bounded by |W |
(
n
2

)
,

where |W | denotes the order of W .
For λ ∈ Cn, and each r > 0, let us define

Dr(λ) = {ν ∈ Cn | ‖<ν −<λ‖ ≤ r}.
Then Dr(λ) is a tube domain. It consists of all points in Cn that project to
the ball in Rn of radius r (in Euclidean distance) centered about <λ. (Recall
‖<ν −<λ‖ is the real Euclidean distance between <λ and <ν.) If H is any
subset of Cn, let

Dr(H) = {ν ∈ Cn | ∃h ∈ H with ν ∈ Dr(h)},
with the obvious similar definition for DΛ

r (H).
Let us define the constant

d = max
j

1

‖αj‖
.

Clearly, d depends only on G.

Lemma 4.1. Cn \Mε is contained in D5εd(F ).

Proof. To see this, first notice that Mε and F are invariant by W . Since
we are only concerned with real Euclidean distance using Dr, we need only
show the lemma for λ ∈ B(V ) \Mε(V ). (Real Euclidean distance is also
invariant by W .) In this lemma, we will be using the Λ basis, where λ =
(s1, . . . , sn) in coordinates.

Let us assume λ ∈ B(V ), but λ /∈ Mε(V ). Then λ /∈ Bε(V ). By the
definition above, there exists j1 with 0 ≤ <sj1 < bj1(ε). Recall the definition

of Mε(V ) and Bj
ε (V ). Since λ /∈Mε(V ), we have λ /∈ Bj

ε (V )∩B(V ) for all j.
If we look at coordinates for what this means for j1, by (4.1) we see there
exists j2 6= j1 with

0 ≤ <sj2 < bj2(ε)− (bj1(ε)−<sj1)
〈αj1 , αj2〉
‖αj2‖2

.
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Notice the term on the right here is greater than or equal to bj2(ε) since
0 ≤ <sj1 < bj1(ε) and 〈αj1 , αj2〉 ≤ 0.

Using the Cauchy–Schwarz inequality in Rn for the given inner prod-
uct 〈·, ·〉, in addition to the facts that <sj1 ≥ 0 and bj1(ε) = 2ε/‖αj1‖, one
can easily show

bj2(ε)− (bj1(ε)−<sj1)
〈αj1 , αj2〉
‖αj2‖2

< 2bj2(ε).

Summarizing, if λ ∈ B(V ) and λ /∈ Mε(V ), there exist j1 and j2 (j1 6= j2)
such that

0 ≤ <sj < bj1(ε) and 0 ≤ <sj < 2bj2(ε).

Let λ̃ ∈ B(V ) be obtained from λ by setting the j1 and j2 coordinates (in
the Λ basis) zero, and keeping all other coordinates fixed. Then

‖<λ−<λ̃‖ <
√
bj1(ε)2 + 4bj2(ε)2 < 5εd.

Since λ̃ ∈ Qj1,j2 (by construction), λ̃ ∈ F , and the proof is complete.

Recall the orthonormal basis e = {e1, . . . , en}. If H is any subset of Cn,
for each j, let us write

H + Rej = {λ+ rej | λ ∈ H and r ∈ R}.
For each j, let us define Fj = F + Rej . Trivially, <Qj1,j2 + Rej is a hy-

perplane in Rn of corank either 1 or 2, depending on whether ej is contained
in <Qj1,j2 . It is easy to show that <Fj is contained in |W |

(
n
2

)
hyperplanes

of corank 1 in Rn.
Let us define

r1 = 2n−1n2(n− 1)|W | 5εd+ 2n

πn/2/Γ (n/2 + 1)
.

The denominator here, πn/2/Γ (n/2 + 1), is relevant because it is the Rn-
volume of the unit ball in Rn (in the e basis).

Lemma 4.2. If λ ∈ Cn and r > max{r1, 5εd + 2n}, there exists z ∈ Cn
with ‖λ− z‖Cn < r and D2n(z) + Rej ⊂Mε for all j.

Notice first that λ has no restriction here; that is, λ could be any point
in Cn.

Proof of Lemma 4.2. The result can be seen from simple geometry and
crude combinatorics. Recall Dr(λ) above is a tube domain consisting of
all points in Cn that project to the (open) ball of Euclidean radius r and
center <λ; <Dr(λ) is this ball.

