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Stéphane Fischler (Paris)

1. Introduction. Let K be either the field C of complex numbers, or its
p-adic analog Cp, which is the completion of an algebraic closure of Qp. Then
K is an algebraically closed field of characteristic zero. We fix an algebraic
closure Q of Q in K.

In the complex case, let L = {λ ∈ C : exp(λ) ∈ Q∗} be theQ-vector space
of logarithms of algebraic numbers. In the p-adic case, we define log(1 + x)
by its power series expansion if x ∈ Cp has positive valuation, and we extend
the logarithm function into a morphism of C∗p to Cp such that log(p) = 0.
Then we denote by L the set of logarithms of nonzero elements of Q ⊂ Cp;
this set is a Q-vector subspace of Cp.

In what follows (unless otherwise specified), we consider the complex
and the p-adic cases simultaneously. We denote by L the Q-vector subspace
of K spanned by 1 and L. The Algebraic Independence Conjecture (see [6],
Historical Notes of Chapter III) asserts that elements λ1, . . . , λq of L are
algebraically independent over Q if, and only if, 1, λ1, . . . , λq are linearly
independent over Q.

A new approach to the Algebraic Independence Conjecture has been
suggested by Damien Roy. Instead of fixing elements λ1, . . . , λq of L and
studying polynomial relations between them, he proceeds in the opposite
direction: first fix a system of polynomial relations with coefficients in Q,
in q variables, then focus on the q-tuples of elements of L which satisfy
these relations. In geometric terms, this means that we are given a closed
algebraic subset X of Kq, defined over Q (that is, defined as the zero locus
of a collection of polynomials with coefficients in Q), and we study the set
X(L) = X ∩ Lq of points of X with coordinates in L.

In this situation, Damien Roy states the following conjecture, which is
equivalent [10] to that of algebraic independence:
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Conjecture 1. Let q be a positive integer , and X be a closed algebraic
subset of Kq, defined over Q. Then

X(L) =
⋃

E⊂X
E(L)

where E runs through the linear affine subspaces of Kq contained in X and
defined over Q.

Conjecture 1 is a very precise description of X(L). The following con-
jecture is less precise, therefore easier to prove for a given closed algebraic
subset X; nevertheless, it is equivalent to Conjecture 1, since both are equiv-
alent to the Algebraic Independence Conjecture:

Conjecture 2. Let q be a positive integer , and X be a closed algebraic
subset of Kq, different from Kq, defined over Q. Let x ∈ X(L) = X ∩ Lq.
Then x belongs to some affine hyperplane of Kq defined over Q.

These conjectures are very far from being proved; actually, there are only
a few closed algebraic subsets X for which anything is known about X(L):

• Let X be a linear affine subspace of Kq, defined over Q. Then Conjec-
tures 1 and 2 hold trivially for X.
• Let d, l and r be positive integers such that r < dl/(d+ l). Identify

Kdl with the space of matrices with d rows and l columns, with entries in
K. Let X be the subset of Kdl consisting of those matrices of rank at most
r. Then Conjecture 2 holds for X: this is a straightforward consequence of
Theorem 2.1 stated below, which is due to Damien Roy [9].
• Let k andm be integers such that 2 ≤ k ≤ m−2, and denote byG(k,m)

the affine cone over the Grassmannian which parametrizes the subspaces of
dimension k of Km. Assume (k,m) 6= (2, 4). Then Conjecture 2 holds for
G(k,m): this follows both from Theorem 2.1 of [10] and from the results in
the present paper (see Section 5.1). Further, if Conjecture 1 holds for G(2, 4)
then it holds for any G(k,m) ([10], Proposition 2.5).
• Finally, if K = C and X is an algebraic curve, there are a few results

([11], Theorem 0.2 and Corollary 7.2), but they concern only the points
x ∈ X(L).

In this paper, we prove new results about these sets X(L). On the one
hand, we prove Conjecture 1 for some algebraic subsets X, including the
affine cone V(k,m) ⊂ Symk(Km) over the Veronese variety if k ≥ 3 (see
Section 6). This yields the following result:

Theorem 1.1. Let k and m be integers, with k ≥ 3. Let P be a homoge-
neous polynomial of degree k, in m variables, with coefficients in L. Assume
that P is the kth power of a linear form Λ with coefficients in K. Then there
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exist a linear form φ, with coefficients in Q, and an element a of L such
that P = aφk.

On the other hand, we prove Conjecture 2 for some orbits of algebraic
group actions. In more precise terms, we consider an affine algebraic group
G defined over Q acting on a vector space W equipped with a Q-structure
(see Section 2.1). We assume the representation % : G → GL(W ) to be a
morphism of algebraic varieties defined over Q. Let X be an orbit of this
action; then X is a locally closed subset of W ([5], Proposition 8.3). The
following conjecture may be stated:

Conjecture 3. Assume X is not of maximal dimension among %-or-
bits. Then every x ∈ X(L) belongs to some affine hyperplane of W defined
over Q.

Conjecture 3 follows from Conjecture 2, for the union of orbits of dimen-
sion less than or equal to dim(X) is a closed algebraic subset of W defined
over Q.

In this paper, we prove Conjecture 3 for the orbits X which satisfy some
additional assumptions (see Section 4). But the result we obtain is slightly
more precise: for these orbits X, every x ∈ X(L) belongs to some vector
hyperplane of W defined over Q. The proof of the results stated in Section
4 involves a transcendence theorem due to Damien Roy [9], which yields a
lower bound for the rank of a matrix with entries in L by taking into account
the linear relations, with coefficients in Q, between its entries. This result
is stated in Section 2, together with definitions and notation. Section 3 is
devoted to applying this transcendence theorem. In Section 5, we provide
examples to which the previous results apply; for instance, the following
statement is proved:

Theorem 1.2. Let n be an integer , and M be a square matrix of size
n, with entries in L. Assume that the n2 entries of M are linearly indepen-
dent over Q. Then the centralizer of M has dimension less than or equal to
(n2 + 1)/2.

Finally, notice that all the results obtained in this paper concerning the
points of X(L) apply, in particular, to the points of X(L). Let x ∈ X(L);
then x belongs to some affine hyperplane of Kq defined over Q if, and only
if, x belongs to some vector hyperplane of Kq defined over Q: this follows
from the theorem of Baker–Brumer ([1], Chapters 1 and 2). Consequently,
it is possible, in every statement in this paper, to replace (Q,L) by (Q, L).

2. Preliminaries. In what follows, all the subspaces we deal with are
vector subspaces (unless otherwise specified).
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2.1. Some elementary facts about Q-structures. This section is devoted
to Q-structures; a detailed account of this can be found in [2], §8.

