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0. Introduction. In this paper, we shall deal with certain algebraic
integers as values of elliptic functions constructed from the Weierstrass ℘-
function by using infinite products (Theorem 2.2). In the process we are able
to reprove the well known fact that j(τ) is an algebraic integer for an imag-
inary quadratic τ ; our proof seems to be quite simple and elementary unlike
the others ([3]–[8]). And in Section 3 we shall derive analogues (Theorem
3.2) of Berndt–Chan–Zhang’s results, which could be a generalization in the
case of m even. In the last section, we explore some algebraic properties of
values of the Weierstrass ℘-function and Fricke functions.

1. Infinite product formulas for the Weierstrass ℘-function. Let
Λτ = Z + τZ (τ ∈ h) be a lattice and z ∈ C. The Weierstrass ℘-function
(relative to Λτ ) is defined by the series

℘(z;Λτ ) =
1
z2 +

∑

ω∈Λτ
ω 6=0

{
1

(z − ω)2 −
1
ω2

}
,

and the Eisenstein series of weight 2k (for Λτ and k > 1) is the series

G2k(Λτ ) =
∑

ω∈Λτ
ω 6=0

ω−2k.

We shall use the notations ℘(z) and G2k instead of ℘(z;Λτ ) and G2k(Λτ ),
respectively, when the lattice Λτ has been fixed.

Then the Laurent series for ℘(z) about z = 0 is given by

℘(z) = z−2 +
∞∑

k=1

(2k + 1)G2k+2z
2k
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and, for all z ∈ C− Λτ we obtain the equation

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.

As is customary, the algebraic relation between ℘(z) and ℘′(z) becomes

℘′(z)2 = 4℘(z)3 − g2(τ)℘(z)− g3(τ),

where

g2(τ) = g2(Λτ ) = 60G4 and g3(τ) = g3(Λτ ) = 140G6.

Moreover, we have the following proposition at hand which will be useful in
extracting infinite product expressions.

Proposition 1.1 ([4], [8]). Let p = eπiτ .

(1) ℘
(
τ

2

)
− ℘

(
1
2

)
= −π2

∞∏

n=1

(1− p2n)4(1 + p2n−1)8.

(2) ℘
(
τ + 1

2

)
− ℘

(
1
2

)
= −π2

∞∏

n=1

(1− p2n)4(1− p2n−1)8.

(3) ℘
(
τ + 1

2

)
− ℘

(
τ

2

)
= 16π2p

∞∏

n=1

(1− p2n)4(1 + p2n)8.

Now, for simplicity we set

C :=
∞∏

n=1

(1− pn), D :=
∞∏

n=1

(1 + pn), S :=
∞∏

n=1

(1− p2n),

T :=
∞∏

n=1

(1 + p2n−1), U :=
∞∏

n=1

(1 + p2n), V :=
∞∏

n=1

(1− p2n−1).

We then readily check that

(1.0) CD = S, TU = D, SUV T = S, V UT = 1.

By definition

∆(τ) = (2π)12η(τ)24 = g2(τ)3 − 27g3(τ)2,

which is the discriminant of the cubic polynomial

4℘(z)3 − g2(τ)℘(z)− g3(τ) = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

On the other hand, we know ([9]) that the roots of this polynomial are

e1 = ℘

(
1
2

)
, e2 = ℘

(
τ

2

)
, e3 = ℘

(
τ + 1

2

)
.

Thus, we have

℘

(
1
2

)
+ ℘

(
τ

2

)
+ ℘

(
τ + 1

2

)
= 0,
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℘

(
1
2

)
℘

(
τ

2

)
+ ℘

(
τ + 1

2

)
℘

(
τ

2

)
+ ℘

(
1
2

)
℘

(
τ + 1

2

)
= −g2(τ)

4

and

℘

(
1
2

)
℘

(
τ

2

)
℘

(
τ + 1

2

)
=
g3(τ)

4
.