Let us denote Rn-volume (i.e., Lebesgue measure on a∗R) by vol. Now,

vol(<Dr(λ)) is πn/2rn/Γ (n/2 + 1). If H denotes any hyperplane of Rn of
corank greater than or equal to 1, clearly (for r > t > 0)

vol(<Dr(λ) ∩ <Dt(H)) ≤ 2t(2r)n−1.
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Recall <Fj is contained in |W |
(
n
2

)
hyperplanes of corank 1. Thus

⋃
j <Fj

consists of n ·
(
n
2

)
|W | such hyperplanes. It follows that

vol
(
<D5εd+2n

(⋃
j

<Fj
)
∩ <Dr(λ)

)
≤ 2n−1rn−1(5εd+ 2n)(n2(n− 1)|W |)

when r > 5εd+ 2n, which we are assuming.
Using the above inequality, when r > r1, we have

vol
(
<D5εd+2n

(⋃
j

<Fj
)
∩ <Dr(λ)

)
< <Dr(λ) =

πn/2rn

Γ (n/2 + 1)
,

and so there exists a z ∈ <Dr(λ) with z /∈ <D5εd+2n(<Fj) for all j. By the
definitions and properties of Euclidean distance, we deduce that

<D2n(z) ∩ (<D5εd(<F ) + Rej) = ∅ for all j.

Since all Cn sets here are tube domains, we may assume z ∈ Dr(λ) with
z /∈ D5εd+2n(Fj) for all j, with no restriction on =z.

By the definitions, it is easy to see this means

(D2n(z) + Rej) ∩D5εd(F ) = ∅ for all j.

We have no restriction on =z yet. Thus, for each j, D2n(z)+Rej ⊂Cn is con-
tained in the complement of D5εd(F ). By Lemma 4.1, we have D2n(z)+Rej
⊂Mε for each j.

The final conclusion of the lemma is verified, with no restriction on =z,
for z ∈ Dr(λ). All that is left to show is that ‖λ−z‖Cn < r. Since z ∈ Dr(λ),
this follows trivially if we now specify =z = =λ, and the proof is complete.

5. Cn analysis. In this section, we prove our main result, Theorem 5.2.
However, we first prove an effective estimate for ED,η,χ(g, λ) (this is

Proposition 5.1), for λ /∈ Mε, using the geometric results of the previous
section, along with convexity in Cn. Proposition 5.1 and Corollary 3.5 easily
give us Theorem 5.2. If λ /∈ Mε, we obtain an estimate at λ, by actually
expanding around the point z, given by Lemma 4.2. An effective convexity
estimate is easy to obtain, since λ and z are close to each other, within a
distance (in the ‖ · ‖Cn norm) independent of λ.

Let us define
r2 = max{r1, 5εd+ 2n}+ 1.

Then r2 > 5, since n ≥ 2.
Suppose λ /∈ Mε. For the rest of this section, λ is fixed. Moreover, ν

will be our complex multi-variable, and we will be using the e basis. Then
ν =

∑n
j=1 νjej where νi ∈ C.

Let v◦, ṽ◦ ∈ H, and for the rest of this section, let us put

f(ν) = 〈ED,η,χ(g, ν)v◦, ṽ◦〉H.
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Without loss of generality, let us assume |v◦|H ≤ 1 and |ṽ◦|H ≤ 1. We have
been doing this in using v◦ prior to this point.

Proposition 5.1. Suppose g ∈ G is fixed, and λ /∈ Mε, v
◦, and ṽ◦ are

as immediately above. Then, given any ε > 0, we have

|f(λ)| = Oε(e
‖λ‖1+εCn ).

The constant here depends on ε, g, G, D, and χ, but not on λ /∈Mε.

Defining f as above allows us to use a scalar-valued multiple Cauchy
integral to get at the coefficients of f . This is done just for convenience.

Proof of Proposition 5.1. Recall λ /∈Mε is fixed.

By Lemma 4.2, there exists z ∈ Cn with

‖λ− z‖Cn < r2 and D2n(z) + Rej ⊂Mε for all j.

As above, let z =
∑n

j=1 zjej be the coordinate representation of z in the

e basis, where zj ∈ C. From this point on, we also assume that z is fixed.

For each j, let us define the polydisk (with ν as the complex multi-
variable)

C(j) = {ν ∈ Cn | |νj − zj | < r2n2 and |νi − zi| < 2 for all i 6= j}.
Recall ν =

∑n
j=1 νjej . Notice that z is the center of each polydisk. It is easy

to see that for each j, C(j) and its closure are contained in D2n(z) + Rej .
Consequently, they are contained in Mε, by Lemma 4.2.

Now, f is holomorphic at ν = z, by Theorem 3.4 of [9]. Thus, it has a
multiple Taylor series. Then

(5.1) f(ν) =
∑

i1,...,in≥0
ci1,...,in(ν1 − z1)i1 · · · (νn − zn)in .

