Algebraic integers as values of elliptic functions

by
Daeyeoul Kim (Chonju) and Ja Kyung Koo (Taejon)

0. Introduction. In this paper, we shall deal with certain algebraic integers as values of elliptic functions constructed from the Weierstrass $\wp-$ function by using infinite products (Theorem 2.2). In the process we are able to reprove the well known fact that $j(\tau)$ is an algebraic integer for an imaginary quadratic τ; our proof seems to be quite simple and elementary unlike the others ([3]-[8]). And in Section 3 we shall derive analogues (Theorem 3.2) of Berndt-Chan-Zhang's results, which could be a generalization in the case of m even. In the last section, we explore some algebraic properties of values of the Weierstrass \wp-function and Fricke functions.
1. Infinite product formulas for the Weierstrass \wp-function. Let $\Lambda_{\tau}=\mathbb{Z}+\tau \mathbb{Z}(\tau \in \mathfrak{h})$ be a lattice and $z \in \mathbb{C}$. The Weierstrass \wp-function (relative to Λ_{τ}) is defined by the series

$$
\wp\left(z ; \Lambda_{\tau}\right)=\frac{1}{z^{2}}+\sum_{\substack{\omega \in \Lambda_{\tau} \\ \omega \neq 0}}\left\{\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right\}
$$

and the Eisenstein series of weight $2 k$ (for Λ_{τ} and $k>1$) is the series

$$
G_{2 k}\left(\Lambda_{\tau}\right)=\sum_{\substack{\omega \in \Lambda_{\tau} \\ \omega \neq 0}} \omega^{-2 k}
$$

We shall use the notations $\wp(z)$ and $G_{2 k}$ instead of $\wp\left(z ; \Lambda_{\tau}\right)$ and $G_{2 k}\left(\Lambda_{\tau}\right)$, respectively, when the lattice Λ_{τ} has been fixed.

Then the Laurent series for $\wp(z)$ about $z=0$ is given by

$$
\wp(z)=z^{-2}+\sum_{k=1}^{\infty}(2 k+1) G_{2 k+2} z^{2 k}
$$

[^0]and, for all $z \in \mathbb{C}-\Lambda_{\tau}$ we obtain the equation
$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-60 G_{4 \wp} \wp(z)-140 G_{6} .
$$

As is customary, the algebraic relation between $\wp(z)$ and $\wp^{\prime}(z)$ becomes

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2}(\tau) \wp(z)-g_{3}(\tau)
$$

where

$$
g_{2}(\tau)=g_{2}\left(\Lambda_{\tau}\right)=60 G_{4} \quad \text { and } \quad g_{3}(\tau)=g_{3}\left(\Lambda_{\tau}\right)=140 G_{6}
$$

Moreover, we have the following proposition at hand which will be useful in extracting infinite product expressions.

Proposition 1.1 ([4], [8]). Let $p=e^{\pi i \tau}$.
(1) $\wp\left(\frac{\tau}{2}\right)-\wp\left(\frac{1}{2}\right)=-\pi^{2} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4}\left(1+p^{2 n-1}\right)^{8}$.
(2) $\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{1}{2}\right)=-\pi^{2} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4}\left(1-p^{2 n-1}\right)^{8}$.
(3) $\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{\tau}{2}\right)=16 \pi^{2} p \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4}\left(1+p^{2 n}\right)^{8}$.

Now, for simplicity we set

$$
\begin{array}{ll}
C:=\prod_{n=1}^{\infty}\left(1-p^{n}\right), & D:=\prod_{n=1}^{\infty}\left(1+p^{n}\right), \quad S:=\prod_{n=1}^{\infty}\left(1-p^{2 n}\right) \\
T:=\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right), \quad U:=\prod_{n=1}^{\infty}\left(1+p^{2 n}\right), \quad V:=\prod_{n=1}^{\infty}\left(1-p^{2 n-1}\right) .
\end{array}
$$

We then readily check that

$$
\begin{equation*}
C D=S, \quad T U=D, \quad S U V T=S, \quad V U T=1 \tag{1.0}
\end{equation*}
$$

By definition

$$
\Delta(\tau)=(2 \pi)^{12} \eta(\tau)^{24}=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}
$$

which is the discriminant of the cubic polynomial

$$
4 \wp(z)^{3}-g_{2}(\tau) \wp(z)-g_{3}(\tau)=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right) .
$$