Let q be an integer. An element of Kq is said to be defined over Q if
it belongs to Qq. A basis (e1, . . . , eq) of Kq is said to be defined over Q if
the vectors ej are defined over Q. A K-subspace of Kq is said to be defined
over Q if it is spanned by vectors defined over Q; this is equivalent to being
defined by linear equations with coefficients in Q. More generally, a closed
algebraic subset of Kq is said to be defined over Q if it is the zero locus of
a collection of polynomials with coefficients in Q.

Let W be a vector space of dimension q over K. A Q-structure on W is
any Q-subspace of W that is spanned, over Q, by a K-basis of W .

Let W be a vector space of dimension q over K, equipped with a Q-
structure denoted by W (Q). There is a bijective K-linear map f , from W
to Kq, that sends W (Q) onto Qq. Thanks to f , it makes sense for a vector,
basis, subspace or closed algebraic subset of W to be defined over Q; and
this does not depend on the choice of f , but only on the Q-structure W (Q).

A linear map f : W → W ′, where W and W ′ are equipped with Q-
structures, is said to be defined over Q if f(W (Q)) ⊂W ′(Q).

We denote by W (L) the subset of W consisting of those vectors whose
coordinates, in a basis of W defined over Q, belong to L (since L is a
vector space over Q, the set W (L) does not depend on the basis we choose).
Moreover, if X is any subset of W , we let X(Q) = X ∩W (Q) and X(L) =
X ∩W (L). If W is the vector space Kq, equipped with the Q-structure Qq,
this agrees with the notation X(L) = X ∩ Lq used in the introduction.

Let W be a vector space equipped with a Q-structure W (Q), and let
k be an integer. Then the symmetric power Symk(W ) is equipped with an
induced Q-structure Symk(W (Q)). In more concrete terms, if (e1, . . . , eq) is
a basis of W defined over Q, then the corresponding basis (eI) of Symk(W )
is defined over Q (where I = (i1, . . . , iq) runs through the q-tuples of integers
such that i1 + . . .+ iq = k, and eI is the symmetric product in which each ej
is repeated ij times). An analogous argument applies to W⊗k and Λk(W ).

2.2. Statement of the transcendence theorems. The transcendence theo-
rem we will use in Section 3 is the following statement. It is a generalization
of Theorem 2.1 of [12]; it results from Theorem 4 of [9] (see the proof of
Corollary 1 of the same theorem):

Theorem 2.1. Let E and F be nonzero vector spaces equipped with Q-
structures, of respective dimensions l and d. Let u be a linear map from E
to F , of rank r. Assume the following :

1. The matrix of u, in bases of E and F defined over Q, has entries in L.
2. The kernel of u contains no nonzero element of E defined over Q.
3. The image of u is contained in no hyperplane of F defined over Q.
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4. We have r < dl/(d+ l).

Then there exist vector subspaces S ⊂ E and T ⊂ F , of respective codi-
mensions l1 ≥ 1 and d1 ≥ 1, defined over Q, with the following properties:
u(S) ⊂ T and there is an integer r1 ≥ 1 such that

r1

d1
<
r

d
and r1 ≥

l1d1

l1 + d1
.(1)

In this theorem, the assumptions 2 and 3 are not essential: if they are
not met, we can consider the induced map ū : E/E ′ → F ′, where E′ is the
maximal subspace of E, defined over Q, that is contained in ker(u), and
F ′ is the minimal subspace of F , defined over Q, that contains Im(u). This
yields the following corollary, which is Corollary 1 of [9]:

Corollary 2.2. Let E and F be nonzero vector spaces equipped with Q-
structures, of respective dimensions l and d. Let u be a linear map from E to
F , of rank r, whose matrix in bases of E and F defined over Q has entries
in L. Then there exist vector subspaces S ⊂ E and T ⊂ F , of respective
codimensions l1 ≥ 0 and d1 ≥ 1, defined over Q, such that u(S) ⊂ T and
(d− r)l1 ≤ rd1.

In Section 6, we will use the following corollary of Theorem 2.1 ([9],
Corollary 2), which is a generalization of the six exponential theorem ([6],
Chapter II, Theorem 1):

Theorem 2.3. Let d and l be integers, with d ≥ 2 and l ≥ 3. Let M
be a matrix , with d rows and l columns, of rank 1, with entries in L. Then
either the rows or the columns of M are linearly dependent over Q.

2.3. Notation. In what follows, we consider the following situation.
Let W be a finite dimensional vector space over K, equipped with a

Q-structure.
Let G be an affine algebraic group defined over Q, that is, an affine

algebraic variety defined over Q, equipped with a group structure such that
the map (x, y) 7→ xy−1 is a morphism of varieties defined over Q. Then G(K)
is a Lie group; the notation G(K) underlines the fact that it is equipped
with complex or p-adic topology.

Let % : G → GL(W ) be a linear representation of G, assumed to be at
the same time a morphism defined over Q between the algebraic varieties G
and GL(W ).

Let X be an orbit of this action. Then X is a smooth locally closed
subset of W ([5], Proposition 8.3).

Let
d = dim(W ), l = dim(G), r = dim(X).
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We denote by Gop the opposite group to G, that is, the group with
underlying set that of G and law ∗op defined by a∗op b = b∗a for all a, b ∈ G
(where ∗ is the law of G). We denote by W ∗ the dual space of W , and by
%op : Gop → GL(W ∗) the contragredient representation associated with %,
defined by %op(g) = t(%(g)) for all g ∈ G.

The tangent map of % at the unit element (denoted by Id) of G is the
map Lie(%) : g → gl(W ), where g is the Lie algebra of G and gl(W ) =
End(W ) that of GL(W ). Both Lie algebras are equipped with Q-structures,
and Lie(%) is defined over Q ([5], §34.2).

For A ∈ g and α ∈W , we let

(Lie(%)(A))(α) = fA(α) = Mα(A).

In this way we define linear maps (for A ∈ g and α ∈W )

fA : W →W and Mα : g→W.

The following lemma ([3], Chapter III, §1.7, Proposition 14) implies that
the union of orbits whose dimension is less than some given integer is a
closed algebraic subset of W defined over Q:

Lemma 2.4. For x ∈ X, the image of Mx is the tangent space to X at x;
accordingly , we have

rk(Mx) = dim(X).

This paper originates in the following remark, due to Damien Roy: if X
is an orbit of dimension less than dl/(d+ l), then for x ∈ X(L) the map Mx

has rank less than dl/(d+ l), therefore Theorem 2.1 may apply to Mx. This
idea is developed in a more precise way in the next section.

3. Applying a transcendence theorem. In this section, we state and
prove Proposition 3.1, the only arithmetical step in the proof of the results
mentioned in Sections 4 and 5. This proposition follows from Theorem 2.1,
the assumptions of which lead to the following definition:

Definition. The pair (%,X) is said to be suitable if the following holds:

1. The map Lie(%) is injective.
2. There is no pair (V, φ), consisting of an open subgroup V of the Lie

group Gop(K) and a nonzero element φ ∈W ∗, such that φ is invariant under
%op(V ).