By the above equations and Proposition 1.1, we derive that

2℘
(
τ

2

)
+ ℘

(
τ + 1

2

)
= ℘

(
τ

2

)
−
(
−℘
(
τ + 1

2

)
− ℘

(
τ

2

))

= ℘

(
τ

2

)
− ℘

(
1
2

)
= −π2S4T 8.

And we get the following three new identities:

℘

(
τ

2

)
=

1
3

[(
2℘
(
τ

2

)
+ ℘

(
τ + 1

2

))
+
(
℘

(
τ

2

)
− ℘

(
τ + 1

2

))]
(1.1)

= −π
2

3
S4(T 8 + 16pU8)

= −π
2

3

∞∏

n=1

(1− p2n)4

×
( ∞∏

n=1

(1 + p2n−1)8 + 16p
∞∏

n=1

(1 + p2n)8
)
,

℘

(
τ + 1

2

)
= 16π2pS4U8 − π2

3
S4(T 8 + 16pU8)(1.2)

= −π
2

3
S4(T 8 − 32pU8)

= −π
2

3

∞∏

n=1

(1− p2n)4

×
( ∞∏

n=1

(1 + p2n−1)8 − 32p
∞∏

n=1

(1 + p2n)8
)

and

℘

(
1
2

)
= π2S4T 8 − π2

3
S4(T 8 + 16pU8) =

π2

3
S4(2T 8 − 16pU8)(1.3)

=
π2

3

∞∏

n=1

(1− p2n)4

×
(

2
∞∏

n=1

(1 + p2n−1)8 − 16p
∞∏

n=1

(1 + p2n)8
)
.
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Using (1.1)–(1.3) we obtain the identity for g2(τ):

g2(τ) = −4
[
℘

(
1
2

)
℘

(
τ

2

)
+ ℘

(
τ + 1

2

)
℘

(
τ

2

)
+ ℘

(
1
2

)
℘

(
τ + 1

2

)]
(1.4)

= −4
[
π2

3
S4(2T 8 − 16pU8)

(
−π

2

3
S4(T 8 + 16pU8)

)

+
(
−π

2

3
S4(T 8 − 32pU8)

)(
−π

2

3
S4(T 8 + 16pU8)

)

+
(
π2

3
S4(2T 8 − 16pU8)

)(
−π

2

3
S4(T 8 − 32pU8)

)]

=
4π4

3
S8(T 16 − 16pT 8U8 + 256p2U16)

=
4π4

3

∞∏

n=1

(1− p2n)8
( ∞∏

n=1

(1 + p2n−1)16

− 16p
∞∏

n=1

(1 + pn)8 + 256p2
∞∏

n=1

(1 + p2n)16
)
.

We are also able to express g3(τ) as

g3(τ) = 4℘
(

1
2

)
℘

(
τ

2

)
℘

(
τ + 1

2

)
(1.5)

= 4
(
π2

3
S4(2T 8 − 16pU8)

)

×
(
−π

2

3
S4(T 8 − 32pU8)

)(
−π

2

3
S4(T 8 + 16pU8)

)

=
8π6

27
S12(T 24 − 24pT 16U8 − 384p2T 8U16 + 4096p3U24)

=
8π6

27

∞∏

n=1

(1− p2n)12

×
( ∞∏

n=1

(1 + p2n−1)24 − 24p
∞∏

n=1

(1 + p2n−1)16(1 + p2n)8

− 384p2
∞∏

n=1

(1 + p2n−1)8(1 + p2n)16

+ 4096p3
∞∏

n=1

(1 + p2n)24
)
.
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Then, we derive from (1.4) and (1.5) that

j(τ) = 1728
g2(τ)3

∆(τ)
(1.6)

= 1728

[
4
3π

4S8(T 16 − 16pD8 + 256p2U16)
]3

(2π)12p2S24

=
1
p2 (T 16 − 16pD8 + 256p2U16)3.