On the other hand, we know ([9]) that the roots of this polynomial are

$$
e_{1}=\wp\left(\frac{1}{2}\right), \quad e_{2}=\wp\left(\frac{\tau}{2}\right), \quad e_{3}=\wp\left(\frac{\tau+1}{2}\right) .
$$

Thus, we have

$$
\wp\left(\frac{1}{2}\right)+\wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{\tau+1}{2}\right)=0
$$

$$
\wp\left(\frac{1}{2}\right) \wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{\tau+1}{2}\right) \wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{1}{2}\right) \wp\left(\frac{\tau+1}{2}\right)=-\frac{g_{2}(\tau)}{4}
$$

and

$$
\wp\left(\frac{1}{2}\right) \wp\left(\frac{\tau}{2}\right) \wp\left(\frac{\tau+1}{2}\right)=\frac{g_{3}(\tau)}{4}
$$

By the above equations and Proposition 1.1, we derive that

$$
\begin{aligned}
2 \wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{\tau+1}{2}\right) & =\wp\left(\frac{\tau}{2}\right)-\left(-\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{\tau}{2}\right)\right) \\
& =\wp\left(\frac{\tau}{2}\right)-\wp\left(\frac{1}{2}\right)=-\pi^{2} S^{4} T^{8}
\end{aligned}
$$

And we get the following three new identities:

$$
\begin{align*}
\wp\left(\frac{\tau}{2}\right)= & \frac{1}{3}\left[\left(2 \wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{\tau+1}{2}\right)\right)+\left(\wp\left(\frac{\tau}{2}\right)-\wp\left(\frac{\tau+1}{2}\right)\right)\right] \tag{1.1}\\
= & -\frac{\pi^{2}}{3} S^{4}\left(T^{8}+16 p U^{8}\right) \\
= & -\frac{\pi^{2}}{3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4} \\
& \times\left(\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{8}+16 p \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{8}\right) \\
\wp\left(\frac{\tau+1}{2}\right)= & 16 \pi^{2} p S^{4} U^{8}-\frac{\pi^{2}}{3} S^{4}\left(T^{8}+16 p U^{8}\right) \tag{1.2}\\
= & -\frac{\pi^{2}}{3} S^{4}\left(T^{8}-32 p U^{8}\right) \\
= & -\frac{\pi^{2}}{3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4} \\
& \times\left(\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{8}-32 p \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{8}\right)
\end{align*}
$$

and
(1.3)

$$
\begin{aligned}
\wp\left(\frac{1}{2}\right)= & \pi^{2} S^{4} T^{8}-\frac{\pi^{2}}{3} S^{4}\left(T^{8}+16 p U^{8}\right)=\frac{\pi^{2}}{3} S^{4}\left(2 T^{8}-16 p U^{8}\right) \\
= & \frac{\pi^{2}}{3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4} \\
& \times\left(2 \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{8}-16 p \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{8}\right)
\end{aligned}
$$

Using (1.1)-(1.3) we obtain the identity for $g_{2}(\tau)$:

$$
\begin{align*}
g_{2}(\tau)= & -4\left[\wp\left(\frac{1}{2}\right) \wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{\tau+1}{2}\right) \wp\left(\frac{\tau}{2}\right)+\wp\left(\frac{1}{2}\right) \wp\left(\frac{\tau+1}{2}\right)\right] \tag{1.4}\\
= & -4\left[\frac{\pi^{2}}{3} S^{4}\left(2 T^{8}-16 p U^{8}\right)\left(-\frac{\pi^{2}}{3} S^{4}\left(T^{8}+16 p U^{8}\right)\right)\right. \\
& +\left(-\frac{\pi^{2}}{3} S^{4}\left(T^{8}-32 p U^{8}\right)\right)\left(-\frac{\pi^{2}}{3} S^{4}\left(T^{8}+16 p U^{8}\right)\right) \\
& \left.+\left(\frac{\pi^{2}}{3} S^{4}\left(2 T^{8}-16 p U^{8}\right)\right)\left(-\frac{\pi^{2}}{3} S^{4}\left(T^{8}-32 p U^{8}\right)\right)\right] \\
= & \frac{4 \pi^{4}}{3} S^{8}\left(T^{16}-16 p T^{8} U^{8}+256 p^{2} U^{16}\right) \\
= & \frac{4 \pi^{4}}{3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{8}\left(\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{16}\right. \\
& \left.-16 p \prod_{n=1}^{\infty}\left(1+p^{n}\right)^{8}+256 p^{2} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{16}\right) .
\end{align*}
$$