We know this series must converge absolutely on all of Cn, but we do not
have an estimate yet at ν = λ, since λ /∈Mε.

For each j, we do know, by the multi-variable Cauchy integral, that

ci1,...,in =
1

(2πi)n

�
. . .

�

∂C(j)

f(ζ1, . . . , ζn)

(ζ1 − z1)i1+1 · · · (ζn − zn)in+1
dζ1 · · · dζn

for all j. Here ∂C(j) denotes the obvious polycircle, the boundary of C(j).
The point we take advantage of here is that ∂C(j) ⊂Mε, and here we have
an estimate for f .

By the remarks following Corollary 3.5, |f(ζ)|= Oε(e
‖ζ‖1+εCn ) for ζ ∈ ∂C(j).

Consequently,

|ci1,...,in | ≤
maxζ∈∂C(j)Oε(e

‖ζ‖1+εCn )

(2π)n

�
. . .

�

∂C(j)

d|ζ1| · · · d|ζn|∏n
t=1 |ζt − zt|it+1

.
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This integral can easily be evaluated. Using the definition of C(j), we see

|ci1,...,in | ≤
maxζ∈∂C(j)Oε(e

‖ζ‖1+εCn )

2
∑
t 6=j it(r2n2 )ij

.

The constant in the Oε term here is from Corollary 3.5.
Now,

‖ζ‖Cn = ‖λ+ (z − λ) + (ζ − z)‖Cn ≤ ‖λ‖Cn + ‖z − λ‖Cn + ‖ζ − z‖Cn ,
and so

‖ζ‖Cn ≤ ‖λ‖Cn + r2 +
√
r4n2 + 4(n− 1) for ζ ∈ ∂C(j).

It follows by Lemma 1.3 that

(5.2) |ci1,...,in | ≤
2ijOε(e

‖λ‖1+εCn )

2
∑n
t=1 it(r2n2 )ij

.

The constant in the Oε term here depends on the constants from Corol-
lary 3.5, as well as from Lemma 1.3, but in particular is independent of λ.
(So, the dependence is once again on ε, g, G, D, and χ, since r2 depends on
n, d, and ε; hence on G and ε.)

This estimate (5.2) is valid for all j. So, multiplying each estimate and
taking nth roots, we arrive at

(5.3) |ci1,...,in | ≤
Oε(e

‖λ‖1+εCn )

(2(n−1)/nr22)
∑n
t=1 it

.

Let us now estimate f(λ). Now ‖λ− z‖Cn ≤ r2. By (5.1), we have

|f(λ)| ≤
∑

i1,...,in≥0
|ci1,...,in |r

∑n
t=1 it

2 .

Inserting estimate (5.3) for |ci1,...,in |, we have

|f(λ)| ≤ Oε(e‖λ‖
1+ε
Cn )

∑
i1,...,in≥0

(
1

2(n−1)/nr2

)∑n
t=1 it

.

By the definitions, r2 > 5, and this gives us

|f(λ)| < Oε(e
‖λ‖1+εCn )

∑
i1,...,in≥0

5−
∑n
t=1 it .

This series converges, depending only on n, and we have finally shown

|f(λ)| ≤ Oε(e‖λ‖
1+ε
Cn ),

where the constant depends on ε, g, G, D, and χ, but not on λ. By the

comments after Lemma 1.3 it follows that |f(λ)| = Oε(e
|λ|1+εΛ ) for λ /∈ Mε,

with the constant also depending on ε, g, G, D, and χ.
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Clearly, combining Proposition 5.1 and Corollary 3.5 gives us the main
result of this paper.

Theorem 5.2. Suppose g ∈ G is fixed, and let v◦ ∈ H with |v◦|H ≤ 1.
Given any ε > 0, we have

|ED,η,χ(g, λ)v◦|H = Oε(e
|λ|1+εΛ ) for all λ ∈ a∗C.

The constant here depends on ε, g, G, D, and χ.

6. Remarks. In the following three subsections, we record several re-
marks about Theorem 5.2. In Section 6.1 we discuss the convexity analysis
in Cn that was used in Section 5. In particular, we have drawn a figure
which demonstrates all of this analysis. This figure is the real projection of
the rank 2 example that we have been previously using. We also discuss the
geometry in higher rank. In Section 6.2 we sketch the modifications neces-
sary to extend our main result to complex groups. In Section 6.3 we show
the trivial case of our result for n = 1. (This was technically left out above.)