2. Some infinite products as algebraic integers. Throughout Sec-
tions 2 to 4 we shall fix the following notations: k is an imaginary quadratic
field, h the complex upper half plane and τ ∈ h ∩ k.

Let α =
(
a b

0 d

)
with b mod d and |α| the determinant of α, and let

(∗) φα(τ) := |α|12∆
(
α
(
τ
1

))

∆
((
τ
1

)) = |α|12d−12∆(ατ)
∆(τ)

.

Then we recall the following well known fact.

Proposition 2.1 ([4]). For any τ ∈ k∩h, the value φα(τ) is an algebraic
integer which divides |α|12.

First, we consider

∆(τ)
∆(τ/2)

=
(2π)12p2∏∞

n=1(1− p2n)24

(2π)12p
∏∞
n=1(1− pn)24 = p

∞∏

n=1

(1 + pn)24

and
∆(τ/2)
∆(τ)

=
(2π)12p

∏∞
n=1(1− pn)24

(2π)12p2
∏∞
n=1(1− p2n)24 = p−1 1∏∞

n=1(1 + pn)24 .

Put

α1 =
(

2 0
0 1

)
, α2 =

(
1 0
0 2

)
.

By (∗),
φα1(τ/2) = 212 ∆(τ)

∆(τ/2)

(
= 212 η(τ)24

η(τ/2)24

)
,

from which we see by Proposition 2.1 that

(2.1)
√

2 p1/24
∞∏

n=1

(1 + pn)

is an algebraic integer. Also, we have

φα2(τ) = 212 1
212 ·

∆(τ/2)
∆(τ)

(
=
η(τ/2)24

η(τ)24

)
,
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and hence

(2.2) p−1/24 1∏∞
n=1(1 + pn)

is an algebraic integer.
It follows from (1.0) that

∞∏

n=1

(1 + p2n)(1 + p2n−1)(1− p2n−1) = 1.

So, by (2.2) and the above, we obtain

1
p2
∏∞
n=1(1 + p2n)24 =

∏∞
n=1(1 + p2n)24(1 + p2n−1)24(1− p2n−1)24

p2
∏∞
n=1(1 + p2n)24

= p−2
∞∏

n=1

(1− p4n−2)24.

Thus we see from (2.2) that

(2.3) p−1/24
∞∏

n=1

(1− p2n−1)

is an algebraic integer. By (2.1) and (2.3), we claim that

(2.4)
√

2
∞∏

n=1

(1 + pn)(1− p2n−1)

is an algebraic integer.
Jacobi ([10, p. 470]) showed that

∞∏

n=1

(1 + p2n−1)8 −
∞∏

n=1

(1− p2n−1)8 = 16p
∞∏

n=1

(1 + p2n)8,

which we can now easily check by using Proposition 1.1.
Multiplying both sides in Jacobi’s relation by p−1/3, we derive from (2.1)

and (2.3) that

(2.5) p−1/24
∞∏

n=1

(1 + p2n−1)

is an algebraic integer.
Combining (2.1) and (2.5) we see that

(2.6)
√

2
∞∏

n=1

(1 + pn)(1 + p2n−1)

is also an algebraic integer.
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By (1.6), (2.1) and (2.5) we are led to

j(τ)1/3 = −16p1/3
∞∏

n=1

(1 + pn)8 + 256p4/3
∞∏

n=1

(1 + p2n)16(2.7)

+ p−2/3
∞∏

n=1

(1 + p2n−1)16,

from which we can reprove the well known fact ([3]–[8]) that j(τ) is an
algebraic integer. Observe that, in the above, we used the fact that√

2 p1/12∏∞
n=1(1 + p2n) is also an algebraic integer, which can be readily

deduced from (2.1).

On the other hand, we know by (1.1) that

−3℘(τ/2)
π2η(τ)4 =

∏∞
n=1(1− p2n)4((1 + p2n−1)8 + 16p(1 + p2n)8)

p1/3
∏∞
n=1(1− p2n)4

= p−1/3
∞∏

n=1

(1 + p2n−1)8 + 16p2/3
∞∏

n=1

(1 + p2n)8.