We are also able to express $g_{3}(\tau)$ as

$$
\text { (1.5) } \begin{aligned}
g_{3}(\tau)= & 4 \wp\left(\frac{1}{2}\right) \wp\left(\frac{\tau}{2}\right) \wp\left(\frac{\tau+1}{2}\right) \\
= & 4\left(\frac{\pi^{2}}{3} S^{4}\left(2 T^{8}-16 p U^{8}\right)\right) \\
& \times\left(-\frac{\pi^{2}}{3} S^{4}\left(T^{8}-32 p U^{8}\right)\right)\left(-\frac{\pi^{2}}{3} S^{4}\left(T^{8}+16 p U^{8}\right)\right) \\
= & \frac{8 \pi^{6}}{27} S^{12}\left(T^{24}-24 p T^{16} U^{8}-384 p^{2} T^{8} U^{16}+4096 p^{3} U^{24}\right) \\
= & \frac{8 \pi^{6}}{27} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{12} \\
& \times\left(\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{24}-24 p \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{16}\left(1+p^{2 n}\right)^{8}\right. \\
& -384 p^{2} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{8}\left(1+p^{2 n}\right)^{16} \\
& \left.+4096 p^{3} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{24}\right) .
\end{aligned}
$$

Then, we derive from (1.4) and (1.5) that

$$
\begin{align*}
j(\tau) & =1728 \frac{g_{2}(\tau)^{3}}{\Delta(\tau)} \tag{1.6}\\
& =1728 \frac{\left[\frac{4}{3} \pi^{4} S^{8}\left(T^{16}-16 p D^{8}+256 p^{2} U^{16}\right)\right]^{3}}{(2 \pi)^{12} p^{2} S^{24}} \\
& =\frac{1}{p^{2}}\left(T^{16}-16 p D^{8}+256 p^{2} U^{16}\right)^{3}
\end{align*}
$$

2. Some infinite products as algebraic integers. Throughout Sections 2 to 4 we shall fix the following notations: k is an imaginary quadratic field, \mathfrak{h} the complex upper half plane and $\tau \in \mathfrak{h} \cap k$.

Let $\alpha=\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right)$ with $b \bmod d$ and $|\alpha|$ the determinant of α, and let

$$
\begin{equation*}
\phi_{\alpha}(\tau):=|\alpha|^{12} \frac{\Delta\left(\alpha\binom{\tau}{1}\right)}{\Delta\left(\binom{\tau}{1}\right)}=|\alpha|^{12} d^{-12} \frac{\Delta(\alpha \tau)}{\Delta(\tau)} \tag{*}
\end{equation*}
$$

Then we recall the following well known fact.
Proposition 2.1 ([4]). For any $\tau \in k \cap \mathfrak{h}$, the value $\phi_{\alpha}(\tau)$ is an algebraic integer which divides $|\alpha|^{12}$.

First, we consider

$$
\frac{\Delta(\tau)}{\Delta(\tau / 2)}=\frac{(2 \pi)^{12} p^{2} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{24}}{(2 \pi)^{12} p \prod_{n=1}^{\infty}\left(1-p^{n}\right)^{24}}=p \prod_{n=1}^{\infty}\left(1+p^{n}\right)^{24}
$$

and

$$
\frac{\Delta(\tau / 2)}{\Delta(\tau)}=\frac{(2 \pi)^{12} p \prod_{n=1}^{\infty}\left(1-p^{n}\right)^{24}}{(2 \pi)^{12} p^{2} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{24}}=p^{-1} \frac{1}{\prod_{n=1}^{\infty}\left(1+p^{n}\right)^{24}}
$$

Put

$$
\alpha_{1}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad \alpha_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

By (*),

$$
\phi_{\alpha_{1}}(\tau / 2)=2^{12} \frac{\Delta(\tau)}{\Delta(\tau / 2)} \quad\left(=2^{12} \frac{\eta(\tau)^{24}}{\eta(\tau / 2)^{24}}\right)
$$

from which we see by Proposition 2.1 that

$$
\begin{equation*}
\sqrt{2} p^{1 / 24} \prod_{n=1}^{\infty}\left(1+p^{n}\right) \tag{2.1}
\end{equation*}
$$

is an algebraic integer. Also, we have

$$
\phi_{\alpha_{2}}(\tau)=2^{12} \frac{1}{2^{12}} \cdot \frac{\Delta(\tau / 2)}{\Delta(\tau)} \quad\left(=\frac{\eta(\tau / 2)^{24}}{\eta(\tau)^{24}}\right)
$$

and hence

$$
\begin{equation*}
p^{-1 / 24} \frac{1}{\prod_{n=1}^{\infty}\left(1+p^{n}\right)} \tag{2.2}
\end{equation*}
$$

is an algebraic integer.
It follows from (1.0) that

$$
\prod_{n=1}^{\infty}\left(1+p^{2 n}\right)\left(1+p^{2 n-1}\right)\left(1-p^{2 n-1}\right)=1
$$

