The distribution of real-valued Q-additive functions modulo 1

by

ABIGAIL HOIT (Elmhurst, IL)

0. Introduction. Let $q \geq 2$ be an integer. A q-additive function $f : \mathbb{N} \rightarrow \mathbb{C}$ is a function of the form $f(n) = \sum_{j \geq 0} f_j(a_j(n))$ where $n = \sum_{j \geq 0} a_j(n)q^j$ is the base-q representation of n and the “component functions” f_j are functions defined on \{0, 1, \ldots, q - 1\} and satisfying $f_j(0) = 0$. These functions were introduced by A. O. Gel’fond [Ge] in 1968, and have been studied by Coquet [Co1], Delange [De3], and others. They generalize the sum-of-digits functions $s_q(n)$ with respect to base q.

In 1977, Coquet [Co1] generalized q-additive functions to more general systems of numeration. Specifically, he considered so-called mixed radix representations (also called Cantor representations) defined as follows. Let $Q = \{Q_j\}_{j \geq 0}$ be a sequence of strictly increasing positive integers with $Q_0 = 1$ such that $Q_j | Q_{j+1}$ for all j. Note that the sequence Q is uniquely determined by the factors $q_j = Q_{j+1}/Q_j$. It is easily seen that each non-negative integer n has a unique “base-Q” representation of the form $n = \sum_{j \geq 0} a_j(n)Q_j$, where the “digits” $a_j(n)$ satisfy $0 \leq a_j(n) < q_j$. Examples of such representations are the ordinary base-q representations ($q_j = q$) as well as the factorial representation ($q_j = j + 2$), the factorial-squared representation ($q_j = (j + 2)^2$), and the doubly-geometric representations ($q_j = q^j$).

For a full discussion of these and other numeration systems see, for example, Grabner et al. [GLT] or the survey article by Fraenkel [Fr] and the references therein.

Given a mixed radix system Q, Coquet defined a Q-additive function $f : \mathbb{N} \rightarrow \mathbb{C}$ to be a function of the form $f(n) = \sum_{j \geq 0} f_j(a_j(n))$ where $n = \sum_{j \geq 0} a_j(n)Q_j$ is the base-Q representation of n and the component functions f_j are functions defined on \{0, 1, \ldots, q_j - 1\} and satisfying $f_j(0) = 0$.

2000 Mathematics Subject Classification: Primary 11K16.

The results in this paper also appear in the author’s doctoral thesis deposited in April of 1999 at the University of Illinois at Urbana-Champaign.
A simple example of a Q-additive function is the sum-of-digits function $s_Q(n) = \sum_{j \geq 0} a_j(n)$, which corresponds to the choice $f_j(a) = a$. This function has been studied by Kirschenhofer and Tichy [KT], among others. For recent work on general Q-additive functions see Manstavičius [Ma]. For generalizations of q-additive functions to other numeration systems see, for example, Barat and Grabner [BG].

Our main result, Theorem 1, characterizes those real-valued Q-additive functions that have a limit distribution (resp. uniform limit distribution) modulo 1. In order to prove this result, we consider so-called Q-multiplicative functions, which are defined in analogy to Q-additive functions as follows. A Q-multiplicative function is a function $g : \mathbb{N} \to \mathbb{C}$ of the form $g(n) = \prod_{j \geq 0} g_j(a_j(n))$, where $n = \sum_{j \geq 0} a_j(n) Q_j$ is the base-Q representation of n and the component functions g_j are functions defined on $\{0, 1, \ldots, q_j - 1\}$ and satisfying $g_j(0) = 1$. These functions have been studied by Coquet [Co1] and others, usually in conjunction with work on Q-additive functions.

We establish mean value theorems for Q-multiplicative functions analogous to those of Delange and Wirsing (see, e.g., [El, Chapter 6]) for ordinary multiplicative functions.

Throughout this paper, we set $e(x) = e^{2\pi i x}$ and write $\|x\|$ to denote the distance from x to the nearest integer and $\{x\}$ to denote the fractional part of x.

1. Statement of results. Let $Q = \{Q_j\}_{j \geq 0}$ be a mixed radix system with factors $q_j = Q_{j+1}/Q_j$. Let f be a real-valued Q-additive function with component functions f_j. We say that f has a limit distribution modulo 1 if there is a distribution function F (i.e., F is right-continuous and monotonic with $F(x) = 0$ for $x < 0$ and $F(x) = 1$ for $x \geq 1$) such that the limit

$$\lim_{N \to \infty} \frac{1}{N} \#\{0 \leq n < N : \{f(n)\} \leq x\}$$

exists and equals $F(x)$ for every x at which F is continuous. We say that f has a uniform limit distribution modulo 1 if this holds with $F(x) = x$ for $0 \leq x < 1$. Aside from its intrinsic interest, the study of the distribution modulo 1 of Q-additive functions is motivated in part by the results of Coquet [Co1] and Mendès France [MF] connecting the uniform distribution of certain Q-additive functions to so-called P-V numbers. Our main result is a complete characterization of real-valued Q-additive functions that have a limit distribution (resp. uniform limit distribution) modulo 1.

Theorem 1. A real-valued Q-additive function f has a limit distribution modulo 1 if and only if, for each integer $k \neq 0$, at least one of the following conditions holds:

(i) There exists $j \geq 0$ such that $\sum_{0 \leq n < q_j} e(kf_j(n)) = 0$.
(ii) The series
\[\sum_{j \geq 0} \left(1 - \frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(kf_j(n)) \right| \right) \]
diverges.