3. We have

r = dim(X) <
dl

d+ l
=

dim(W ) dim(G)
dim(W ) + dim(G)

.

For brevity, we shall sometimes say that X, rather than (%,X), is suit-
able.
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N.B. If % is faithful then the first condition is met. On the other hand,
the second condition is satisfied as soon as for every open subgroup V
of Gop(K) there exists g ∈ V such that 1 is not an eigenvalue of %(g).
A sufficient condition for this to hold is the existence of A ∈ g such that
Lie(%)(A) = Id.

Now we can state, and prove, the following:

Proposition 3.1. Assume (%,X) is suitable. Let x ∈ X(L) belong to no
hyperplane of W defined over Q. Then there exist vector subspaces S ⊂ g
and T ⊂W , of respective codimensions l1 ≥ 1 and d1 ≥ 1, with the following
property : Im(fA) ⊂ T for all A ∈ S, and there is an integer r1 ≥ 1 such that

r1

d1
<
r

d
and r1 ≥

l1d1

l1 + d1
.(2)

N.B. In particular, the conclusion yields r1 < r and

l1 <
r

d− rd1.(3)

Proof of Proposition 3.1. Let us check that Theorem 2.1 applies to Mx.
First of all, the matrix of Mx in bases of g and W defined over Q has entries
in L since x ∈ W (L). Further, we have rk(Mx) = dim(X) < dl/(d+ l) by
Lemma 2.4, and because (%,X) is suitable.

Furthermore, let A ∈ ker(Mx)(Q). Then x belongs to the kernel of fA,
which is a subspace of W defined over Q. Accordingly, this subspace is equal
to W itself, that is, Lie(%)(A) = 0; by assumption, this implies A = 0.

Finally, let H be a hyperplane defined over Q which contains the image
of Mx. Then x ∈ f−1

A (H) for all A ∈ g. This yields Im(fA) ⊂ H for all
A ∈ g(Q), hence for all A ∈ g by linearity. In the complex case, this implies
(thanks to [3], Chapter III, §6.5, Proposition 13) %(g)(y)− y ∈ H for every
y ∈ W and every g in the neutral component of G(C). In the p-adic case,
we have Im(exp(fA) − Id) ⊂ H whenever A is close enough to the origin.
But there exist open subgroups (in the p-adic topology) U ⊂ g(K) and
V ⊂ G(K), and a bijective exponential map (denoted by expU ) from U to V .
Restricting U and V if necessary, we can assume Im(exp(fA)−Id) ⊂ H for all
A ∈ U , and % ◦ expU = exp ◦ Lie(%) on U . Then for every g ∈ V there exists
A ∈ U such that expU (A) = g, hence Im(%(g)−Id) = Im(exp(fA)−Id) ⊂ H.
Therefore, in the p-adic as well as in the complex case, there is an open
subgroup V of G(K) such that Im(%(g) − Id) ⊂ H for all g ∈ V . Let
φ be a linear form whose kernel is H; the previous relation means φ ∈
ker(%op(g)− IdW ∗) for all g ∈ V ; this contradicts the assumption that (%,X)
is suitable. Consequently, the image of Mx is contained in no hyperplane of
W defined over Q.

Thus Theorem 2.1 applies, and produces some subspaces S and T defined
overQ such that relations (1) hold andMx(S) ⊂ T . For A ∈ S(Q), this yields
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f−1
A (T ) = W , i.e. Im(fA) ⊂ T . As A runs through a basis of S defined over
Q, this concludes the proof of Proposition 3.1.

Proposition 3.1 will allow us to prove Conjecture 3 for some orbits X.
However, applying this statement prevents us from proving more precise
results on the points x ∈ X(L). This is the reason why the following propo-
sition is useful:

Proposition 3.2. Let x ∈ X(L) and denote by E the minimal subspace
of W , defined over Q, that contains x. Then there exist vector subspaces
S ⊂ g and T ⊂ W , of respective codimensions l1 ≥ 0 and d1 ≥ 1, such that
(d− r)l1 ≤ rd1 and fA(α) ∈ T for every A ∈ S and every α ∈ E.

Proof. Corollary 2.2, applied to Mx, produces subspaces S and T , de-
fined over Q, such that Mx(S) ⊂ T . For A ∈ S(Q), this implies fA(E) ⊂ T ;
as A runs through a basis of S defined over Q, this ends the proof of Propo-
sition 3.2.

4. General results. In this section, we try to prove that every point
x ∈ X(L) belongs to some hyperplane of W defined over Q (except in
Theorem 4.2, where a stronger statement is obtained). With this aim in view,
we let x ∈ X(L) be a point that does not belong to any such hyperplane,
and we proceed in the following way:

• We assume that (%,X) is suitable, so that Proposition 3.1 applies and
produces subspaces S and T .
• We make a geometric assumption on the orbits under % (in Section

4.1) or under the contragredient representation %op (in Sections 4.3 and
4.4). This assumption allows us to derive a relation between l1 = codim(S)
and d1 = codim(T ) from the property Im(fA) ⊂ T for all A ∈ S.
•We assume the dimension r of X to be “small enough”, and sometimes

we add a technical assumption, in order to derive a contradiction from the
relations between l1 and d1.

These assumptions are of a different kind: the first one appears to be
necessary to apply Proposition 3.1. The second one has an important draw-
back: the property Im(fA) ⊂ T for all A ∈ S is much stronger than the
relation between l1 and d1 that we derive from it. Therefore it could be in-
teresting to imagine other (geometric) assumptions than those made in this
paper. Finally, the last assumption is fitted in such a way that it is possible
to derive a contradiction.

4.1. A large dimensional %-orbit

Theorem 4.1. Let k be an integer greater than 1. Assume that :

• (%,X) is suitable,
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• there exists a %-orbit of codimension less than k in W ,
• X has dimension r ≤ d/k.

Then every element x ∈ X(L) belongs to some hyperplane of W defined
over Q.

N.B. In particular, if % has a Zariski-dense orbit then Theorem 4.1 ap-
plies with k = 2. But in this case, Theorem 4.2 stated below provides a more
precise result (except if r = d/2).

Proof of Theorem 4.1. Assume there exists x ∈ X(L) that belongs to
no hyperplane of W defined over Q. Denote by S and T the subspaces
produced by Proposition 3.1, and let α be an element of W whose orbit
has codimension c ≤ k − 1. Then Mα(S) ⊂ T , hence dim(T ) ≥ dim(S) −
dim(ker(Mα)). As rk(Mα) = d − c ≥ d − k + 1 by Lemma 2.4, we obtain
d1 ≤ l1 + k − 1.

This inequality, together with assumption r ≤ d/k and inequality (3),
yields

d1 − k + 1 ≤ l1 <
r

d− rd1 ≤
d1

k − 1
, hence

k − 2
k − 1

d1 < k − 1.