So, by (2.2) and the above, we obtain

$$
\begin{aligned}
\frac{1}{p^{2} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{24}} & =\frac{\prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{24}\left(1+p^{2 n-1}\right)^{24}\left(1-p^{2 n-1}\right)^{24}}{p^{2} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{24}} \\
& =p^{-2} \prod_{n=1}^{\infty}\left(1-p^{4 n-2}\right)^{24}
\end{aligned}
$$

Thus we see from (2.2) that

$$
\begin{equation*}
p^{-1 / 24} \prod_{n=1}^{\infty}\left(1-p^{2 n-1}\right) \tag{2.3}
\end{equation*}
$$

is an algebraic integer. By (2.1) and (2.3), we claim that

$$
\begin{equation*}
\sqrt{2} \prod_{n=1}^{\infty}\left(1+p^{n}\right)\left(1-p^{2 n-1}\right) \tag{2.4}
\end{equation*}
$$

is an algebraic integer.
Jacobi ([10, p. 470]) showed that

$$
\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{8}-\prod_{n=1}^{\infty}\left(1-p^{2 n-1}\right)^{8}=16 p \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{8}
$$

which we can now easily check by using Proposition 1.1.
Multiplying both sides in Jacobi's relation by $p^{-1 / 3}$, we derive from (2.1) and (2.3) that

$$
\begin{equation*}
p^{-1 / 24} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right) \tag{2.5}
\end{equation*}
$$

is an algebraic integer.
Combining (2.1) and (2.5) we see that

$$
\begin{equation*}
\sqrt{2} \prod_{n=1}^{\infty}\left(1+p^{n}\right)\left(1+p^{2 n-1}\right) \tag{2.6}
\end{equation*}
$$

is also an algebraic integer.

By (1.6), (2.1) and (2.5) we are led to

$$
\begin{align*}
j(\tau)^{1 / 3}= & -16 p^{1 / 3} \prod_{n=1}^{\infty}\left(1+p^{n}\right)^{8}+256 p^{4 / 3} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{16} \tag{2.7}\\
& +p^{-2 / 3} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{16}
\end{align*}
$$

from which we can reprove the well known fact ([3]-[8]) that $j(\tau)$ is an algebraic integer. Observe that, in the above, we used the fact that $\sqrt{2} p^{1 / 12} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)$ is also an algebraic integer, which can be readily deduced from (2.1).

On the other hand, we know by (1.1) that

$$
\begin{aligned}
\frac{-3 \wp(\tau / 2)}{\pi^{2} \eta(\tau)^{4}} & =\frac{\prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4}\left(\left(1+p^{2 n-1}\right)^{8}+16 p\left(1+p^{2 n}\right)^{8}\right)}{p^{1 / 3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{4}} \\
& =p^{-1 / 3} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{8}+16 p^{2 / 3} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{8}
\end{aligned}
$$

We then conclude from (2.1) and (2.5) that

$$
\begin{equation*}
\frac{3}{\pi^{2}} \cdot \frac{\wp(\tau / 2)}{\eta(\tau)^{4}} \tag{2.8}
\end{equation*}
$$

is an algebraic integer. Also, it follows from (1.4) that

$$
\begin{aligned}
\frac{3 g_{2}(\tau)}{4 \pi^{4} \eta(\tau)^{8}}= & \frac{\prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{8}\left(1+p^{2 n-1}\right)^{16}-16 p \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{8}\left(1+p^{n}\right)^{8}}{p^{2 / 3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{8}} \\
& +\frac{256 p^{2} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{8}\left(1+p^{2 n}\right)^{16}}{p^{2 / 3} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)^{8}} \\
= & p^{-2 / 3} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{16}-16 p^{1 / 3} \prod_{n=1}^{\infty}\left(1+p^{n}\right)^{8} \\
& +256 p^{4 / 3} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{16} .
\end{aligned}
$$