(iii) The series
\[\sum_{j \geq 0} \left(1 - \frac{1}{q_j} \sum_{0 \leq n < q_j} e(kf_j(n)) \right) \]
converges, and
\[\lim_{j \to \infty} \left(\max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} \| kf_j(m) \|^2 \right) = 0. \]

Furthermore, \(f \) is uniformly distributed modulo 1 if and only if, for all integers \(k \neq 0 \), at least one of conditions (i) or (ii) holds.

This result generalizes the characterization given by Kim [Ki, p. 27] for the special case of \(q \)-additive functions.

We apply Theorem 1 to derive several corollaries that deal with special cases. We first consider numeration systems in which the factors \(q_j \) are bounded. In particular, these systems include the ordinary base-\(q \) representations generated by \(q_j = q \) for all \(j \).

Corollary 1. Suppose the factors \(q_j \) are bounded. Then \(f \) is uniformly distributed modulo 1 if and only if, for all \(k \neq 0 \), either the series
\[\sum_{j \geq 0} \sum_{0 \leq n < q_j} \| kf_j(n) \|^2 \]
diverges, or for some \(j \geq 0 \) we have
\[\sum_{0 \leq n < q_j} e(kf_j(n)) = 0. \]

Let \(\alpha \in \mathbb{R} \). We call an integer-valued arithmetic function \(f \) normal if the function \(\alpha f \) is uniformly distributed modulo 1 if and only if \(\alpha \) is irrational. Coquet [Co2] showed that for any base \(q \geq 2 \), the associated sum-of-digits function \(s_q(n) \) is normal. General criteria for the normality of arithmetic functions have been given by Drmota and Tichy [DT, Section 1.4.3]. In Corollaries 2 and 3 below, we apply Theorem 1 to show that two classes of integer-valued \(Q \)-additive functions are normal.

Corollary 2. For any mixed radix numeration system \(Q \), the function \(s_Q(n) \), the sum of digits in the base-\(Q \) representation of \(n \), is normal.

We call a \(Q \)-additive function \(f \) completely \(Q \)-additive if there exists a function \(g : \mathbb{N} \to \mathbb{C} \) such that, for all \(j \geq 0 \) and \(0 \leq n < q_j \), \(f_j(n) = g(n) \),
i.e., if the component functions f_j are independent of j on their respective domains. The following corollary generalizes a result of Drmota and Tichy [DT, Theorem 1.99].

Corollary 3. Suppose that the series $\sum_{j \geq 0} 1/q_j$ diverges. Let f be a completely Q-additive, integer-valued function such that there is some integer $1 \leq a < \min_j q_j$ with $f_0(a) > 0$. Then f is normal.

In the next two corollaries we investigate the normality of two particular integer-valued Q-additive functions that have been previously considered in [Ho, examples (c) and (a)] and [KT, Theorem 3]. These results provide examples of functions that have a non-uniform limit distribution modulo 1 as well as functions that have no limit distribution modulo 1.

Corollary 4. Let α be an irrational number. Let $M(n)$ be the number of digits in the base-Q representation of n which are maximal, and set $f(n) = \alpha M(n)$. Then f has a limit distribution modulo 1. Moreover, the limit distribution is uniform if and only if the series $\sum_{j \geq 0} 1/q_j$ diverges.

Corollary 5. Let $a > 0$ be a fixed integer and let α be an irrational number. Let $N_a(n)$ be the number of digits a in the base-Q representation of n, and set $f(n) = \alpha N_a(n)$. Then f is uniformly distributed modulo 1 if and only if $\sum_{q_j > a} 1/q_j$ diverges. The function f has a non-uniform limit distribution modulo 1 if and only if $q_j \leq a$ for all but at most finitely many j.

2. Lemmas. The first lemma is a well known result on the distribution modulo 1 of real-valued arithmetic functions (see, e.g., [De2, p. 216]). The second assertion of the lemma is known as Weyl’s Criterion [We].

Lemma 1. A real-valued arithmetic function f has a limit distribution modulo 1 if and only if, for each integer $k \neq 0$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} e(kf(n))$$

exists. Further, the distribution is uniform modulo 1 if and only if, for each integer $k \neq 0$, the above limit is 0.

Throughout the remainder of this section, we fix a mixed radix system Q with factors $\{q_j\}_{j \geq 0}$. We denote by g a Q-multiplicative function satisfying $|g| \leq 1$ with component functions g_j, and define

$$\mu_j(g) = \frac{1}{q_j} \sum_{0 \leq n < q_j} g_j(n).$$

Thus, $\mu_j(g)$ is the mean value of g_j on its domain $\{0, 1, \ldots, q_j - 1\}$.

The following lemma relates the mean value of g on $\{0, 1, \ldots, rQ_j - 1\}$ to that of the functions g_i.
Lemma 2. For \(j \geq 0 \) and any positive integer \(r \) with \(1 \leq r \leq q_j \) we have

\[
(2.1) \quad \frac{1}{rQ_j} \sum_{n=0}^{rQ_j-1} g(n) = \left(\frac{1}{r} \sum_{n=0}^{r-1} g_j(n) \right) \left(\frac{1}{Q_j} \sum_{n=0}^{Q_j-1} g(n) \right).
\]

Moreover, for any \(j \geq 0 \),

\[
(2.2) \quad \frac{1}{Q_j} \sum_{n=0}^{Q_j-1} g(n) = \prod_{i=0}^{j-1} \mu_i(g).
\]

Proof. We first note that, since \(Q_0 = 1 \) and \(g(0) = 1 \), we have

\[
\frac{1}{Q_0} \sum_{n=0}^{Q_0-1} g(n) = g(0) = 1.
\]

Thus, relation (2.2) follows from (2.1) by applying (2.1) with \(r = q_j \) and iterating the identity. Hence it suffices to prove (2.1).