6.1. Cn-analysis remarks. In this section, we wish to show how our
simple Cn-analysis above is a simple case of the general principle that holo-
morphy in Cn extends to the convex closure of a domain. We have drawn a
figure below (Figure 5) which shows the real projection of all of this analysis,
for a rank 2 example. We also discuss what happens geometrically in higher
rank.

For a several complex variables reference, we use the book of Bochner
and Martin [1]. We will state an easily proved adaptation of Theorem 10
from Section 5 of Chapter 5 of [1] (p. 93).

Fix z = (z1, . . . , zn) ∈ Cn. Denote by C(z, %j) the polydisk

{λ = (s1, . . . , sn) ∈ Cn | |zj − sj | < %j} for j = 1, . . . , n.

Theorem. Let f(s1, . . . , sn) be holomorphic in the n polydisks C(z, %i,j)
for i = 1, . . . , n. Then f has a holomorphic continuation to the union of all
polydisks of the form C(z, %j,θ) where

log %j,θ =
∑
i

θi log %i,j ,

the continuation being effected by the Taylor series expansion for f at z.
Here, θi ≥ 0 and

∑
θi = 1.

(See [1]. The theorem in [1] only assumes there are two polydisks. The
extension from 2 to n polydisks is very easy to see. The geometry of the
tube domain Mε is very simple. This is why the analysis above is rather
easy, and is why a more difficult effective version of Hartogs’ theorem is not
needed.)
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For C(j) above, we have (for each j) %j,j = r22 and %i,j = 2 for i 6= j. Let
us take the particular convex combination θi = 1/n for all i. For each j, let
us put %j = %j,θj . Then

log %j =
n− 1

n
log 2 +

1

n
log(r2n2 ), so %j = 2(n−1)/nr22.

In particular, taking nth roots of the product of estimates from formula (5.2)
(one term for each j) corresponds to the combination θi = 1/n. This is the
reason for the appearance of the 2(n−1)/nr22 term in (5.3). Further, our C(j)
were defined conveniently so that %j here does not depend on j.

In Figure 5 below, the real projection of a picture for this analysis is
shown following our rank 2 example. (Note the scale is different than in the
previous figures.)
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Mε

<C(2)

<C(1)

Now, the octagon from Figure 4 is contained in the small circle, which
is centered at the origin. The small circle has radius 5εd. By Lemma 4.1,
if we stay outside of this small circle, we are in Mε. Now, λ is a point in
this small circle, and λ /∈ Mε. We draw a circle around λ of radius r2,
and we find a point z within this larger circle with the following proper-
ties. (Technically z and λ in the picture should be labeled <z and <λ.)
We construct polydisks C(1) and C(2), both with center z, that are con-
tained within Mε. We take e1 to be in the α1 direction and e2 to be in
the Λ2 direction. Notice the real projections of these polydisks are rect-
angles parallel to the ej directions. Now λ is contained in the logarith-
mic convex closure of these polydisks; this is the basis for our simple es-
timate. We have denoted this containment by a simple curve connecting
one corner of <C(1) to a corner of <C(2). Obtaining an estimate at λ
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comes from the fact that we have an estimate in the polydisks, which stay
within Mε.

In higher rank, the convexity idea is the same, but some geometry is
different. In particular, we have n polydisks centered at a point z, within
r2 of λ /∈Mε. The point λ is contained in the logarithmic convex closure of
these polydisks, which is the basis for the estimate. However, the geometry
is not as simple as in the rank 2 case.

Specifically, if n ≥ 3, then <F is not compact, and will be a union of
corank 2 hyperplanes in Rn. For example, in Figure (15.8) on page 215 of
Fulton and Harris [4], a positive Weyl chamber for SL4(R) is drawn. Here
n = 3, and <F is a union of lines in R3. One can see from this picture in [4]
that

⋃
j <Fj actually cuts up any Mε into pieces. This was the reason for

our volume considerations in Section 4.

6.2. Complex groups. In this section, we briefly discuss the modifica-
tions necessary to extend the analysis above, and the result of Theorem 5.2,
to complex groups. In the above analysis, we have kept some notation and
results for the reader’s convenience; they actually simplify in the real case.
This is so that the complex case can be checked easily, as described below.
(For example, in the real case, η is real, and so there is no need for the bar
in ηj , appearing in equation (3.2).)

We suppose G is a Chevalley group (split and reductive) defined over Q
and we now consider the complex points, G(C). By passing to the simply
connected cover of the derived group of G, as before, we can assume this
group is simply connected, and has semisimple rank n ≥ 2.