Thus we find again by (2.1) and (2.5) that

$$
\begin{equation*}
\frac{3}{4 \pi^{4}} \cdot \frac{g_{2}(\tau)}{\eta(\tau)^{8}} \tag{2.9}
\end{equation*}
$$

is an algebraic integer. And we deduce from (1.5) that

$$
\begin{aligned}
\frac{27 g_{3}(\tau)}{\pi^{6} \eta(\tau)^{12}}= & 8 p^{-1} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{24}-192 \prod_{n=1}^{\infty}\left(1+p^{n}\right)^{8}\left(1+p^{2 n-1}\right)^{8} \\
& -3072 p \prod_{n=1}^{\infty}\left(1+p^{n}\right)^{8}\left(1+p^{2 n}\right)^{8}+32768 p^{2} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{24}
\end{aligned}
$$

from which we conclude by $(2.1),(2.5)$ and (2.6) that

$$
\begin{equation*}
\frac{27}{\pi^{6}} \cdot \frac{g_{3}(\tau)}{\eta(\tau)^{12}} \tag{2.10}
\end{equation*}
$$

is an algebraic integer.
By Proposition 1.1, (2.1), (2.3) and (2.5), we derive that

$$
\begin{equation*}
\frac{\wp\left(\frac{\tau}{2}\right)-\wp\left(\frac{1}{2}\right)}{\pi^{2} \eta(\tau)^{4}}, \quad \frac{\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{1}{2}\right)}{\pi^{2} \eta(\tau)^{4}} \quad \text { and } \quad \frac{\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{\tau}{2}\right)}{\pi^{2} \eta(\tau)^{4}} \tag{2.11}
\end{equation*}
$$

are algebraic integers. Also, it follows from (2.8) and (2.11) that

$$
\begin{equation*}
\frac{3}{\pi^{2}} \cdot \frac{\wp((\tau+1) / 2)}{\eta(\tau)^{4}} \quad \text { and } \quad \frac{3}{\pi^{2}} \cdot \frac{\wp(1 / 2)}{\eta(\tau)^{4}} \tag{2.12}
\end{equation*}
$$

are algebraic integers.
We summarize (2.1) to (2.12) as follows.
Theorem 2.2. Let $\tau \in k \cap \mathfrak{h}$. Then

$$
\begin{aligned}
& \text { (a) } \sqrt{2} p^{1 / 24} \prod_{n=1}^{\infty}\left(1+p^{n}\right), \quad p^{-1 / 24} \frac{1}{\prod_{n=1}^{\infty}\left(1+p^{n}\right)}, \quad p^{-1 / 24} \prod_{n=1}^{\infty}\left(1-p^{2 n-1}\right) \\
& \sqrt{2} \prod_{n=1}^{\infty}\left(1+p^{n}\right)\left(1-p^{2 n-1}\right), \quad p^{-1 / 24} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right) \quad \text { and } \\
& \sqrt{2} \prod_{n=1}^{\infty}\left(1+p^{n}\right)\left(1+p^{2 n-1}\right)
\end{aligned}
$$

are algebraic integers.
(b) $j(\tau), \quad \frac{3}{\pi^{2}} \cdot \frac{\wp\left(\frac{\tau}{2}\right)}{\eta(\tau)^{4}}, \quad \frac{3}{\pi^{2}} \cdot \frac{\wp\left(\frac{\tau+1}{2}\right)}{\eta(\tau)^{4}}, \quad \frac{3}{\pi^{2}} \cdot \frac{\wp\left(\frac{1}{2}\right)}{\eta(\tau)^{4}}, \quad \frac{3}{4 \pi^{4}} \cdot \frac{g_{2}(\tau)}{\eta(\tau)^{8}}$,

$$
\begin{aligned}
& \frac{27}{\pi^{6}} \cdot \frac{g_{3}(\tau)}{\eta(\tau)^{12}}, \quad \frac{\wp\left(\frac{\tau}{2}\right)-\wp\left(\frac{1}{2}\right)}{\pi^{2} \eta(\tau)^{4}}, \quad \frac{\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{1}{2}\right)}{\pi^{2} \eta(\tau)^{4}} \text { and } \\
& \frac{\wp\left(\frac{\tau+1}{2}\right)-\wp\left(\frac{\tau}{2}\right)}{\pi^{2} \eta(\tau)^{4}}
\end{aligned}
$$

are algebraic integers.
The Gel'fond-Schneider theorem says that $e^{\pi \alpha}=(-1)^{-i \alpha}$ is transcendental whenever $i \alpha$ is algebraic of degree at least 2 over \mathbb{Q} ([8], p. 142). This facts yields that $p=e^{\pi i \tau}$ is transcendental. Therefore, we have