Observe that any non-negative integer \(n < rQ_j \) can be written uniquely (via the division algorithm) in the form \(n = sQ_j + t \) with \(0 \leq t < Q_j \) and \(0 \leq s < r \). By the \(Q \)-multiplicativity of \(g \), we have, with this representation,

\[
g(n) = g_j(s)g(t).
\]

As \(n \) runs through the set \(\{0, 1, \ldots, rQ_j - 1\} \), \(s \) and \(t \) run independently through the sets \(\{0, 1, \ldots, r-1\} \) and \(\{0, 1, \ldots, Q_j-1\} \), respectively. It follows that

\[
\frac{1}{rQ_j} \sum_{n=0}^{rQ_j-1} g(n) = \frac{1}{rQ_j} \sum_{s=0}^{r-1} \sum_{t=0}^{Q_j-1} g_j(s)g(t) = \frac{1}{r} \sum_{s=0}^{r-1} g_j(s) \frac{1}{Q_j} \sum_{t=0}^{Q_j-1} g(t),
\]

which is (2.1).

To obtain necessary and sufficient conditions for the convergence of the product in (2.2), we will use the following lemma, a proof of which can be found in many elementary texts on complex variables (see, e.g., [LR, pp. 383–384]).

Lemma 3. Let \(z_0, z_1, \ldots \) be complex numbers satisfying \(|z_j| \leq 1 \), and let \(P_i = \prod_{j=0}^i z_j \). Then \(\lim_{i \to \infty} P_i = 0 \) if and only if at least one of the following two conditions holds:

(i) There is some \(j \geq 0 \) such that \(z_j = 0 \).

(ii) \(\sum_{j=0}^\infty (1 - |z_j|) = \infty \).

Then \(\lim_{i \to \infty} P_i \) exists and is non-zero if and only if the following two conditions are both satisfied:

(iii) \(z_j \neq 0 \) for all \(j \).

(iv) \(\sum_{j=0}^\infty (1 - z_j) \) converges.
The next lemma relates the mean value of g on $\{0, 1, \ldots, N - 1\}$ for general integers N to the mean values of the functions g_j.

Lemma 4. Let N be a positive integer and let $\sum_{j=0}^{i} a_j Q_j$, with $a_i > 0$, be the base-Q representation of N. Then

\begin{equation}
\frac{1}{N} \sum_{n=0}^{N-1} g(n) = \sum_{j=0}^{i} \frac{a_j Q_j}{N} \left(\prod_{m=j+1}^{i} g_m(a_m) \right) \left(\frac{1}{a_j} \sum_{n=0}^{a_j-1} g_j(n) \right) \left(\prod_{k=0}^{j-1} \mu_k(g) \right),
\end{equation}

where empty products and empty sums are to be interpreted as 1 and 0, respectively. Furthermore, for any positive integer $h \leq i$, we have

\begin{equation}
\sum_{j=0}^{i-h} \frac{a_j Q_j}{N} < 2^{1-h}.
\end{equation}

Proof. We begin by dividing the interval $0 \leq n < N$ into the subintervals $0 \leq n < a_i Q_i$ and $a_i Q_i \leq n < N$, to obtain

\begin{equation}
\frac{1}{N} \sum_{n=0}^{N-1} g(n) = \frac{1}{N} \sum_{0 \leq n < a_i Q_i} g(n) + \frac{1}{N} \sum_{a_i Q_i \leq n < N} g(n).
\end{equation}

We have, by Lemma 2,

\begin{equation}
\frac{1}{N} \sum_{0 \leq n < a_i Q_i} g(n) = \frac{a_i Q_i}{N} \left(\frac{1}{a_i} \sum_{n=0}^{a_i-1} g_i(n) \right) \left(\frac{1}{Q_i} \sum_{n=0}^{Q_i-1} g(n) \right) = \frac{a_i Q_i}{N} \left(\frac{1}{a_i} \sum_{n=0}^{a_i-1} g_i(n) \right) \left(\prod_{k=0}^{i-1} \mu_k(g) \right).
\end{equation}

Furthermore, by the Q-multiplicativity of g, we also have, for all n with $a_i Q_i \leq n < N$, $g(n) = g(n - a_i Q_i) g_i(a_i)$. Thus,

\begin{equation}
\frac{1}{N} \sum_{a_i Q_i \leq n < N} g(n) = \frac{1}{N} \sum_{a_i Q_i \leq n < N} g(n - a_i Q_i) g_i(a_i)
\end{equation}

\begin{equation}
= g_i(a_i) \frac{1}{N} \sum_{a_i Q_i \leq n < N} g(n - a_i Q_i)
\end{equation}

\begin{equation}
= g_i(a_i) \frac{1}{N} \sum_{0 \leq n < N - a_i Q_i} g(n)
\end{equation}

\begin{equation}
= g_i(a_i) \frac{N - a_i Q_i}{N} \left(\frac{1}{N - a_i Q_i} \sum_{0 \leq n < N - a_i Q_i} g(n) \right).
\end{equation}
It follows that
\[
\frac{1}{N} \sum_{n=0}^{N-1} g(n) = \frac{a_i Q_i}{N} \left(\frac{1}{a_i} \sum_{n=0}^{a_i-1} g_i(n) \right) \left(\prod_{k=0}^{i-1} \mu_k(g) \right) \\
+ g_i(a_i) \frac{N - a_i Q_i}{N} \left(\frac{1}{N - a_i Q_i} \sum_{0 \leq n < N - a_i Q_i} g(n) \right).
\]

