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1. Introduction. We revert to the subject of the thirteenth article
XIII [5] of this series (throughout we refer to such previous articles by the
Roman numerals corresponding to their position in the series, full biograph-
ical details of those cited being given at the end), in which we discussed and
augmented Liu’s [6] lower bounds for the Barban–Davenport–Halberstam
moments

S(x,Q) =
∑

k≤Q
G(x, k) =

∑

k≤Q

∑

0<a≤k
(a,k)=1

E2(x; a, k)(1)

=
∑

k≤Q

∑

0<a≤k
(a,k)=1

(
θ(x; a, k)− x

φ(k)

)2

that involve the prime number counting functions

θ(x; a, k) =
∑

p≤x
p≡a,mod k

log p.

First, to put our previous and present work in an appropriate context,
we must mention that we were somewhat remiss in XIII in merely reporting
Liu’s statement about S(x,Q) in his Theorem 2 when a more careful reading
of his Introduction would have revealed he had overlooked the fact that a
stronger result was an immediate corollary of his Theorem 1. Associated
more fundamentally in a statistical sense with θ(x; a, k) than S(x,Q), the
subject of the latter theorem was the parallel sum

S∗(x,Q) =
∑

k≤Q
G∗(x, k) =

∑

k≤Q

∑

0<a≤k
(a,k)=1

E∗2(x; a, k)(2)

in which the differences
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E∗(x; a, k) = θ(x; a, k)− 1
φ(k)

∑

p≤x
p-k

log p = θ(x; a, k)− θk(x)
φ(k)

, say,(3)

appear instead of the approximate E(x; a, k). Consequently, being a true
dispersion because the sum of θ(x; a, k) over a complete set of reduced
residues a, mod k, is θk(x), the sum G∗(x, k) appearing here is a minorant
for sums such as G(x, k). However, rather than appealing to this simple
principle that provides a lower estimate for S(x,Q) at least as good as one
for S∗(x,Q), Liu effected the transition from the latter sum to the former
by using the estimate

θ(x)− x = O(xe−A(logx)3/5−ε
)

and thereby unnecessarily reduced the range of validity of his estimate for
S(x,Q) to

Q > xe−A(log x)3/5−ε
(4)

from the wider

Q > xe−o(log x/log log x)(5)

that was valid for S∗(x,Q). Nevertheless, it is clear that in any fair compar-
ison of [6] with other work both of the inequalities

S∗(x,Q), S(x,Q) >
(

1
4
− ε
)
Qx log x (x > x0(ε))(6)

for the range (5) should essentially be attributed to Liu.
Perelli [8] in 1995 improved Liu’s results by shewing that the inequali-

ties (6) were true in any longer range of the type

Q > x1−o(1)(7)

and that actually

S∗(x,Q) > (A1(δ)− ε)Qx logx(8)

for Q = x1−δ and a function A1(δ) tending to 1/4 as δ → 0, although
he like us afterwards cited Liu’s second inequality for the unnecessarily at-
tenuated range (4). His paper, of whose existence we were unfortunately
ignorant when XIII was written, sketches a refinement in Liu’s method that
relates primarily to any exceptional zeros of Dirichlet’s L-functions formed
with real characters, taking account of the fact neglected by Liu that, if χ
be a character, mod k, associated with a primitive character, mod q, then
τ(χ) = 0 unless (k/q, q) = 1.

In a similar direction, the procedures of XIII in its unconditional aspect
were tantamount to gaining the lower bound

S∗(x,Q) > (1− ε)Qx log x(9)
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for the range (4) and the deduction of a like bound for S(x,Q) through
the above stated minimal property of S∗(x,Q). Thus our results were more
accurate than Liu’s and Perelli’s within the range (4) but had a narrower
sphere of applicability. To these, we must then add the bounds

S∗(x,Q), S(x,Q) >
(

2− log x
logQ

− ε
)
Qx logQ(10)

that were shewn in XIII to hold on the assumption that the Riemann zeta-
function ζ(s) have no zeros with real part exceeding 3/4 and that therefore
provide a conditional lower bound of expected magnitude for values of Q
down to about x1/2. But a re-examination of our treatment reveals that we
too were guilty of an oversight because, although we were mindful of the
basic inequality between S(x,Q) and S∗(x,Q), we failed to avail ourselves
of the actual positive value of their difference. The first purpose of this paper
is therefore to remedy the resulting underperformance and to shew that the
bound (10) for S(x,Q) is true without qualification; we thus advance far
ahead of (8) for S(x,Q) and produce the first unconditional bound for a
Barban–Davenport–Halberstam sum that is valid for all values of Q above
about x1/2 (compare with the asymptotic formulae for S(x,Q) that were
obtained in I and II on the assumption of the extended Riemann hypothesis).