Now the structure theory of Section 1 is entirely similar. Let us as-
sume M0, A, N , and K have the same definitions as above. One difference
is that M0 can be much bigger than in the real case. Let us assume D, H, η,
P (D, η), and H(D, η) are defined as above.

First, Lemma 3.1 carries over easily, since our reference [8] for the main
computation has also included the case of complex groups. For Lemma 3.2
and Corollary 3.3 to carry over, we need an effective version of Lemma 3.2
of [9] for complex groups. This can also be obtained easily. For this, we need
to look at the computation in Section 5 of [9]. By the form of Lϕ(s), we see
we can create the functions Cj as in Section 2.3 above, with the same finite
order estimate. For the analogue of Proposition 3.4 and Corollary 3.5, we
need to look at projection operators of SU(2).

If we look at the relevant projection theory for SU(2) (as we did for
SO(2) in Section 2.1), many things are similar. The theory is not quite as
trivial as for SO(2), but still very well understood. We will again encounter
meromorphic functions φδ(s) as in equation (2.1) above. Once again, how-
ever, these all have a finite order one estimate, if <s ≤ 0, with the constants
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depending on the SU(2)-types. This can be seen from the specific compu-
tation in Section 5 of [9]. This means that when applying the functional
equation λ 7→ wαjλ, the meromorphic operator Rj(D, η, sj) retains a finite
order bound, in the same way as was used in Proposition 3.4. So, Proposi-
tion 3.4 and Corollary 3.5 carry over easily.

The rest of the analysis also carries over very well. In particular, the
geometry from Section 4 and the analysis from Section 5 will be the same.
We obtain the theorem for split reductive complex groups, and leave the
details to the reader.

6.3. The case n = 1. There is no convexity in C1, in the sense that we
have used above. However, if n = 1, with our assumptions on the group G,
we are only considering SL2(R) or SL2(C). For either situation, the result is
essentially trivial.

In particular, suppose ED,η,χ(g, s) is our Whittaker function, with s ∈ C,
and g is fixed. By Lemma 3.1, we have an order one bound in <s ≥ 1. By the
functional equation, we have an order one bound in <s ≤ −1. This is due
to the ratio of Γ factors appearing in the φδ(s) terms, regardless of whether
we are over R or C. In the strip |<s| ≤ 1, we can use the effective version of
Lemma 3.2 of [9] (Lemma 2.2 above). In Lemma 2.2, we found a particular
estimate for C1(s), which is order one. This is if the field is R. By the dis-
cussion in the previous section, if the field is C, effective estimates (which
are also order one) can be found by the same process, looking at Lϕ(s), in
Section 5 of [9].

7. An application to L-functions. In this section, we use Theo-
rem 5.2 to prove that automorphic L-functions appearing in the Langlands–
Shahidi method are bounded in vertical strips, away from their (possibly
finite number of) poles. This is Theorem 7.1 in Section 7.2. We refer the
reader to the Introduction of McKee [15] (and to the references there) for
the importance of this result in using a converse theorem in the proof of
cases of functoriality.

In Section 7.1 we recall much of the setup of the Langlands–Shahidi
method. We only review what we will need. For example we do not cover
the constant term calculation. A concise review of results from this method
can be found in Kim’s notes [2]. For simplicity, we work only over Q; there
is, however, no obstruction in working over a general number field. Since
Jacquet [9] is our main reference for the above estimates, it is necessary that
our group be split. We apologize to the reader for not using in Sections 7.1
and 7.2 the same notation from the previous six sections. This is done so that
our notation more accurately matches the notation from Langlands–Shahidi
references.
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We must point out that Theorem 7.1 was first proved in Gelbart and
Shahidi [6] and essentially reproved in Gelbart and Lapid [5], by a more di-
rect procedure. (In [5], the completed L-functions, without the archimedean
factors, are proven to be meromorphic of finite order. This is only one step
away from boundedness in vertical strips.) Granting Theorem 5.2, we view
our Theorem 7.1 as a simplified proof of the original work of [6]. As in [5],
we do not need to use the delicate complex analysis result, Matsaev’s the-
orem, that [6] depends on. The analogous result of Gelbart and Lapid [5]
(Theorem 2 of Section 3 of [5]) is actually more general, since one does not
need to assume the automorphic cuspidal representation π on M(AQ) (see
Section 7.1) is generic. We would like to point out that the original work
that went in to our Theorem 5.2 (McKee [14]) predates [5] by several years,
but was never published. Further, we would like to emphasize that our The-
orem 7.1 and the analogous results in [5] would not be possible without the
estimates of Müller [17]. The work [17] was not available to Gelbart and
Shahidi [6]; they used estimates in an earlier work of Müller [16], which also
was indispensable for their result.