Iterating the last expression \(i-1\) times gives (2.3). Inequality (2.4) follows from the chain of inequalities
\[
\frac{1}{N} \sum_{j=0}^{i-h} a_j Q_j \leq \frac{1}{Q_i} \sum_{j=0}^{i-h} a_j Q_j \leq \frac{Q_i - h + 1}{Q_i} = \prod_{j=i-h+1}^{i-1} \frac{1}{q_j} \leq 2^{1-h}.
\]

3. Mean value theorems for \(Q\)-multiplicative functions. Throughout this section, we let \(Q\) be a mixed radix system with factors \(\{q_j\}_{j \geq 0}\). For a given \(Q\)-multiplicative function \(g\) with component functions \(g_j\), we define the mean value of \(g\) by
\[
M(g) = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \leq n < N} g(n),
\]
provided this limit exists. We set
\[
\sigma_j(g) = \max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} (1 - \text{Re}(g_j(m))),
\]
and recall the notation
\[
\mu_j(g) = \frac{1}{q_j} \sum_{0 \leq n < q_j} g_j(n)
\]
introduced in the previous section.

The following theorem, due to Coquet [Co1, Lemma 1], gives a characterization of \(Q\)-multiplicative functions of modulus at most 1 which have mean value 0. We present a proof here for completeness.

Theorem 2. Let \(g\) be a \(Q\)-multiplicative function satisfying \(|g| \leq 1\). The mean value \(M(g)\) exists and is equal to 0 if and only if at least one of the following two conditions holds:

(i) For some \(j \geq 0\), \(\mu_j(g) = 0\).

(ii) The series \(\sum_{j \geq 0} (1 - |\mu_j(g)|)\) diverges.

Proof. Assume first that \(M(g) = 0\). Then, by (2.2) of Lemma 2,
\[
\prod_{i=0}^{\infty} \mu_i(g) = \lim_{j \to \infty} \prod_{i=0}^{j} \mu_i(g) = \lim_{j \to \infty} \frac{1}{Q_{j+1}} \sum_{n=0}^{Q_{j+1}-1} g(n) = 0.
\]
By Lemma 3, this implies that at least one of conditions (i) or (ii) holds.
Conversely, assume that at least one of conditions (i) or (ii) holds. Applying Lemma 3 again, we conclude that $\prod_{j=0}^{i} \mu_j(g) = 0$. We now show that $M(g)$ exists and is equal to 0. Let N be a positive integer with base-Q representation $\sum_{j=0}^{i} a_j Q_j$, where $a_i > 0$. Applying Lemma 4 with $h = \lfloor i/2 \rfloor$, we obtain

$$\left| \frac{1}{N} \sum_{0 \leq n < N} g(n) \right| < \sum_{j=0}^{i} \frac{a_j Q_j}{N} \left| \prod_{k=0}^{j-1} \mu_k(g) \right| < 2^{1-[i/2]} + \sum_{j=\lfloor i/2 \rfloor + 1}^{i} \frac{a_j Q_j}{N} \left| \prod_{k=0}^{j-1} \mu_k(g) \right|$$

$$\leq 2^{2-i/2} + \sum_{j=\lfloor i/2 \rfloor}^{i} \frac{a_j Q_j}{N} \left| \prod_{k=0}^{j-1} \mu_k(g) \right|.$$

Since i tends to infinity as N tends to infinity and $\sum_{j=\lfloor i/2 \rfloor}^{i} a_j Q_j \leq N$, the right-hand side tends to 0 as N tends to infinity. Thus, $M(g) = 0$. This completes the proof of Theorem 2.

We now characterize those Q-multiplicative functions of modulus at most 1 having a non-zero mean value, a case that was not considered by Coquet. This characterization is the content of the following theorem which represents an analog of the well known mean value theorem of Delange [De1], and generalizes a result of Delange [De3] for the case of ordinary base-q expansions.

Theorem 3. Let g be a Q-multiplicative function satisfying $|g| \leq 1$. The mean value $M(g)$ exists and is non-zero if and only if the following three conditions all hold:

(i) For each $j \geq 0$, $\mu_j(g) \neq 0$.

(ii) $\sum_{j \geq 0} (1 - \mu_j(g))$ converges.

(iii) $\lim_{j \to \infty} \sigma_j(g) = 0$.

Proof. For simplicity of notation, we will write $\mu_j = \mu_j(g)$ and $\sigma_j = \sigma_j(g)$ throughout the proof.