Corollary 2.3. Let $\tau \in k \cap \mathfrak{h}$. Then

$$
\prod_{n=1}^{\infty}\left(1+p^{n}\right), \quad \prod_{n=1}^{\infty}\left(1-p^{2 n-1}\right) \quad \text { and } \quad \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)
$$

are transcendental numbers.
3. Approach to $\phi(\tau)$. Let

$$
\phi(\tau):=\phi\left(e^{\pi i \tau}\right)=\frac{\eta((\tau+1) / 2)^{2}}{\eta(\tau+1)}=\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{2}\left(1-p^{2 n}\right)=\theta_{3}(0, \tau)
$$

Here we refer to [2] for the last equality. Berndt, Chan and Zhang showed in [1] the following proposition by using three of Ramanujan's modular equations, values of certain class invariants of Ramanujan, representations for quotients of values of ϕ in terms of class invariants and the thetatransformation formula.

In this section we shall derive certain analogues of their results purely in terms of infinite products, which is a generalization in the case of m even.

Proposition 3.1. Let m and n be positive integers. Then $\phi(m n i) / \phi(n i)$ is algebraic. Furthermore, if m is odd, then $\sqrt{2 m} \phi(m n i) / \phi(n i)$ is an algebraic integer dividing $2 \sqrt{m}$, while if m is even, then $2 \sqrt{m} \phi(m n i) / \phi(n i)$ is an algebraic integer dividing $4 \sqrt{m}$.

By (2.5), the value

$$
\begin{equation*}
\frac{\phi(\tau)}{\eta(\tau)}=\frac{\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{2}\left(1-p^{2 n}\right)}{p^{1 / 12} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right)}=p^{-1 / 12} \prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{2} \tag{3.1}
\end{equation*}
$$

is an algebraic integer. Observe that it can also be written as $\theta_{3}(0, \tau) / \eta(\tau)$.
By considering the identity $V U T=1$ from (1.0), that is,

$$
\prod_{n=1}^{\infty}\left(1+p^{2 n}\right)\left(1+p^{2 n-1}\right)\left(1-p^{2 n-1}\right)=1
$$

we have

$$
\begin{aligned}
\frac{\eta(\tau)}{\phi(\tau)} & =p^{1 / 12} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right) \frac{1}{\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{2}\left(1-p^{2 n}\right)} \\
& =p^{1 / 12} \prod_{n=1}^{\infty}\left(1-p^{2 n}\right) \frac{\prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{2}\left(1+p^{2 n-1}\right)^{2}\left(1-p^{2 n-1}\right)^{2}}{\prod_{n=1}^{\infty}\left(1+p^{2 n-1}\right)^{2}\left(1-p^{2 n}\right)} \\
& =p^{1 / 12} \prod_{n=1}^{\infty}\left(1+p^{2 n}\right)^{2}\left(1-p^{2 n-1}\right)^{2}
\end{aligned}
$$

Thus the value

$$
\begin{equation*}
2 \frac{\eta(\tau)}{\phi(\tau)} \tag{3.2}
\end{equation*}
$$

is an algebraic integer by (2.1) and (2.3).
Let r, s, u, v be positive integers with $(r, s)=(u, v)=1$. Then $\frac{r}{s} \tau$ and $\frac{u}{v} \tau$ are still imaginary quadratic.

By (3.1) and (3.2) we see that

$$
\frac{\phi\left(\frac{s}{r} \tau\right)}{\eta\left(\frac{s}{r} \tau\right)} \cdot 2 \frac{\eta(\tau)}{\phi(\tau)}=2 \frac{\phi\left(\frac{s}{r} \tau\right)}{\phi(\tau)} \cdot \frac{\eta(\tau)}{\eta\left(\frac{s}{r} \tau\right)}
$$

and

$$
2 \frac{\phi(\tau)}{\phi\left(\frac{u}{v} \tau\right)} \cdot \frac{\eta\left(\frac{u}{v} \tau\right)}{\eta(\tau)}
$$

are algebraic integers.
Let

$$
\alpha_{r / s}=\left(\begin{array}{cc}
r & 0 \\
0 & s
\end{array}\right), \quad \alpha_{v / u}=\left(\begin{array}{cc}
v & 0 \\
0 & u
\end{array}\right)
$$