7.1. Langlands–Shahidi preliminaries. In this section we review
what we need from the Langlands–Shahidi method. We do not keep the
same notation from the previous six sections.

Let G be an algebraic group defined over Q, which is reductive and split.
Let A denote the adeles of Q. Let | · |p denote the p-adic valuation of an
element in Qp. (If p = ∞ this is regular absolute value on R.) Fix a Borel
subgroup B of G. Then we can write B = TU with T a split (over Q) torus
and U a full unipotent radical of B. Let P = MN be the Levi decompo-
sition of a maximal subgroup containing B. Here T ⊂M and N ⊂ U. We
write Bp, Gp, Mp, Np, Pp, Up, and Tp for the corresponding groups over Qp.
For every prime p (including p = ∞), a maximal compact subgroup Kp of
Gp can be selected so that K(A) =

⊗
pKp, where for almost all finite p

we have Kp = G(Zp). We write B = B(A), G = G(A), and so on. Then
G = PK.

We define A to be the split component of the center of M, so that A ⊂ T.
If H denotes any Q-group we define X(H)Q to be the Q-rational characters
of H. We denote by a the real Lie algebra of A which is Hom(X(A)Q,R).
We denote the real dual of a by a∗, which is X(M)Q ⊗Z R = X(A)Q ⊗Z R.
The complex dual of a is denoted by a∗C and it is a∗ ⊗R C.

Now the embeddingX(M)Q ⊂ X(M)Qp induces a map Hom(X(A)Qp ,R)
= ap → a. There exists a homomorphism

HM : M → a defined by exp 〈χ,HM (m)〉 =
∏
p

|χ(mp)|p.
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Here m = (mp), χ ∈ X(M)Q, and the product is over all primes p including
p = ∞. We extend HM to G by making it trivial on N and K. We denote
this extension by HP . We call HP a Harish-Chandra homomorphism, and
we refer the reader to Gelbart and Shahidi [6] or Kim’s notes [2] for more
information.

Let Σ denote the set of Q-roots of T. Then Σ = Σ+ ∪ Σ− where Σ+

denotes the set of positive roots (which generate U) and Σ− denotes the
set of negative roots. Let W be the Weyl group; it acts on T in the usual
manner. Let ∆ ⊂ Σ+ denote the set of simple roots. Since P is maximal,
there exists a unique root α ∈ ∆ of N. Let ρP denote half the sum of the
roots generating the Lie algebra of N. Let us define

α̃ =
ρP
〈ρP, α〉

∈ a∗.

The inner product above comes from the Killing form. We identify C with
a subspace of a∗C by s ∈ C↔ sα̃ ∈ a∗C.

Since P is maximal, it is generated by θ = ∆ \ {α}. There exists a
unique Weyl element w0 ∈ W such that w0(θ) ⊂ ∆ and w0(α) ∈ Σ−. We
define P′ to be the maximal parabolic generated by w0(θ). It then has a
Levi decomposition P′ = M′N′ where N′ ⊂ U.

Let π be an automorphic unitary cuspidal representation of M(A). Then
a function φ in the space of π is an element of L2

0(ZM(A)M(Q)\M(A)).
This means φ transforms according to a grossencharacter, by right trans-
lation of an element in ZM(A), the center of M, and is square integrable
on ZM(A)M(Q)\M(A). Furthermore φ is cuspidal, meaning integrals of φ
(right translated by any element in M) over any unipotent radical of M(A)
vanish, and the space cut out by right translation of φ is irreducible. Let
I(s, π) = I(sα̃, π) be the parabolically induced space

IndG
P π ⊗ exp(〈sα̃,HP (·)〉)⊗ 1

where HP is the Harish-Chandra homomorphism above. Let fs ∈ I(s, π).
We assume fs is K∞-finite. If fs = φ exp(〈sα̃ + ρP, HP (·)〉) we define the
Eisenstein series

(7.1) E(s, π, φ, g) =
∑

γ∈P(Q)\G(Q)

φ(γg) exp(〈sα̃+ ρP, HP (γg)〉).

Now U/[U,U] =
∏
α∈∆ Uα. Let ψ =

⊗
ψp be a generic character on

U(Q)\U(A). This means each ψp is nontrivial on each Uα. Put UM = U∩M,
the unipotent radical of M. Let us define ψM = ψ|UM

. Then ψM is generic
on UM. For a function φ in the space of π (as above) we define the Whittaker
function

Wφ(g) =
�

UM(Q)\UM(A)

φ(ug)ψM(u) du.
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From now on, we assume there exists (and we fix) a generic ψ as above so
that the ψM-Whittaker function Wφ does not vanish.