Assume first that $M(g) = L$ for some number $L \neq 0$. Then, in particular, we have

$$\lim_{j \to \infty} \frac{1}{Q_j} \sum_{0 \leq n < Q_j} g(n) = L.$$

By (2.2) of Lemma 2, this implies that $\prod_{j=0}^{\infty} \mu_j = L$. By Lemma 3, the convergence of the product $\prod_{j=0}^{\infty} \mu_j$ to a non-zero value implies that conditions (i) and (ii) of the theorem hold.
It remains to show that condition (iii) also holds, i.e., we wish to show that the quantity
\[\sigma_j = \max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} (1 - \text{Re}(g_j(m))) \]
tends to zero as \(j \) tends to infinity. Let \(\{n_j\}_{j=0}^{\infty} \) be a sequence of integers such that the maximum in the definition of \(\sigma_j \) is attained at \(n = n_j \), so that
\[\sigma_j = 1 - \text{Re} \left(\frac{1}{n_j} \sum_{0 \leq m < n_j} g_j(m) \right). \]
Applying (2.1) of Lemma 2 with \(r = n_j \), we obtain
\[\lim_{j \to \infty} \frac{1}{n_j} \sum_{0 \leq m < n_j} g_j(m) = \lim_{j \to \infty} \frac{(1/n_j Q_j) \sum_{0 \leq n < n_j} g(n)}{(1/Q_j) \sum_{0 \leq n < Q_j} g(n)} = \frac{L}{L} = 1. \]
Therefore, \(\sigma_j \) tends to 0 as \(j \) tends to infinity, which proves condition (iii).

Conversely, assume that conditions (i), (ii), and (iii) all hold. The first two conditions imply that the infinite product \(\prod_{j=0}^{\infty} \mu_j \) converges to a non-zero value, by Lemma 3. Let \(L \) denote this value. We will show that \(M(g) \) exists and is equal to \(L \).

We first note that, by the bound \(|g_j| \leq 1 \) and the general inequality
\[|1 - z|^2 = 1 + |z|^2 - 2 \text{Re} z \leq 2(1 - \text{Re} z) \quad (|z| \leq 1), \]
condition (iii) is equivalent to
\[\text{(iii)'} \quad \lim_{j \to \infty} \max_{0 < n \leq q_j} \left| \frac{1}{n} \sum_{0 \leq m < n} g_j(m) \right| = 0. \]
Furthermore, (iii)’ implies that
\[(3.1) \quad \lim_{j \to \infty} g_j(m) = 1 \]
for any fixed \(m \).

Let \(\varepsilon > 0 \) be given and choose \(h \) and \(i_0 \) such that \(2^{1-h} < \varepsilon \), and for \(i \geq i_0 \) we have the following three conditions:

(a) \(|\prod_{j=0}^{i-1} \mu_j - L| < \varepsilon \).
(b) \(|(1/n) \sum_{0 \leq m < n} g_i(m) - 1| < \varepsilon \) \quad (0 < n \leq q_i).
(c) \(|\prod_{k < j \leq i} g_j(m_j) - 1| < \varepsilon \) \quad (i - h \leq k \leq i, \ 0 \leq m_j < 1/\varepsilon).

Condition (a) is possible since \(\prod_{j=0}^{\infty} \mu_j = L \), while conditions (b) and (c) can be met in view of condition (iii)’ and (3.1).
Let N be a positive integer with base-Q representation $N = \sum_{j=0}^{i} a_j Q_j$ where $a_i > 0$, and suppose that N is sufficiently large and $i > i_0 + h$. Applying Lemma 4, we have

$$\left| \frac{1}{N} \sum_{0 \leq n < N} g(n) - L \right|$$

$$= \left| \sum_{j=0}^{i} \frac{a_j Q_j}{N} \left(\prod_{m=j+1}^{i} g_m(a_m) \right) \left(\frac{1}{a_j} \sum_{0 \leq n < a_j} g_j(n) \right) \left(\prod_{k=0}^{j-1} \mu_k \right) - L \right|$$

$$\leq \left| \sum_{j=i-h+1}^{i} \frac{a_j Q_j}{N} \left(\prod_{m=j+1}^{i} g_m(a_m) \right) \left(\frac{1}{a_j} \sum_{0 \leq n < a_j} g_j(n) \right) \left(\prod_{k=0}^{j-1} \mu_k \right) - L \right|$$

$$+ 2 \sum_{j=0}^{i-h} \frac{a_j Q_j}{N},$$

where in the last step we have used the fact that g_m, g, μ_k, and L are at most 1 in modulus. By inequality (2.4) of Lemma 4, the second term on the right hand side is at most $2(2^{1-h}) < 2\varepsilon$. Moreover, by the triangle inequality, the first term is bounded by

$$\sum_{j=i-h+1}^{i} \frac{a_j Q_j}{N} \left(\prod_{m=j+1}^{i} g_m(a_m) \right) - 1 \cdot \left(\frac{1}{a_j} \sum_{0 \leq n < a_j} g_j(n) \right) \left(\prod_{k=0}^{j-1} \mu_k \right)$$

$$+ \sum_{j=i-h+1}^{i} \frac{a_j Q_j}{N} \left(\left| \frac{1}{a_j} \sum_{0 \leq n < a_j} g_j(n) - 1 \right| \prod_{k=0}^{j-1} \mu_k \right) + \sum_{j=0}^{i-h} \frac{a_j Q_j}{N} \left(\prod_{k=0}^{j-1} \mu_k - L \right)$$

$$= \Sigma_1 + \Sigma_2,$$

say. Since $i - h > i_0$, we have, by assumptions (a) and (b) above,

$$\Sigma_2 < 2\varepsilon \sum_{j=i-h+1}^{i} \frac{a_j Q_j}{N} \leq 2\varepsilon.$$