We then conclude from (2.1) and (2.5) that

(2.8)
3
π2 ·

℘(τ/2)
η(τ)4

is an algebraic integer. Also, it follows from (1.4) that

3g2(τ)
4π4η(τ)8 =

∏∞
n=1(1− p2n)8(1 + p2n−1)16 − 16p

∏∞
n=1(1− p2n)8(1 + pn)8

p2/3
∏∞
n=1(1− p2n)8

+
256p2∏∞

n=1(1− p2n)8(1 + p2n)16

p2/3
∏∞
n=1(1− p2n)8

= p−2/3
∞∏

n=1

(1 + p2n−1)16 − 16p1/3
∞∏

n=1

(1 + pn)8

+ 256p4/3
∞∏

n=1

(1 + p2n)16.

Thus we find again by (2.1) and (2.5) that

(2.9)
3

4π4 ·
g2(τ)
η(τ)8

is an algebraic integer. And we deduce from (1.5) that
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27g3(τ)
π6η(τ)12 = 8p−1

∞∏

n=1

(1 + p2n−1)24 − 192
∞∏

n=1

(1 + pn)8(1 + p2n−1)8

− 3072p
∞∏

n=1

(1 + pn)8(1 + p2n)8 + 32768p2
∞∏

n=1

(1 + p2n)24,

from which we conclude by (2.1), (2.5) and (2.6) that

(2.10)
27
π6 ·

g3(τ)
η(τ)12

is an algebraic integer.
By Proposition 1.1, (2.1), (2.3) and (2.5), we derive that

(2.11)
℘
(
τ
2

)
− ℘

(
1
2

)

π2η(τ)4 ,
℘
(
τ+1

2

)
− ℘

(
1
2

)

π2η(τ)4 and
℘
(
τ+1

2

)
− ℘

(
τ
2

)

π2η(τ)4

are algebraic integers. Also, it follows from (2.8) and (2.11) that

(2.12)
3
π2 ·

℘((τ + 1)/2)
η(τ)4 and

3
π2 ·

℘(1/2)
η(τ)4

are algebraic integers.
We summarize (2.1) to (2.12) as follows.

Theorem 2.2. Let τ ∈ k ∩ h. Then

(a)
√

2 p1/24
∞∏

n=1

(1+pn), p−1/24 1∏∞
n=1(1 + pn)

, p−1/24
∞∏

n=1

(1−p2n−1),

√
2
∞∏

n=1

(1 + pn)(1− p2n−1), p−1/24
∞∏

n=1

(1 + p2n−1) and

√
2
∞∏

n=1

(1 + pn)(1 + p2n−1)

are algebraic integers.

(b) j(τ),
3
π2 ·

℘
(
τ
2

)

η(τ)4 ,
3
π2 ·

℘
(
τ+1

2

)

η(τ)4 ,
3
π2 ·

℘
(

1
2

)

η(τ)4 ,
3

4π4 ·
g2(τ)
η(τ)8 ,

27
π6 ·

g3(τ)
η(τ)12 ,

℘
(
τ
2

)
− ℘

(
1
2

)

π2η(τ)4 ,
℘
(
τ+1

2

)
− ℘

(
1
2

)

π2η(τ)4 and

℘
(
τ+1

2

)
− ℘

(
τ
2

)

π2η(τ)4

are algebraic integers.

The Gel’fond–Schneider theorem says that eπα = (−1)−iα is transcen-
dental whenever iα is algebraic of degree at least 2 over Q ([8], p. 142). This
facts yields that p = eπiτ is transcendental. Therefore, we have
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Corollary 2.3. Let τ ∈ k ∩ h. Then
∞∏

n=1

(1 + pn),
∞∏

n=1

(1− p2n−1) and
∞∏

n=1

(1 + p2n−1)

are transcendental numbers.