Now there is a nonunique factorization π =
⊗
πp where πp is a unitary

irreducible representation of Mp for all p. Further, for almost all finite p,
πp is spherical. It is well known that in this case πp injects into an induced
representation onMp (a principal series), where the induced data comes from
an unramified quasi-character χp on the maximal torus Tp of Mp, over Qp.
(The quasi-character is also given by the Satake isomorphism.)

For H any reductive Q-group, let LH denote the L-group of H, i.e., the
Langlands dual group. Put LHp for the L-group of H over Qp. Suppose
r is a finite-dimensional complex representation of LH. There is a natural
homomorphism LHp → LH and we put rp for the composition with this
representation; rp is then a representation for LHp.

Now LM acts on Ln, the (complex) Lie algebra of LN by adjoint action.
Let r denote this action; we decompose r into its irreducible constituents⊕m

j=1 rj on Ln =
⊕m

j=1 Vj . It is known that each Vj consists of all roots β∨ in
Ln so that 〈α̃, β∨〉 = j. For each finite p such that πp is unramified we let tp
be the semisimple conjugacy class in LTp given by the Satake isomorphism.
(Let (rj)p denote the corresponding representation on LMp.) Let ωp be a

uniformizer in Zp. (Clearly we can take ωp = p.) Then χp ◦β∨(ωp) = β∨(tp).
For each such j, the local Langlands L-function is then given by

L(s, πp, (rj)p) =
∏

〈α̃,β∨〉=j

L(s, χp ◦ β∨),

where L(s, χp◦β∨) = (1−χp◦β∨(ωp)p
−s)−1. The product above is of course

over all roots β∨ in Ln.
Let S be a finite set of primes (including p = ∞) such that for all

p /∈ S, πp and ψp are unramified. For each such j, we then define the partial
L-function

LS(s, π, rj) =
∏
p/∈S

L(s, πp, (rj)p).

With π and ψ as above, and the Eisenstein series defined as (7.1), we
have a nonconstant term

(7.2) Eψ(s, π, φ, g) =
�

U(Q)\U(A)

E(s, π, φ, ug)ψ(u) du.

By computations of Shahidi (see Kim’s notes [2]), we have

(7.3) Eψ(s, π, φ, e) =

∏
p∈SWs,p(e)∏m

j=1 LS(1 + js, π, rj)
.

(We have used Kim’s parameterization of Satake parameters [2], so there
are no contragredients of rj terms.) Here we have factored fs =

⊗
p fs,p ∈
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p I(s, πp), so that for almost all finite p, fs,p = f0p is the unique Kp-fixed

function, normalized by f0p (e) = 1. For finite p ∈ S, we have

Ws,p(e) =
�

N ′(Qp)

ψ(n′)λMp(fs,p(w
−1
0 n′)) dn′

where λMp is the local ψMp-Whittaker functional. We will deal with Ws,∞(e),
the archimedean Whittaker function, in the next section.

7.2. Application to automorphic L-functions. In this section we
show how Theorem 5.2 can be used to prove the boundedness in vertical
strips of Langlands–Shahidi L-functions. This is our Theorem 7.1 below.
This of course uses Müller [17], which is the real heavy machinery.

With π, rj and other notation as above, let L(s, π, rj) be the completed
automorphic L-function attached to π (for s ∈ C), where the local factors
for finite p ∈ S are defined as in Shahidi [24]. It has been some time since
Gelbart and Shahidi [6] appeared, and much has happened. By the work
of H. Kim and W. Kim, Assumption 2.1 in [6] has been proved in many
cases (see [10]–[12]). Indeed, it has been reduced to the standard module
conjecture and Shahidi’s conjecture on tempered L-functions which is now
proved in general by Heiermann and Opdam [7]. With this assumption on
normalized intertwining operators proved, this means (as shown in [6]) that
each (completed) L(s, π, rj) has only a finite number of poles in C. Further,
as explained in [6], we can assume π is normalized so that all potential poles
are real.

Given a real closed interval I and ε > 0, following [6] we let Tε,I be the
set of all z ∈ C such that <(z) ∈ I and |=(z)| > ε.

Our application is a simplification of the proof of the following:

Theorem 7.1. For each L(s, π, rj), 1 ≤ j ≤ m, there exists ε > 0 such
that L(s, π, rj) is bounded in every Tε,I .

In other words, away from its poles, each L(s, π, rj) is bounded in vertical
strips. Let us reiterate that this was proved in Gelbart and Shahidi [6], and
essentially reproved in Gelbart and Lapid [5].