To estimate Σ_1, we distinguish two cases. If $a_j < 1/\varepsilon$ for all j with $i - h < j \leq i$, then by assumption (c), $|\prod_{m=j+1}^{i} g_m(a_m) - 1| < \varepsilon$ for all j and therefore $\Sigma_1 < \varepsilon$. Otherwise, let j_0 be the largest value of j in the range $i - h < j \leq i$ for which $a_{j_0} \geq 1/\varepsilon$. The contribution of terms with $j_0 \leq j \leq i$ to Σ_1 is, as before, at most ε. Thus,

$$\Sigma_1 < \varepsilon + \sum_{j=i-h+1}^{j_0-1} \frac{a_j Q_j}{N} \left(\prod_{m=j+1}^{i} g_m(a_m) \right) - 1 \cdot \left(\frac{1}{a_j} \sum_{0 \leq n < a_j} g(n) \right) \left(\prod_{k=0}^{j-1} \mu_k \right)$$
\[\leq \varepsilon + 2 \sum_{j=0}^{j_0-1} \frac{a_j Q_j}{N} \leq \varepsilon + 2 \sum_{j=0}^{j_0-1} \frac{(q_j - 1)Q_j}{N} = \varepsilon + 2 \sum_{j=0}^{j_0-1} \frac{Q_{j+1} - Q_j}{N} \]

\[< \varepsilon + \frac{2Q_{j_0}}{N} \leq \varepsilon + \frac{2Q_{j_0}}{a_{j_0}Q_{j_0}} \leq 3\varepsilon. \]

In either case, we have

\[\left| \frac{1}{N} \sum_{0 \leq n < N} g(n) - L \right| < 7\varepsilon. \]

Since \(\varepsilon \) was arbitrary, we have shown that \(M(g) = L \). This completes the proof of the theorem.

The following result is an immediate consequence of Theorems 2 and 3.

Theorem 4. Let \(g \) be a \(Q \)-multiplicative function satisfying \(|g| \leq 1. \) The mean value \(M(g) \) exists if and only if at least one of the following three conditions holds:

(i) For some \(j \geq 0, \mu_j(g) = 0. \)

(ii) The series \(\sum_{j \geq 0} (1 - |\mu_j(g)|) \) diverges.

(iii) \(\sum_{j \geq 0} (1 - \mu_j(g)) \) converges, and \(\lim_{j \to \infty} \sigma_j(g) = 0. \)

The mean value is zero if either condition (i) or (ii) holds.

4. **Proof of Theorem 1.** Let \(Q = \{Q_j\}_{j \geq 0} \) be a mixed radix system, with factors \(q_j = Q_{j+1}/Q_j \), and let \(f \) be a real-valued \(Q \)-additive function with component functions \(f_j \).

For each integer \(k \neq 0 \), we set \(g^{(k)}(n) = e(kf(n)) \). Then each function \(g^{(k)} \) is a \(Q \)-multiplicative function with component functions \(g_j^{(k)}(n) = e(kf_j(n)) \). We write

\[\mu_j^{(k)} = \mu_j(g^{(k)}) = \frac{1}{q_j} \sum_{0 \leq n < q_j} g_j^{(k)}(n), \]

and

\[\sigma_j^{(k)} = \sigma_j(g^{(k)}) = \max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} (1 - \text{Re}(g_j^{(k)}(n))), \]

and denote the mean value of \(g^{(k)} \) by \(M_k \), whenever this mean value exists.

By Lemma 1, \(f \) has a limit distribution modulo 1 if and only if, for each integer \(k \neq 0 \), the mean value \(M_k \) exists, and the distribution is uniform if and only if, for each integer \(k \neq 0 \), \(M_k = 0 \). By Theorem 4, for each \(k \neq 0 \), \(M_k \) exists if and only if at least one of the following three conditions holds:

(i) For some \(j \geq 0, \mu_j^{(k)} = 0. \)

(ii) The series \(\sum_{j \geq 0} (1 - |\mu_j^{(k)}|) \) diverges.
(iii) \(k \sum_{j \geq 0} (1 - \mu_j^{(k)}) \) converges, and \(\lim_{j \to \infty} \sigma_j^{(k)} = 0. \)

Further, \(M_k = 0 \) if and only if either condition (i)\(k \) or (ii)\(k \) holds. Therefore, it remains only to show that, for each integer \(k \neq 0 \), conditions (i)\(k \), (ii)\(k \), and (iii)\(k \) are equivalent to conditions (i), (ii), and (iii) of Theorem 1, respectively.

To prove this, we fix an integer \(k \neq 0 \). Conditions (i)\(k \) and (ii)\(k \) are identical to conditions (i) and (ii) of Theorem 1, respectively, by the definition of \(\mu_j^{(k)} \). The equivalence between condition (iii)\(k \) and condition (iii) of Theorem 1 follows from the definition of \(\mu_j^{(k)} \) and the relation

\[
\sigma_j^{(k)} = \max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} (1 - \text{Re}(g_j^{(k)}(n))) \geq \max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} \|k f_j(n)\|^2,
\]

which holds since

\[
1 - \text{Re}e(x) = 1 - \cos(2\pi x) \simeq \|x\|^2
\]

for any real number \(x \). This completes the proof of Theorem 1.