3. Approach to φ(τ). Let

φ(τ) := φ(eπiτ ) =
η((τ + 1)/2)2

η(τ + 1)
=
∞∏

n=1

(1 + p2n−1)2(1− p2n) = θ3(0, τ).

Here we refer to [2] for the last equality. Berndt, Chan and Zhang showed
in [1] the following proposition by using three of Ramanujan’s modular
equations, values of certain class invariants of Ramanujan, representations
for quotients of values of φ in terms of class invariants and the theta-
transformation formula.

In this section we shall derive certain analogues of their results purely in
terms of infinite products, which is a generalization in the case of m even.

Proposition 3.1. Let m and n be positive integers. Then φ(mni)/φ(ni)
is algebraic. Furthermore, if m is odd , then

√
2mφ(mni)/φ(ni) is an alge-

braic integer dividing 2
√
m, while if m is even, then 2

√
mφ(mni)/φ(ni) is

an algebraic integer dividing 4
√
m.

By (2.5), the value

(3.1)
φ(τ)
η(τ)

=
∏∞
n=1(1 + p2n−1)2(1− p2n)
p1/12

∏∞
n=1(1− p2n)

= p−1/12
∞∏

n=1

(1 + p2n−1)2

is an algebraic integer. Observe that it can also be written as θ3(0, τ)/η(τ).
By considering the identity V UT = 1 from (1.0), that is,

∞∏

n=1

(1 + p2n)(1 + p2n−1)(1− p2n−1) = 1

we have

η(τ)
φ(τ)

= p1/12
∞∏

n=1

(1− p2n)
1∏∞

n=1(1 + p2n−1)2(1− p2n)

= p1/12
∞∏

n=1

(1− p2n)
∏∞
n=1(1 + p2n)2(1 + p2n−1)2(1− p2n−1)2

∏∞
n=1(1 + p2n−1)2(1− p2n)

= p1/12
∞∏

n=1

(1 + p2n)2(1− p2n−1)2.



114 D. Y. Kim and J. K. Koo

Thus the value

(3.2) 2
η(τ)
φ(τ)

is an algebraic integer by (2.1) and (2.3).
Let r, s, u, v be positive integers with (r, s) = (u, v) = 1. Then r

s τ and
u
v τ are still imaginary quadratic.

By (3.1) and (3.2) we see that

φ
(
s
r τ
)

η
(
s
r τ
) · 2 η(τ)

φ(τ)
= 2

φ
(
s
r τ
)

φ(τ)
· η(τ)
η
(
s
r τ
)

and

2
φ(τ)
φ
(
u
v τ
) · η

(
u
v τ
)

η(τ)

are algebraic integers.
Let

αr/s =
(
r 0
0 s

)
, αv/u =

(
v 0
0 u

)
.

Then by the above and Proposition 2.1 we derive that

(3.3) 2
φ
(
r
sτ
)

φ(τ)
· η(τ)
η
(
r
sτ
) · φαr/s(τ)1/24 = 2

√
r
φ
(
r
sτ
)

φ(τ)

and

(3.4) 2
φ(τ)
φ
(
u
v τ
) · η

(
u
v τ
)

η(τ)
· φαv/u

(
u

v
τ

)1/24

= 2
√
v
φ(τ)
φ
(
u
v τ
)

are algebraic integers.
Therefore, we have the following theorem.

Theorem 3.2. Let τ be any imaginary quadratic and r, s, u, v be posi-
tive integers such that (r, s) = (u, v) = 1. Then 4

√
rv φ

(
r
s τ
)
/φ
(
u
v τ
)

is an
algebraic integer dividing

√
rsuv. In particular , 2

√
r φ
(
r
s · uv τ

)
/φ
(
u
v τ
)

and
2
√
v φ
(
r
sτ
)
/φ
(
u
v · rsτ

)
are algebraic integers dividing

√
rs and

√
uv, respec-

tively.