Then by the above and Proposition 2.1 we derive that

$$
\begin{equation*}
2 \frac{\phi\left(\frac{r}{s} \tau\right)}{\phi(\tau)} \cdot \frac{\eta(\tau)}{\eta\left(\frac{r}{s} \tau\right)} \cdot \phi_{\alpha_{r / s}}(\tau)^{1 / 24}=2 \sqrt{r} \frac{\phi\left(\frac{r}{s} \tau\right)}{\phi(\tau)} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \frac{\phi(\tau)}{\phi\left(\frac{u}{v} \tau\right)} \cdot \frac{\eta\left(\frac{u}{v} \tau\right)}{\eta(\tau)} \cdot \phi_{\alpha_{v / u}}\left(\frac{u}{v} \tau\right)^{1 / 24}=2 \sqrt{v} \frac{\phi(\tau)}{\phi\left(\frac{u}{v} \tau\right)} \tag{3.4}
\end{equation*}
$$

are algebraic integers.
Therefore, we have the following theorem.
Theorem 3.2. Let τ be any imaginary quadratic and r, s, u, v be positive integers such that $(r, s)=(u, v)=1$. Then $4 \sqrt{r v} \phi\left(\frac{r}{s} \tau\right) / \phi\left(\frac{u}{v} \tau\right)$ is an algebraic integer dividing $\sqrt{r s u v}$. In particular, $2 \sqrt{r} \phi\left(\frac{r}{s} \cdot \frac{u}{v} \tau\right) / \phi\left(\frac{u}{v} \tau\right)$ and $2 \sqrt{v} \phi\left(\frac{r}{s} \tau\right) / \phi\left(\frac{u}{v} \cdot \frac{r}{s} \tau\right)$ are algebraic integers dividing $\sqrt{r s}$ and $\sqrt{u v}$, respectively.

REmARK 3.3. Theorem 3.2 ensures that, in fact, the algebraic integer $\sqrt{2 m} \phi(m n i) / \phi(n i)$ (respectively, $2 \sqrt{m} \phi(m n i) / \phi(n i))$ in Proposition 3.1 divides $\sqrt{m / 2}$ (resp., \sqrt{m}) when m is odd (resp., even).

In a similar way, when working with the matrices $\left(\begin{array}{ll}1 & j \\ 0 & n\end{array}\right)(0 \leq j \leq n-1)$, we derive that $\phi\left(\frac{\tau}{n}\right) / \phi(\tau), \ldots, \phi\left(\frac{\tau+n-1}{n}\right) / \phi(\tau)$ are algebraic numbers; hence $\phi\left(\frac{\tau}{n}\right) \ldots \phi\left(\frac{\tau+n-1}{n}\right) / \phi(\tau)^{n}$ is an algebraic number. This implies that there
exists a polynomial $f(X)=a_{0} X^{l}+a_{1} X^{l-1}+\ldots+a_{l}$ in $\mathbb{Q}[X]$ satisfying

$$
f\left(\frac{\phi\left(\frac{\tau}{n}\right) \ldots \phi\left(\frac{\tau+n-1}{n}\right)}{\phi(\tau)^{n}}\right)=0
$$

Therefore we get an equation

$$
a_{l} \phi(\tau)^{n l}+\ldots+a_{0}\left(\phi\left(\frac{\tau}{n}\right) \ldots \phi\left(\frac{\tau+n-1}{n}\right)\right)^{l}=0
$$

which leads us to the following
Theorem 3.4. Let n be any positive integer. Then $\phi(\tau)$ is integral over

$$
\mathbb{Q}\left[\phi\left(\frac{\tau}{n}\right) \phi\left(\frac{\tau+1}{n}\right) \ldots \phi\left(\frac{\tau+n-1}{n}\right)\right] .
$$

4. Approach to the Weierstrass \wp-function and some modular functions. Let us consider $\wp(\tau / 2)$ for $\tau / 2 \notin \Lambda_{\tau}$ where Λ_{τ} is the lattice $\mathbb{Z}+\tau \mathbb{Z}$. Let r, v be positive odd integers and s, u any positive integers such that $(r, s)=(u, v)=1$. We then see that $\frac{r}{2 s} \tau, \frac{v}{2 u} \tau$ are imaginary quadratic and $\frac{r}{2 s} \tau, \frac{v}{2 u} \tau \notin \Lambda_{\tau}$. By Proposition 2.1 and Theorem 2.2,

$$
\frac{\wp\left(\frac{r}{2 s} \tau\right)}{\wp\left(\frac{v}{2 u} \tau\right)}=\frac{\wp\left(\frac{r}{2 s} \tau\right)}{\pi^{2} \eta\left(\frac{r}{s} \tau\right)^{4}} \cdot \frac{\pi^{2} \eta\left(\frac{v}{u} \tau\right)^{4}}{\wp\left(\frac{v}{2 u} \tau\right)} \cdot \frac{\eta\left(\frac{r}{s} \tau\right)^{4}}{\eta(\tau)^{4}} \cdot \frac{\eta(\tau)^{4}}{\eta\left(\frac{v}{u} \tau\right)^{4}}
$$

is an algebraic number. Thus we get the following
Theorem 4.1.