5. Proof of the corollaries

Proof of Corollary 1. Fix an integer \(k \neq 0 \). For each \(j \geq 0 \), let \(n_j \) be such that \(\max_{0 < n < q_j} \|k f_j(n)\|^2 \) is attained at \(n = n_j \). First we note that by the elementary inequality

\[
|1 + e(x)| \leq 2 - 2\|x\|^2 \quad (x \in \mathbb{R}),
\]

we have, for all \(j \),

\[
\frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(k f_j(n)) \right| \leq \frac{1}{q_j} \left| \sum_{1 \leq n < q_j} e(k f_j(n)) \right| + \frac{1}{q_j} \left| 1 + e(k f_j(n_j)) \right|
\]

\[
\leq \frac{1}{q_j} (|q_j - 2| + \left| 1 + e(k f_j(n_j)) \right|)
\]

\[
\leq \frac{1}{q_j} ((q_j - 2) + (2 - 2\|k f_j(n_j)\|^2))
\]

\[
= \frac{1}{q_j} (q_j - 2\|k f_j(n_j)\|^2)
\]

and thus

\[
1 - \frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(k f_j(n)) \right| \geq \frac{2\|k f_j(n_j)\|^2}{q_j} \geq \frac{2}{q_j^2} \sum_{0 \leq n < q_j} \|k f_j(n_j)\|^2.
\]

Since, by assumption, the factors \(q_j \) are bounded, the divergence of the series

\[
\sum_{j \geq 0} \sum_{0 \leq n < q_j} \|k f_j(n)\|^2
\]

(5.1)
implies that condition (ii) of Theorem 1 holds. Hence, if for all \(k \neq 0 \) either the series in (5.1) diverges or condition (i) of Theorem 1 holds, then Theorem 1 implies that \(f \) has a uniform limit distribution modulo 1.

Conversely, assume that \(f \) is uniformly distributed modulo 1. Then, for each \(k \neq 0 \), either condition (i) or condition (ii) of Theorem 1 holds. We will show that if condition (ii) holds for some \(k \neq 0 \) then the series in (5.1) diverges. Fix \(k \neq 0 \). Since, for all real \(x \),

\[
1 - \Re e(x) = 1 - \cos(2\pi x) \leq 2\pi^2 \|x\|^2,
\]

we have, for all \(j \),

\[
1 - \frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(kf_j(n)) \right| \leq 1 - \frac{1}{q_j} \Re \sum_{0 \leq n < q_j} e(kf_j(n))
\]

\[
= \frac{1}{q_j} \sum_{0 \leq n < q_j} (1 - \Re e(kf_j(n)))
\]

\[
\leq \frac{1}{q_j} \sum_{0 \leq n < q_j} 2\pi^2 \|kf_j(n)\|^2
\]

\[
\leq \pi^2 \sum_{0 \leq n < q_j} \|kf_j(n)\|^2.
\]

Thus, condition (ii) of Theorem 1 implies the divergence of the series in (5.1), as claimed.

Proof of Corollary 2. Assume first that \(\alpha \) is irrational. If the factors \(q_j \) are bounded, then, since \(f_j(1) = \alpha \) for all \(j \), it follows from Corollary 1 that \(f \) is uniformly distributed modulo 1. It remains to deal with the case when the factors \(q_j \) are unbounded.

Fix \(k \neq 0 \). Then we have, for all \(j \geq 0 \),

\[
\frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(kf_j(n)) \right| = \frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(k\alpha n) \right|
\]

\[
= \frac{1}{q_j} \left| 1 - e(k\alpha q_j) \right| \leq \frac{2}{q_j(1 - e(\alpha k))}.
\]

Since the factors \(q_j \) are unbounded and \(\alpha \) is irrational, this quantity is \(\leq 1/2 \) for infinitely many \(j \), and so condition (ii) of Theorem 1 is satisfied. Therefore, \(f \) has a uniform limit distribution modulo 1.

On the other hand, if \(\alpha \) is rational, then \(f \) takes on only finitely many values modulo 1, and thus \(f \) cannot be uniformly distributed modulo 1.

Proof of Corollary 3. Let \(F = \alpha f \). Then \(F \) is completely \(Q \)-additive with component functions \(F_j = \alpha f_j \). As in Corollary 2, if \(\alpha \) is rational then \(F \) cannot be uniformly distributed modulo 1. Assume therefore that \(\alpha \) is
irrational. We will show that condition (ii) of Theorem 1 is satisfied (with \(F \) in place of \(f \)) for all \(k \neq 0 \). By Theorem 1 it then follows that \(F \) is uniformly distributed modulo 1. Fix an integer \(k \neq 0 \) and let \(a \) be as in the statement of the corollary, so that \(f_0(a) > 0 \) and \(a < q_j \) for all \(j \). As in the proof of Corollary 1, we have, for all \(j \),

\[
1 - \frac{1}{q_j} \left| \sum_{0 \leq n < q_j} e(kF_j(n)) \right| \geq \frac{2\|kF_j(a)\|}{q_j} = \frac{2\|kaF_j(a)\|}{q_j} = \frac{2\|kaF_0(a)\|}{q_j}.
\]

Since \(\|kaF_0(a)\| \neq 0 \) by our assumptions that \(\alpha \) is irrational, \(k \neq 0 \), and \(f_0(a) \neq 0 \), and since, by the hypothesis of Corollary 2, the series \(\sum_{j \geq 0} 1/q_j \) diverges, condition (ii) of Theorem 1 is satisfied as claimed.

Proof of Corollary 4. We note first that the component functions \(f_j(n) \) of \(f(n) = \alpha M(n) \) are given by

\[
f_j(n) = \begin{cases} \alpha, & n = q_j - 1, \\ 0, & 0 \leq n < q_j - 1. \end{cases}
\]

Thus we have, for any integer \(k \neq 0 \),

\[
\sum_{0 \leq n < q_j} e(kf_j(n)) = q_j - 1 + e(k\alpha).
\]

It follows that condition (i) of Theorem 1 is satisfied if and only if, for some \(j \), \(q_j = 2 \) and \(\|k\alpha\| = 0 \). Since \(\alpha \) is irrational, this is impossible unless \(k = 0 \). Therefore, condition (i) of Theorem 1 does not hold for any \(k \neq 0 \).