Remark 3.3. Theorem 3.2 ensures that, in fact, the algebraic integer√
2mφ(mni)/φ(ni) (respectively, 2

√
mφ(mni)/φ(ni)) in Proposition 3.1 di-

vides
√
m/2 (resp.,

√
m) when m is odd (resp., even).

In a similar way, when working with the matrices
( 1 j

0 n

)
(0 ≤ j ≤ n− 1),

we derive that φ
(
τ
n

)
/φ(τ), . . . , φ

(
τ+n−1
n

)
/φ(τ) are algebraic numbers; hence

φ
(
τ
n

)
. . . φ

(
τ+n−1
n

)
/φ(τ)n is an algebraic number. This implies that there
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exists a polynomial f(X) = a0X
l + a1X

l−1 + . . .+ al in Q[X] satisfying

f

(
φ
(
τ
n

)
. . . φ

(
τ+n−1
n

)

φ(τ)n

)
= 0.

Therefore we get an equation

alφ(τ)nl + . . .+ a0

(
φ

(
τ

n

)
. . . φ

(
τ + n− 1

n

))l
= 0,

which leads us to the following

Theorem 3.4. Let n be any positive integer. Then φ(τ) is integral over

Q
[
φ

(
τ

n

)
φ

(
τ + 1
n

)
. . . φ

(
τ + n− 1

n

)]
.

4. Approach to the Weierstrass ℘-function and some modular
functions. Let us consider ℘(τ/2) for τ/2 6∈ Λτ where Λτ is the lattice
Z+ τZ. Let r, v be positive odd integers and s, u any positive integers such
that (r, s) = (u, v) = 1. We then see that r

2sτ,
v
2uτ are imaginary quadratic

and r
2sτ , v

2uτ 6∈ Λτ . By Proposition 2.1 and Theorem 2.2,

℘
(
r
2sτ
)

℘
(
v
2uτ
) =

℘
(
r
2sτ
)

π2η
(
r
sτ
)4 ·

π2η
(
v
uτ
)4

℘
(
v
2uτ
) · η

(
r
s τ
)4

η(τ)4 ·
η(τ)4

η
(
v
uτ
)4

is an algebraic number. Thus we get the following

Theorem 4.1.
℘
(
r
2sτ
)

℘
(
v
2uτ
)

is an algebraic number , where τ, r, s, u and v are defined as above.

Let

f0(z; τ) = −2735 g2(τ)g3(τ)
∆(τ)

℘(z, Λτ )

be the first Weber function for τ ∈ h and z ∈ k. Having fixed the integer
N > 1, for r, s in Z not both divisible by N , let

fr,s(τ) = f0

(
rτ + s

N
; τ
)

be the Fricke function.

Theorem 4.2. Let τ ∈ h∩k and r, s be positive integers not both divisible
by N for fixed integer N > 1. Then every element g(τ) in Ω(j(τ), fr,s(τ)) is
an algebraic number , where Ω is a field of algebraic numbers. In particular ,
any g(τ) ∈ Z[j(τ), 32r2fr,s(τ)] is an algebraic integer.
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Proof. We can derive that

fr,s(τ) = f0

(
rτ + s

N
; τ
)

= −2735 g2(τ)g3(τ)
∆(τ)

℘

(
rτ + s

N
; τ
)

= −1
8
· 3g2(τ)

4π4η(τ)8 ·
27g3(τ)
π6η(τ)12 ·

3℘
(
rτ+s
N

)

π2η
(

2rτ+2s
N

)4 ·
η
(

2rτ+2s
N

)4

η(τ)4 .

Put α2r/N =
( 2r 2s

0 N

)
with 2s mod N . It follows from Proposition 2.1

that

φα2r/N (τ)1/6 =
(

1
N12 |2rN |

12 η
(

2rτ+2s
N

)24

η(τ)24

)1/6

= (2r)2 η
(

2rτ+2s
N

)4

η(τ)4

is an algebraic integer.
We then conclude by Theorem 2.2 that 32r2fr,s(τ) is an algebraic integer.

Therefore the theorem follows.
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