But inequalities (2), with r1 ≥ 1 and r ≤ d/k, imply d1 > dr1/r ≥ k, i.e.
d1 ≥ k + 1. Therefore (k − 2)(k + 1)/(k − 1) < k − 1. If k ≥ 3, this yields a
contradiction.

Assume now k = 2. Then d1 ≤ l1 + 1, and l1 < d1 because of as-
sumption r ≤ d/2 and inequality (3); therefore l1 = d1 − 1. But inequal-
ities (2) imply d1 > 2r1, that is, d1 ≥ 2r1 + 1. Hence l1 ≥ 2r1 and
r1 ≥ (2r1)(2r1 + 1)/(4r1 + 1), which is impossible because r1 ≥ 1.

In conclusion, Theorem 4.1 is proved for any k ≥ 2.

Actually it is possible (under stronger assumptions) to prove the follow-
ing more precise description of the points x ∈ X(L):

Theorem 4.2. Assume that :

• % has a Zariski-dense orbit Y ,
• X has dimension r < d/2.

Then for every x ∈ X(L) there is a subspace E of W , defined over Q, that
contains x and is disjoint from Y .

Proof. Let E be the minimal subspace of W , defined over Q, that con-
tains x. Assume there is an element α ∈ E that belongs to Y . Then Propo-
sition 3.2 produces subspaces S and T such that Mα(S) ⊂ T , hence d1 ≤
l1 + d − rk(Mα). Now Lemma 2.4 implies rk(Mα) = d, thereby proving
d1 ≤ l1. But this contradicts the relation (d− r)l1 ≤ rd1, with r < d/2 and
d1 ≥ 1. This ends the proof.
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4.2. Additional notation. We denote by gop the Lie algebra of Gop. This
is the Lie algebra with underlying vector space that of g and bracket the
opposite of the bracket of g.

In the same way as in Section 2.3, we use the following notation for A ∈
gop and φ ∈W ∗: (Lie(%op)(A))(φ) = gA(φ) = Nφ(A). For every A ∈ gop and
every φ ∈W ∗, this defines linear maps gA : W ∗ →W ∗ and Nφ : gop →W ∗.

For all A ∈ g, we have t(Lie(%)(A)) = Lie(%op)(A), which reads tfA = gA.
A straightforward consequence of this relation is the following:

Lemma 4.3. Let S ⊂ g and T ⊂ W be subspaces such that Im(fA) ⊂ T
for all A ∈ S. Let T ∗ ⊂W ∗ be the orthogonal subspace to T . Then gA(φ) =
Nφ(A) = 0 for every A ∈ S and every φ ∈ T ∗.

4.3. Finite number of %op-orbits

Theorem 4.4. Assume that :

• (%,X) is suitable,
• the contragredient representation %op associated with % has only finitely

many orbits,
• X has dimension r ≤ d/2.

Then every element x ∈ X(L) belongs to some hyperplane of W defined
over Q.

Proof. Assume, on the contrary, that some x ∈ X(L) belongs to no
hyperplane of W defined over Q. Then Proposition 3.1 applies, and produces
subspaces S and T .

Let q be the maximal dimension of the %op-orbits that intersect T ∗.
Let Y0 be an orbit realizing this maximum, and let φ ∈ T ∗ ∩ Y0. We have
S ⊂ ker(Nφ) by Lemma 4.3, hence l1 ≥ q thanks to Lemma 2.4 applied
to the representation %op and the orbit Y0 of φ. On the other hand, T ∗ is
contained in the (finite) union of the %op-orbits of its elements, therefore
d1 ≤ q. Let us compare the relation l1 ≥ q ≥ d1 obtained here with formula
(3) and assumption r ≤ d/2; the following contradiction appears: d1 ≤ l1 <
rd1/(d− r) ≤ d1. Therefore Theorem 4.4 is proved.

4.4. Assumptions on the small %op-orbits. Throughout this section, we
make some assumptions on the “small” %op-orbits, precisely those which
have dimension less than r = dim(X). Assuming that there is no such orbit
(except the trivial one), the following statement is obtained:

Theorem 4.5. Assume that :

• (%,X) is suitable,
• all nonzero %op-orbits have dimension at least r,
• X has dimension r with d ≥ r(r + 1)/2,
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• one, at least , of the following holds:

1. the union of {0} and of the %op-orbits of dimension r contains no
vector subspace of W ∗ of codimension r − 1,

2. if φ and φ′ are elements of W ∗ with %op-orbits of dimension r, and
if ker(Nφ) = ker(Nφ′), then φ and φ′ are collinear.

Then every element x ∈ X(L) belongs to some hyperplane of W defined
over Q.

N.B. Assume r ≤ d/2 and %op has only finitely many orbits of dimension
r. Then the union of {0} and of the %op-orbits of dimension r has dimension
at most r, with r < d− (r − 1); therefore assumption 1 holds.

Proof of Theorem 4.5. Assume there exists x ∈ X(L) that does not
belong to any hyperplane of W defined over Q. Then applying Proposition
3.1 yields subspaces S and T .

As d1 ≥ 1, there exists φ ∈ T ∗ such that φ 6= 0, therefore the %op-orbit of
φ has dimension at least r. We have S ⊂ ker(Nφ) by Lemma 4.3, therefore
Lemma 2.4 yields l1 ≥ rk(Nφ) ≥ r.

Let us prove that the equality l1 = r does not hold. In fact, otherwise,
we would have rk(Nφ) = r and S = ker(Nφ) for all nonzero φ ∈ T ∗; in par-
ticular, by Lemma 2.4, each nonzero φ ∈ T ∗ would belong to some %op-orbit
of dimension r. Moreover, relation (3) would yield d1 > d− r. Assumption
1 could not hold. Neither could assumption 2, for it would imply d1 ≤ 1,
hence d = r < dl/(d+ l), which is impossible.

Therefore we have l1 ≥ r+ 1. Thanks to assumption d ≥ r(r + 1)/2 and
relations (2), we obtain

(r + 1)(d− r)
d

≥ r − 1 ≥ r1 ≥
l1d1

l1 + d1
≥ (r + 1)d1

(r + 1) + d1
.

This yields d(r + 1) ≥ r(d1 + r + 1), hence the following contradiction:
r + 1 ≤ l1 < rd1/(d− r) ≤ r + 1. This concludes the proof of Theorem 4.5.

Another result is the following, which applies when it is possible to con-
trol the union of “small” %op-orbits:

Theorem 4.6. Assume that :

• (%,X) is suitable,
• the union of all %op-orbits of dimension less than r contains no vector

subspace of W ∗ of dimension greater than d/r,
• X has dimension r ≤

√
d.

Then every element x ∈ X(L) belongs to some hyperplane of W defined
over Q.
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Proof. Assume some x ∈ X(L) belongs to no hyperplane of W defined
over Q. Then Proposition 3.1 produces some subspaces S and T .