We next show that condition (ii) of Theorem 1 is equivalent to the divergence of \(\sum_{j \geq 0} 1/q_j \). In view of (5.2), condition (ii) of Theorem 1 is equivalent to

\[
\sum_{j \geq 0} \left(1 - \frac{1}{q_j} \left| q_j - 1 + e(k\alpha) \right| \right) = \infty.
\]

To show the equivalence between (5.3) and the divergence of \(\sum_{j \geq 0} 1/q_j \), we will establish the inequalities

\[
\frac{4\|k\alpha\|^2}{q} \leq 1 - \frac{1}{q} \left| q - 1 + e(k\alpha) \right| \leq \frac{2}{q}
\]

for any integer \(q \geq 2 \) and any real number \(\alpha \).

The upper bound in (5.4) is trivial. To prove the lower bound, we note that

\[
\left(\frac{1}{q} \left| q - 1 + e(k\alpha) \right| \right)^2 \leq \frac{1}{q^2}((q - 1)^2 + 1 + 2(q - 1)\cos(2\pi k\alpha))
\]

\[
= \frac{1}{q^2}(q^2 - 2(q - 1)(1 - \cos(2\pi k\alpha))).
\]
\[= 1 - \frac{2(q-1)}{q^2} (1 - \cos(2\pi k\alpha)) \]
\[\leq \left(1 - \frac{q-1}{q^2} (1 - \cos(2\pi k\alpha)) \right)^2 \]
\[\leq \left(1 - \frac{(q-1)(8\|k\alpha\|^2)}{q^2} \right)^2 \]
\[\leq \left(1 - \frac{4\|k\alpha\|^2}{q} \right)^2 . \]

It follows that
\[\frac{1}{q} |q - 1 + e(k\alpha)| \leq 1 - \frac{4\|k\alpha\|^2}{q} , \]
which implies the lower bound in (5.4). Since \(\alpha \) is irrational, we have \(\|k\alpha\| \neq 0 \) for all non-zero integers \(k \). Thus condition (ii) of Theorem 1 holds for all \(k \neq 0 \) if and only if \(\sum_{j \geq 0} 1/q_j \) diverges. From the theorem it therefore follows that \(f \) is uniformly distributed modulo 1 if and only if \(\sum_{j \geq 0} 1/q_j \) diverges.

It remains to show that \(f \) has a non-uniform limit distribution modulo 1 if and only if the series \(\sum_{j \geq 0} 1/q_j \) converges. To this end we note that, by (5.2), the first part of condition (iii) of Theorem 1 is equivalent to the convergence of
\[\sum_{j \geq 0} \frac{1 - e(k\alpha)}{q_j} , \]
which in turn is equivalent to the convergence of \(\sum_{j \geq 0} 1/q_j \), since \(\alpha \) is irrational. Therefore it remains only to show that if \(\sum_{j \geq 0} 1/q_j \) converges, then the second part of condition (iii) of Theorem 2.1 holds for all \(k \neq 0 \). This follows immediately from the observation that, for all \(k \neq 0 \),
\[\max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} \|kf_j(m)\|^2 = \frac{\|k\alpha\|^2}{q_j} \to 0 , \]
as \(j \) tends to infinity, since the convergence of \(\sum_{j \geq 0} 1/q_j \) implies that \(1/q_j \) tends to 0.

Proof of Corollary 5. We note first that, for all \(j \) with \(q_j > a \),
\[f_j(n) = \begin{cases} \alpha, & n = a, \\ 0, & \text{otherwise}. \end{cases} \]
(5.5)

Thus, we have
\[\sum_{0 \leq n < q_j} e(kf_j(n)) = \begin{cases} q_j - 1 + e(k\alpha), & q_j > a, \\ q_j, & q_j \leq a. \end{cases} \]
(5.6)
As in the proof of Corollary 4, this implies that condition (i) of Theorem 1 does not hold for any \(k \neq 0 \). Moreover, using (5.4), we see that condition (ii) of Theorem 1 is satisfied for all \(k \neq 0 \) if and only if \(\sum q_j > a \) diverges. Therefore, \(f \) is uniformly distributed modulo 1 if and only if \(\sum q_j \) diverges. This proves the first assertion of the corollary.

To prove the second assertion of the corollary, we note that by (5.5), we have, for all \(k \neq 0 \),
\[
\max_{0 < n \leq q_j} \frac{1}{n} \sum_{0 \leq m < n} \|k f_j(m)\|^2 = \begin{cases} \|k \alpha\|^2/a, & q_j > a, \\ 0, & q_j \leq a. \end{cases}
\]
Therefore, the limit in condition (iii) of Theorem 1 is 0 for all \(k \neq 0 \) if and only if \(q_j \leq a \) for all but at most finitely many \(j \). It remains only to show that under the same condition, the series in condition (iii) of Theorem 1 converges for all \(k \neq 0 \). This follows immediately, since, by (5.6),
\[
\sum_{j \geq 0} \left(1 - \frac{1}{q_j} \sum_{0 \leq n < q_j} e(k f_j(n)) \right) = \sum_{q_j > a} \frac{1 - e(k \alpha)}{q_j}.
\]

Acknowledgments. The author wishes to gratefully acknowledge the advice and encouragement provided by Professor A. J. Hildebrand in the preparation of this paper.

References

Department of Mathematics
Elmhurst College
Elmhurst, IL 60126, U.S.A.
E-mail: abigailh@elmhurst.edu

Received on 19.7.1999
and in revised form on 11.4.2001