$$
\frac{\wp\left(\frac{r}{2 s} \tau\right)}{\wp\left(\frac{v}{2 u} \tau\right)}
$$

is an algebraic number, where τ, r, s, u and v are defined as above.
Let

$$
f_{0}(z ; \tau)=-2^{7} 3^{5} \frac{g_{2}(\tau) g_{3}(\tau)}{\Delta(\tau)} \wp\left(z, \Lambda_{\tau}\right)
$$

be the first Weber function for $\tau \in \mathfrak{h}$ and $z \in k$. Having fixed the integer $N>1$, for r, s in \mathbb{Z} not both divisible by N, let

$$
f_{r, s}(\tau)=f_{0}\left(\frac{r \tau+s}{N} ; \tau\right)
$$

be the Fricke function.
Theorem 4.2. Let $\tau \in \mathfrak{h} \cap k$ and r, s be positive integers not both divisible by N for fixed integer $N>1$. Then every element $g(\tau)$ in $\Omega\left(j(\tau), f_{r, s}(\tau)\right)$ is an algebraic number, where Ω is a field of algebraic numbers. In particular, any $g(\tau) \in \mathbb{Z}\left[j(\tau), 32 r^{2} f_{r, s}(\tau)\right]$ is an algebraic integer.

Proof. We can derive that

$$
\begin{aligned}
f_{r, s}(\tau) & =f_{0}\left(\frac{r \tau+s}{N} ; \tau\right) \\
& =-2^{7} 3^{5} \frac{g_{2}(\tau) g_{3}(\tau)}{\Delta(\tau)} \wp\left(\frac{r \tau+s}{N} ; \tau\right) \\
& =-\frac{1}{8} \cdot \frac{3 g_{2}(\tau)}{4 \pi^{4} \eta(\tau)^{8}} \cdot \frac{27 g_{3}(\tau)}{\pi^{6} \eta(\tau)^{12}} \cdot \frac{3 \wp\left(\frac{r \tau+s}{N}\right)}{\pi^{2} \eta\left(\frac{2 r \tau+2 s}{N}\right)^{4}} \cdot \frac{\eta\left(\frac{2 r \tau+2 s}{N}\right)^{4}}{\eta(\tau)^{4}} .
\end{aligned}
$$

Put $\alpha_{2 r / N}=\left(\begin{array}{cc}2 r & 2 s \\ 0 & N\end{array}\right)$ with $2 s \bmod N$. It follows from Proposition 2.1 that

$$
\phi_{\alpha_{2 r / N}}(\tau)^{1 / 6}=\left(\frac{1}{N^{12}}|2 r N|^{12} \frac{\eta\left(\frac{2 r \tau+2 s}{N}\right)^{24}}{\eta(\tau)^{24}}\right)^{1 / 6}=(2 r)^{2} \frac{\eta\left(\frac{2 r \tau+2 s}{N}\right)^{4}}{\eta(\tau)^{4}}
$$

is an algebraic integer.
We then conclude by Theorem 2.2 that $32 r^{2} f_{r, s}(\tau)$ is an algebraic integer. Therefore the theorem follows.

References

[1] B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan's remarkable product of theta-functions, Proc. Edinburgh Math. Soc. 40 (1997), 583-612.
[2] K. Chandrasekharan, Elliptic Functions, Grundlehren Math. Wiss. 281, Springer, 1985.
[3] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272.
[4] S. Lang, Elliptic Functions, Addison-Wesley, 1973.
[5] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 5-128.
[6] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517.
[7] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Princeton Univ. Press, Princeton, NJ, 1971.
[8] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, New York, 1994.
[9] -, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
[10] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1978.

Department of Mathematics Chonbuk National University Chonju 561-756, South Korea E-mail: dykim@math.chonbuk.ac.kr

Department of Mathematics Korea Advanced Institute of Science and Technology Taejon 305-701, South Korea

[^0]: 2000 Mathematics Subject Classification: 11J89, 05A30.
 Key words and phrases: infinite product, algebraic integer.
 This article was supported in part by KOSEF 98-0701-01-01-3.