As r1 ≥ 1, relation (2) yields d1 > d/r, therefore the union of %op-orbits
of dimension less than r contains no vector subspace of W ∗ of dimension
d1. In particular, T ∗ is not contained in this union: there exists φ ∈ T ∗ such
that rk(Nφ) ≥ r (thanks to Lemma 2.4). As S ⊂ ker(Nφ) by Lemma 4.3, we
obtain l1 ≥ r, hence d1 > d− r and the following contradiction:

r − 1 ≥ r1 ≥
l1d1

l1 + d1
>
r(d− r)

d
= r − r2

d
≥ r − 1.

This proves Theorem 4.6.

5. Special cases

5.1. Symmetric, tensor and exterior powers. Let V be a vector space of
dimension m ≥ 2 over K, equipped with a Q-structure, and let k ≥ 2 be an
integer. We fix a basis (e1, . . . , em) of V .

In this section, we consider the natural action % of G = GL(V ), first on
W = Symk(V ), then onW = V ⊗k, and finally onW = Λk(V ). We sketch the
proofs of Theorems 5.1, 5.3 and 5.4 as consequences of the results obtained
in Section 4. Detailed proofs are omitted, because stronger statements can
be proved by other methods.

First of all, denote by W the vector space Symk(V ); it is equipped with
an induced Q-structure (see the end of Section 2.1). The action % is given
by %(g)(α1 · . . . ·αk) = g(α1) · . . . ·g(αk) for g ∈ G and α1, . . . , αk ∈ V . For
A ∈ g = End(V ) and α1, . . . , αk ∈ V , we have

(Lie(%)(A))(α1 ·. . .·αk) =
k∑

i=1

α1 ·. . .·αi−1 ·A(αi)·αi+1 ·. . .·αk.

Denote by X = V(k, V ) the set of elements of the shape v ·. . .·v, with v ∈ V .
Then X \{0} is a %-orbit of dimension m, known as the affine cone (without
the origin) over the Veronese variety ([4], Lecture 2).

Let α be a nonzero element of Symk(V ). Denote by gn the linear auto-
morphism of V which sends ej to tje1 +unej for every j ∈ {1, . . . ,m}, where
t1, . . . , tm are elements of K and (un) is a sequence of elements ofK\{0,−t1}
which tends to zero. Then gn(α) tends to λe1 ·. . .·e1 for the norm topology
on Symk(V ), where λ ∈ K is nonzero if t1, . . . , tm are chosen in a proper
way: the closure, for the norm topology, of the orbit Yα of α intersects X.
Therefore the Zariski closure of Yα, which is a union of %-orbits ([5], Propo-
sition 8.3), contains X. This proves that X lies in the Zariski closure of any
nonzero %-orbit. Now, the contragredient representation %op is isomorphic
to the representation %∗ of GL(V ∗) on Symk(V ∗). Therefore every nonzero
%op-orbit has dimension at least m, with equality only for the affine cone
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X∗ \ {0} over the Veronese variety in Symk(V ∗) ' (Symk(V ))∗. Assume
(k,m) 6= (2, 2) and (k,m) 6= (3, 2); then (%,X) is suitable. Accordingly the
remark following Theorem 4.5 applies (with r = m and d =

(
k+m−1
m−1

)
),

thereby proving the following:

Theorem 5.1. Assume (k,m) 6= (2, 2) and (k,m) 6= (3, 2). Then Con-
jecture 2 holds for the affine cone V(k, V ) over the Veronese variety.

Actually it is possible, as soon as (k,m) 6= (2, 2), to prove a more precise
result: see Theorem 6.2 below.

Let us now move to W = V ⊗k and X = T (k, V ) = {v⊗ . . .⊗ v : v ∈ V }.
The situation is quite similar to the previous one, except that there may be
nonzero %-orbits of dimension less than m = dim(X \ {0}). For instance, if
k = m, the orbit of α =

∑
σ∈Sk

εσeσ(1)⊗ . . .⊗ eσ(k) has dimension 1 (in this
formula, εσ is the sign of σ).

We are going to apply Theorem 4.6 (with r = m and d = mk); to do this,
we need to control the orbits of dimension less than m. With this aim in
view, we consider the basis (eI) of V ⊗k, where I = (i1, . . . , ik) runs through
{1, . . . ,m}k, and its dual basis (e∗I).

Two families I = (i1, . . . , ik) and I ′ = (i′1, . . . , i
′
k) are said to be anagrams

if there exists a permutation σ of {1, . . . , k} such that i′1 = iσ(1), . . . , i
′
k =

iσ(k).
For any family I = (i1, . . . , ik) and any integer s ∈ {1, . . . ,m}, we denote

by Ns(I) the number of indices j ∈ {1, . . . , k} such that ij = s. Two families
I and I ′ are anagrams if, and only if, Ns(I) = Ns(I ′) for all s.

These definitions allow us to prove the following lemma:

Lemma 5.2. Let α =
∑

I αIeI be a nonzero element of V ⊗k with orbit of
dimension less than m. Then k is a multiple of m, and the families I such
that αI 6= 0 are anagrams of the family (1, . . . , 1, 2, . . . , 2, . . . ,m) in which
every integer from 1 to m is repeated k/m times.

Sketch of proof. Assume the conclusion does not hold. Considering the
linear automorphism of V which maps ej to µjej , for suitable values of
µ1, . . . , µm ∈ K, makes it possible to find a family I0 and a nonzero element
β of V ⊗k with the following properties:

• Either k is not a multiple of m, or I0 is not an anagram of the family
(1, . . . , 1, 2, . . . , 2, . . . ,m) in which every integer from 1 to m appears k/m
times.
• The element β lies in the closure (for the norm topology, and therefore

for the Zariski topology) of the orbit of α.
• We have β =

∑
I βIeI where βI = αI if I is an anagram of I0, and

βI = 0 otherwise; moreover, βI0 = αI0 6= 0.
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Then the orbit of β is contained in the Zariski closure of that of α, hence
has dimension less than m. By Lemma 2.4, this implies rk(Mβ) < m. We
shall now constructm families J1, . . . , Jm such that (e∗J1

◦Mβ , . . . , e
∗
Jm
◦Mβ)

are m linearly independent linear forms; this will give the desired contra-
diction.