Proof of Theorem 7.1. By Müller [17, Theorem 0.2], E(s, π, φ, g) is mero-
morphic of finite order for s ∈ C. More specifically, there exists an entire
function q(s) of finite order such that for any compact set Ω ∈ G(A) there
exist c1, n > 0 such that

|q(s)E(s, π, φ, g)| = O(ec1|s|
n
) for all g ∈ Ω.

Here the constant in the O term as well as c1 will depend on Ω, but the
orders of q(s) and n only depend on G (see [17]). Since U(Q) \ U(A) is
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compact and ψ has modulus one, using (7.2) we see that

q(s)Eψ(s, π, φ, e)

is entire of finite order.

Using (7.3) we see that ∏
p∈SWs,p(e)∏m

j=1 LS(1 + js, π, rj)

is meromorphic of finite order. According to [6] local data can be chosen for
each finite p ∈ S so that each such Ws,p(e) is a constant (independent of
s ∈ C). By Casselman’s subrepresentation theorem,

π∞ ↪→ I(ν̃, η0),

a principle series representation of a minimal parabolic subgroup. Here ν̃ =
sα̃ + ν0 is in the complex dual of the Lie algebra of T. Further, η0 is a
character of T∞. By assumption, the image is K∞-finite. By shifting ν0 we
may assume η0 is a character of T∞ ∩K∞ (in the notation of the first six
sections, this was M0). Thus, by Theorem 5.2 and Lemma 1.3, Ws,∞(e) is
of order one. Hence

m∏
j=1

LS(1 + js, π, rj)

is meromorphic of finite order.

We must now consider the local L-factors for p ∈ S. For p = ∞ each
L(1 + js, πp, (rj)p) is meromorphic of finite order, since any shift of the

Γ function is (as well as any power of the transcendental number π). For
finite p ∈ S, by construction, each L(1 + js, πp, (rj)p) is a rational function

in p−s, so is clearly meromorphic of finite order. Thus
m∏
j=1

L(1 + js, π, rj)

is meromorphic of finite order.

If m = 1, then r = r1 and L(s, π, r) is meromorphic of finite order.
Hence we can write it as f1(s)/f2(s) where both f1 and f2 are entire of finite
order. Since L(s, π, r) only has a finite number of poles, by the Weierstrass
product factorization, we may assume f2(s) is a polynomial. Let σ1 > 0
be sufficiently large so that LS(s, π, r) converges absolutely and hence is
bounded on <(s) ≥ σ1. Further, we assume σ1 is sufficiently large so that
each L(s, πp, rp) (for p ∈ S) is holomorphic for <(s) ≥ σ1. By the decay
of the Γ function coming from the archimedean L-factor (p = ∞ ∈ S), it
follows that f1(s) is bounded on <(s) = σ1. (Essentially the local L-factors
for finite p ∈ S do not cause problems. They are holomorphic for <(s) ≥ σ1
and are periodic on vertical lines.) Let us assume that σ2 < 0 and that
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−σ2 is sufficiently large so that LS(1 − s, π, r̃) converges absolutely and
hence is bounded for <(s) ≤ σ2. (Further we assume −σ2 is sufficiently
large so that the local L-factors for p ∈ S of the completed L(1− s, π, r̃) are
holomorphic for <(s) ≤ σ2.) By the form of the ε-factor in the functional
equation L(s, π, r) = ε(s, π, r)L(1− s, π, r̃) and due to the Γ function in the
archimedean L-factor for L(1 − s, π, r̃) it follows that f1(s) is bounded on
<(s) = σ2. (Once again the local L-factors for finite p ∈ S of L(1 − s, π, r̃)
do not cause any problems.) Since f1(s) is of finite order, it is bounded in
the vertical strip σ2 ≤ <(s) ≤ σ1 by the theorem of Phragmén–Lindelöf.
Since σ1 and −σ2 were sufficiently large, but otherwise arbitrary, it follows
that f1(s) is bounded in all vertical strips of finite width. This is enough to
prove the theorem in the case m = 1. In addition we see that L(s, π, r) is
meromorphic of finite order one.

If m ≥ 2 one can use induction to reduce to the case m = 1. This is
explained rather thoroughly in [6] (specifically the references found in [6])
and is also outlined in Kim’s notes [2]. In short (for us), for each rj with
j ≥ 2, L(s, π, rj) appears as the first L-function in some other Langlands–
Shahidi situation, that is, with a different reductive split group and Levi
factor. See also Shahidi [23].
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