Let H be the set of elements s ∈ {1, . . . ,m} such that Ns(I0) = u, where
u is chosen in such a way that H is neither empty nor {1, . . . ,m}. Denote by
M the complement of H in {1, . . . ,m}, and let (s′, s′′) ∈ H ×M . Let Js′,s′′
be the set of families that can be obtained from I0 by replacing exactly one
occurrence of s′ by s′′. For J ∈ Js′,s′′ , let λJ =

∑
I αI , where the sum is taken

over all anagrams I of I0 that can be obtained from J by replacing exactly
one occurrence of s′′ by s′. Then the relation e∗J(Mβ(A)) = λJas′′,s′ holds for
any A ∈ End(V ) identified with its matrix (ai,j) in the basis (e1, . . . , em).
Define Js′′,s′ in the same way; then for any J ∈ Js′′,s′ there is λJ ∈ K such
that e∗J(Mβ(A)) = λJas′,s′′ for every A. Now there exists a family J(s′, s′′),
which belongs either to Js′,s′′ or to Js′′,s′ , such that λJ(s′,s′′) 6= 0. As (s′, s′′)
ranges through H ×M , we obtain in this way (#H)(#M) ≥ m− 1 families
J(s′, s′′) among which we select J1, . . . , Jm−1. We let Jm = I0; then an easy
computation shows that (e∗J1

◦Mβ, . . . , e
∗
Jm
◦Mβ) are linearly independent

linear forms. This proves Lemma 5.2.

Theorem 5.3. Assume (k,m) 6= (2, 2). Then Conjecture 2 holds for the
subset T (k, V ) of V ⊗k.

Again, a more precise result can be obtained (see Theorem 6.4 in Sec-
tion 6).

Proof of Theorem 5.3. If k is a multiple of m, let I1 be the family
(1, . . . , 1, 2, . . . , 2, . . . ,m) in which every integer from 1 to m is repeated
k/m times, and denote by F the subspace of V ⊗k spanned by those vectors
eI such that I is an anagram of I1. If k is not a multiple of m, let F = {0}.
Then, in both cases, F has dimension less than or equal to mk−1, and con-
tains every %-orbit of dimension less than m thanks to Lemma 5.2. Further,
(%,X \ {0}) is suitable as soon as (k,m) 6= (2, 2), and %op is isomorphic to
%∗ (in the same way as in the proof of Theorem 5.1). Therefore Theorem 4.6
applies.

Finally, let us turn to W = Λk(V ). Let X = G(k, V ) = {v1 ∧ . . . ∧ vk ∈
Λk(V ) : v1, . . . , vk ∈ V } be the affine cone over the Grassmannian whose
points are the k-dimensional subspaces of V . Then X \ {0} is a %-orbit of
dimension r = k(m− k) + 1 ([4], Lecture 6).

Theorem 5.4. Assume that 2 ≤ k ≤ m − 2 and (k,m) 6= (2, 4). Then
Conjecture 2 holds for G(k, V ).
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Theorem 5.4 is a weaker statement than Theorem 2.1 of [10]. It can be
proved as a consequence of Theorems 4.1 and 4.5, except for a few pairs
(k,m). Indeed, changing k and V into m − k and V ∗ if necessary, we may
assume k ≤ m/2. If k = 2, each element α of Λ2(V ) has an even rank
p ≤ m, which is the only nonnegative integer such that α can be written
v1∧v2+. . .+vp−1∧vp with linearly independent vectors v1, . . . , vp ([7], pages
177 and 192). There are [m/2] + 1 %-orbits, each of them corresponding to
a value p of the rank. One of them (with p = m or p = m − 1) is dense,
therefore Theorem 4.1 applies if m ≥ 8. On the other hand, if 3 ≤ k ≤ m−3
and m ≥ 25 then d =

(
m
k

)
≥ r(r + 1)/2. Moreover, %op is isomorphic to

the natural representation of GL(V ∗) on Λk(V ∗), hence every %op-orbit has
dimension greater than r, except {0} and G(k, V ∗) \ {0}. This allows us
to apply Theorem 4.5. To conclude the proof of Theorem 5.4, that is, to
deal with the pairs (k,m) such that k ∈ {2,m − 2} and 5 ≤ m ≤ 7, or
3 ≤ k ≤ m − 3 and m ≤ 24, we apply Proposition 3.1, Lemma 4.3, and
we use arguments that are specific to X = G(k, V ) (for instance, we bound
from below the rank of fA as soon as A ∈ gl(V ) is nonzero). As far as the
remaining pair (k,m) = (2, 4) is concerned, nothing can be deduced from
Proposition 3.1 because (%,X \ {0}) is not suitable. It may also be noted
that Theorem 2.1 of [10] is trivial when (k,m) = (2, 4); nothing is known
about the points of G(2,K4)(L).

5.2. Centralizers of matrices. In this section, we consider the action of
GLn(K) on Matn(K) by conjugation. For M ∈ Matn(K), let C(M) be the
centralizer of M , that is, the space of all matrices A such that [A,M ] = 0
(where [A,M ] = AM − MA). Then the orbit of M under the action of
GLn(K) has dimension equal to the codimension, in Matn(K), of C(M).
This enables us to prove Theorem 1.2 stated in the introduction, as a corol-
lary of the following statement:

Proposition 5.5. Let M be a square matrix of size n, with entries in
L, whose centralizer C(M) has dimension greater than (n2 + 1)/2. Then
there exist vector subspaces U and V of Matn(K), defined over Q, with the
following properties:

• dim(U) + dim(V ) ≥ n2 + 2.
• For every A ∈ U and every B ∈ V , Trace(M [A,B]) = 0.

To deduce Theorem 1.2 from Proposition 5.5, it suffices to exclude the
case where [A,B] = 0 for any A ∈ U and any B ∈ V . This is done in the
following lemma, whose proof was communicated to me by Gaël Rémond:

Lemma 5.6. Let U and V be vector subspaces of Matn(K) such that
each element of U commutes with each element of V . Then

dim(U) + dim(V ) ≤ n2 + 1.
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Proof. This statement is obvious for n = 1; let us prove it by induction
on n. First of all, it is possible to replace U and V by U ∩ V and U + V , so
we can assume U ⊂ V . Now, if U ⊂ K Id then the conclusion holds trivially,
therefore we can assume there is a matrix M ∈ U such that M 6∈ K Id. Let
λ be an eigenvalue of M , and F = ker(M − λ Id). Then F is stable under
every matrix that commutes with M , in particular under every matrix of V .
Choose a basis of Kn whose first dim(F ) vectors belong to F . In this basis,
the elements of V are of the shape

(
A B
0 C

)
.

Let U ′ (respectively V ′) be the set of those matrices A for which there
exist matrices B and C such that

(
A B
0 C

)
∈ U (respectively

(
A B
0 C

)
∈ V ). In

the same way, define U ′′ (respectively V ′′) to be the set of those matrices C
for which there exist matrices A and B such that

(
A B
0 C

)
∈ U (respectively(

A B
0 C

)
∈ V ).

Then U is contained in the set of all matrices
(
A B
0 C

)
such that A ∈ U ′

and C ∈ U ′′. This implies

dim(U) ≤ dim(U ′) + dim(U ′′) + (dim(F ))(codim(F )).

An analogous inequality holds for V ; by summing up and applying in-
duction to (U ′, V ′) and (U ′′, V ′′), we obtain

dim(U)+dim(V ) ≤ 1+(dim(F ))2+1+(codim(F ))2+2(dim(F ))(codim(F )).

This inequality means dim(U) + dim(V ) ≤ n2 + 2; in order to conclude
the proof, it suffices to check that equality does not hold. Assume it does.
Then U is equal to the set of all matrices

(
A B
0 C

)
such that A ∈ U ′ and

C ∈ U ′′, and V is equal to the set of matrices
(
A B
0 C

)
such that A ∈ V ′

and C ∈ V ′′. Moreover, we then have dim(U ′) + dim(V ′) = 1 + (dim(F ))2,
therefore U ′ contains a nonzero matrix A. There is a matrix B, with dim(F )
rows and codim(F ) columns, such that AB 6= 0. But

(
A B
0 0

)
∈ U commutes

with
(0

0
B
0

)
∈ V , that is, AB = 0. This contradiction concludes the proof of

Lemma 5.6.

N.B. Using the same kind of methods, it is possible to prove that under
the assumptions of Lemma 5.6, if dim(U) + dim(V ) = n2 + 1 then U = K Id
or V = K Id.

Proof of Proposition 5.5. Denote by H the space of those matrices A
such that Trace(A) = 0; it is equipped with a Q-structure H(Q) consisting
of those matrices with entries in Q. Let M be a square matrix of size n,
whose n2 entries belong to L and whose centralizer C(M) has codimension
r, with r < (n2 − 1)/2.

Let u = adM be the endomorphism of H which sends any matrix N to
[M,N ]. Then u has rank r, and Corollary 2.2 (applied with E and F equal
to H) produces subspaces S and T of H, defined over Q, such that l1 < d1
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and [M,A] ∈ T for all A ∈ S. Denote by T ∗ the subspace orthogonal to T
for the nondegenerate symmetric bilinear form (X,Y ) 7→ Trace(XY ) on H.
Then for every A ∈ S and every B ∈ T ∗,

0 = Trace([M,A]B) = Trace(M [A,B]).

Let U = S ⊕ K Id and V = T ∗ ⊕ K Id; then dim(U) + dim(V ) ≥ n2 + 2,
thereby proving Proposition 5.5.

N.B. We actually proved that it is enough, in Theorem 1.2, to assume
that there is no hyperplane of Matn(K), defined over Q, which contains both
M and Id. A weaker assumption might be sufficient; such an improvement
of Theorem 1.2 could be derived from an answer to the following question.
Let U and V be vector subspaces of Matn(K) such that dim(U)+dim(V ) ≥
n2 + 2. How small can the vector space spanned by [U, V ] be?

In another direction, if the Algebraic Independence Conjecture holds,
then a result stronger than Theorem 1.2 follows:

Proposition 5.7. Take for granted the Algebraic Independence Conjec-
ture. Let M be a square matrix of size n, whose n2 entries belong to L and
are linearly independent over Q. Then the centralizer of M has dimension n.

Proof. Assume, on the contrary, that C(M) has dimension greater than
n. Then not all eigenvalues of M are simple, and the characteristic poly-
nomial χM of M has zero discriminant. Apply Conjecture 1 stated in the
introduction: M belongs to a linear affine subspace E of Matn(K), defined
over Q and contained in the set of matrices N such that χN has zero discrim-
inant. We can assume that E is an affine hyperplane of Matn(K), otherwise
E would be contained in a vector hyperplane and the n2 entries of M would
not be linearly independent over Q. Moreover, we can assume n ≥ 3, other-
wise Proposition 5.7 holds trivially. Consider now the linear affine subspace
consisting of those matrices which are upper triangular with diagonal entries
(1, 2, . . . , n). This subspace has dimension at least 2, therefore it intersects
E; this is impossible because for every N ∈ E the polynomial χN has zero
discriminant. This ends the proof.

N.B. Following the same lines as in this section, it is possible to study the
space of symmetric (or skew-symmetric, or triangular) matrices commuting
with a given symmetric (or skew-symmetric, or triangular) matrix M with
entries in L.

6. Proof of Conjecture 1 in special cases. Let k and m be positive
integers. The following notation is analogous to that used in Section 5.1:

V(k,m) = {v ·. . .·v : v ∈ Km} ⊂ Symk(Km),

T (k,m) = {v ⊗ . . .⊗ v : v ∈ Km} ⊂ (Km)⊗k.
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When k = 1 or m = 1, we have V(k,m) = Symk(Km) and T (k,m) =
(Km)⊗k; Conjecture 1 holds trivially for these subsets. This is the reason
why we now assume k ≥ 2 and m ≥ 2.

In order to prove Theorems 6.2 and 6.4 stated below, we shall use the
following lemma:

Lemma 6.1. Let λ1, . . . , λq be nonzero elements of L in geometric pro-
gression with transcendental ratio. Then q ≤ 3.

Proof. Let t be the ratio; then λj = λ1t
j−1 for all j ∈ {1, . . . , q}. The

matrix

M =

(
λ1 λ1t . . . λ1t

q−2

λ1t λ1t
2 . . . λ1t

q−1

)

has rank 1 and entries in L; if q ≥ 4, Theorem 2.3 shows that either the
rows or the columns of M are linearly dependent over Q. In the former case,
t would be algebraic, which is impossible. In the latter case, t would be a
root of a nonzero polynomial with coefficients in Q, which is also impossible.
This ends the proof.

Let us now state our result concerning the sets V(k,m). It is helpful to
view Symk(Km) as the space of homogeneous polynomials of degree k, in m
variables, with coefficients in K; then V(k,m) consists of those polynomials
which are the kth power of a linear form.

Theorem 6.2. Let k and m be integers greater than or equal to 2. Let P
be a homogeneous polynomial of degree k, in m variables, with coefficients
in L. Assume that P is the kth power of a linear form Λ with coefficients
in K.

1. If k ≥ 3 then there exist a linear form φ, with coefficients in Q, and
an element a of L such that P = aφk.

2. If k = 2 then there exist two linear forms φ1 and φ2, with coefficients
in Q, and two elements a and b of K such that P = (aφ1 + bφ2)k.

Corollary 6.3. 1. Conjecture 1 holds for V(k,m) as soon as k ≥ 3.
2. If Conjecture 1 holds for V(2, 2) then it holds for V(k,m) for any pair

(k,m).

Proof of Theorem 6.2. Let n be the minimal integer such that there
exist linear forms φ1, . . . , φn, with coefficients in Q, and elements c1, . . . , cn
of K such that Λ =

∑n
i=1 ciφi. Then c1, . . . , cn are linearly independent

over Q; on the other hand, φ1, . . . , φn are algebraically independent over K:
we denote them by Y1, . . . , Yn and write Λ =

∑n
i=1 ciYi. Furthermore, we let

P = Λk =
∑
pi1,...,inY

i1
1 . . . Y in

n ; note that the coefficients pi1,...,in belong to
L since φ1, . . . , φn are defined over Q and linearly independent over K. To
begin with, we shall prove that n is at most 2.
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Assume n ≥ 3. Let Q = (∂/∂Y1)k−2P . Then Q is a nonzero homoge-
neous polynomial of degree 2 in Y1, . . . , Yn, with coefficients in L, such that
Q = (k!/2)ck−2

1 Λ2. Let δ be a square root of (k!/2)ck−2
1 , and Λ′ = δΛ;

then Q = Λ′2. Now, associate with each homogeneous polynomial R =∑
i,j ri,jYiYj of degree 2 (written in such a way that ri,j = rj,i for all

i, j ∈ {1, . . . , n}) the symmetric matrix R̃ = (ri,j) of size n. Denote by
u ∈ Kn the coordinate vector (δc1, . . . , δcn) of Λ′; the relation Q = Λ′2

yields Q̃ = u tu. Consequently, Q̃ is a square matrix, of size n ≥ 3, of rank 1,
with entries in L, and Theorem 2.3 applies to Q̃. Therefore the n coordinates
of Λ′ are linearly dependent over Q, and so are c1, . . . , cn, in contradiction
with the definition of n.

Therefore n ≤ 2: Theorem 6.2 is proved if k = 2. Assume now k ≥ 3 and
n = 2. Then P = (c1Y1 + c2Y2)k =

∑k
j=0 ajY

j
1 Y2

k−j , with a0, . . . , ak ∈ L.

Let t = c1/c2 ∈ K and aj =
(
k
j

)
a′j for all j ∈ {0, . . . , k}; then a′j = tja′0.

But t is transcendental, because c1 and c2 are linearly independent over Q.
This contradicts Lemma 6.1, thereby proving Theorem 6.2.

Proof of Corollary 6.3. Let P be as in Theorem 6.2. If k ≥ 3 then
P = aφk belongs to the subspace Kφk, which is contained in V(k,m) and
defined over Q. Assume now that k = 2, and that Conjecture 1 holds for
V(2, 2). Let P = (aφ1 + bφ2)2 be a polynomial with coefficients in L, and
consider (in the same way as in the proof of Theorem 6.2) P1 = (aY1 +bY2)2.
Then P1 belongs to a linear affine subspace E1 contained in V(2, 2) and
defined over Q. Let E be the linear affine subspace of Sym2(Km) consisting
of those polynomials Q such that there is Q1 ∈ E1 with Q(X1, . . . ,Xm) =
Q1(φ1(X1, . . . ,Xm), φ2(X1, . . . ,Xm)). Then P ∈ E, E is defined over Q and
E ⊂ V(2,m), thereby proving Corollary 6.3.

The proof of Theorem 6.2 given above can be easily translated in terms
of symmetric powers; dealing with tensor powers, the following result is
obtained in a similar way:

Theorem 6.4. Let k and m be integers greater than or equal to 2. Let
v ∈ Km be such that x = v ⊗ . . .⊗ v belongs to (Km)⊗k(L). Then:

1. If k ≥ 3, there exist a ∈ L and v′ ∈ Qm such that x = av′ ⊗ . . .⊗ v′.
2. If k = 2, there exists a vector subspace F of Km, defined over Q, of

dimension 2, which contains v.

Corollary 6.5. 1. Conjecture 1 holds for T (k,m) as soon as k ≥ 3.
2. If Conjecture 1 holds for T (2, 2) then it holds for T (k,m) for any pair

(k,m).

Proof of Theorem 6.4. Let F be the smallest vector subspace of Km,
defined over Q, that contains v. Let n = dim(F ).
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First of all, assume n ≥ 3. Let ξ be a nonzero linear form on F , defined
over Q; then 〈ξ, v〉 6= 0. Denote by D the linear endomorphism of the tensor
algebra T (F ) which maps any α = α1 ⊗ . . .⊗ αq to

D(α) =
q∑

j=1

〈ξ, αj〉α1 ⊗ . . .⊗ αj−1 ⊗ αj+1 ⊗ . . .⊗ αq.

Let Q = Dk−2(x) = (k!/2)〈ξ, v〉k−2v ⊗ v and v′ = δv where δ is a square
root of (k!/2)〈ξ, v〉k−2. Choose a basis (f1, . . . , fn) of F , defined over Q, and
associate with any R =

∑
i,j ri,jfi⊗ fj the matrix R̃ = (ri,j). Then Q̃ = u tu

where u is the coordinate vector of v′ in the basis (f1, . . . , fn). As n ≥ 3,
Theorem 2.3 shows that v′ belongs to some vector hyperplane of F defined
over Q; then so does v, in contradiction with the definition of F .

Therefore n ≤ 2, and Theorem 6.4 is proved if k = 2. Assume k ≥ 3 and
n = 2. Let (f1, f2) be a basis of F defined over Q; since n = 2, we can write
v = a(f1 + tf2) with a, t ∈ K∗. Then, for every j ∈ {0, . . . , k}, aktj belongs
to L: Lemma 6.1 implies t ∈ Q, in contradiction with the definition of F .
This ends the proof of Theorem 6.4; Corollary 6.5 immediately follows.

N.B. As Damien Roy pointed out to me, Theorems 6.2 and 6.4 can
be easily deduced from each other by considering the linear embedding of
Symk(Km) into (Km)⊗k which sends v1 · . . . · vk to (1/k!)

∑
vσ(1) ⊗ . . . ⊗

vσ(k), where the sum is over all permutations σ of {1, . . . , k}. Indeed, this
embedding maps V(k,m) onto T (k,m).

N.B. The following conjectures are equivalent:

1. Conjecture 1 holds for V(2, 2).
2. Conjecture 1 holds for T (2, 2).
3. It is possible to replace q ≤ 3 by q ≤ 2 in the conclusion of Lemma 6.1.

These conjectures are consequences of the four exponential conjecture
(i.e. the assertion that Theorem 2.3 holds when d = l = 2). There seems
to be a gap between these conjectures and the theorems proved up to now;
actually, it is impossible ([8], Proposition 2) to derive “algebraically” any of
these conjectures from Theorem 2.1.

Acknowledgements. I am grateful to Michel Waldschmidt and Da-
mien Roy for the time they spent with me, in discussions I always found
exciting.

References

[1] A. Baker and D. W. Masser (eds.), Transcendence Theory : Advances and Appli-
cations, Proceedings of a Conference held in Cambridge in 1976, Academic Press,
1977.



Orbits under algebraic groups 187

[2] N. Bourbaki, Algèbre, Chapitre II, 3rd ed., Hermann, 1962.
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brique de logarithmes, Ann. Sci. École Norm. Sup. (4) 30 (1997), 753–796.
[12] M. Waldschmidt, Transcendance et exponentielles en plusieurs variables, Invent.

Math. 63 (1981), 97–127.
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