Yet, though the latter of the two sums S∗(x,Q), S(x,Q) may be the more
natural to study from the viewpoint of the prime number theorem for arith-
metical progressions, it is clear that it is the former that is of greater basic
interest because of its interpretation as a sum of dispersions of θ(x; a, k),
a realization that is strengthened by our appreciation of the way θ(x; a, k)
can be expressed in terms of θk(x)/φ(k) and sums θ(x, χ) affected by non-
principal characters, mod k. Here, putting aside the conditional result on
S∗(x,Q) in (10), we are left with the comparison between the unconditional
(8) and (9) for S∗(x,Q) and the need to improve their joint effect.

It is to the last requirement that we denote the second and principal
part of this paper, proving the better inequality

S∗(x,Q) >
(
π2

12
− ε
)
Qx log x (x > x0(ε))

in the range (7) and in fact that A1(δ) → π2/12 in (8) as δ → 0. Being
almost 5/6, the multiplier here of Qx log x does not fall far short of the
value 1 in (9), while the range of applicability is much wider (down to
Q = x1−δ1) than the former range in which the latter value had been shewn
to be appropriate. Two main refinements in the methods of Liu and Perelli
are the source of the improvement and are so incorporated in the treatment
that it is desirable to rework with more finesse those aspects of the method
that depend on the ideas of Gallagher [2].
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Two other matters should be mentioned. The first is that alongside the
sums S(x,Q), S∗(x,Q) there is a third one S∗∗(x,Q) that emerges from the
replacement of θk(x) in E∗(x; a, k) by θ(x) and that in some ways is the
easiest to work with. Since

θk(x) = θ(x)−
∑

p≤x
p|k

log p = θ(x) +O(log k),(11)

S∗(x,Q) and S∗∗(x,Q) are virtually indistinguishable and are subject in
most instances to comparable bounds. The other is that we refer the reader
to the end for a discussion about the sharpness of our estimations and how
the method could be varied to provide either a shorter treatment or a more
accurate one.

2. Notation and conventions. The symbol ε denotes an arbitrarily
small positive number while A is a positive absolute constant; in accord
with normal practice, neither of these necessarily remains the same on all
occasions or, indeed, within given equations and inequalities. The symbol
x is a positive variable to be regarded as tending to infinity so that every
stated relation is valid for sufficiently large x; in particular, those involving
ε are true for values of x exceeding some number that depends on ε but that
is independent of the parameter δ. The constants implied by the O-notation
are of type A.

3. The improved lower bound for S(x,Q). As implied in the Intro-
duction, we advance to a better unconditional lower bound for S(x,Q) by
replacing an inequality by a stronger equality in the preliminary §4 of XIII,
in which all relevant definitions and conditions are to be retained. Letting
G∗(x,Q) denote the exact dispersion∑

0<a≤k
(a,k)=1

(θ(x; a, k)− θk(x)/φ(k))2,

we now begin with the two relations

G∗(x,Q) =
∑

0<a≤k
(a,k)=1

θ2(x; a, k)− θ2
k(k)
φ(k)

(12)

and
G(x,Q) = G∗(x,Q) +

{x− θk(x)}2
φ(k)

that imply that

G(x,Q) =
∑

0<a≤k
(a,k)=1

θ2(x; a, k)− θ2
k(x)
φ(k)

+
{x− θk(x)}2

φ(k)
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=
∑

0<a≤k
(a,k)=1

θ2(x; a, k)− θ2(x)
φ(k)

+
{x− θ(x)}2

φ(k)
+O

(
x log k
φ(k)

)

in virtue of (11). This ousts the first inequality for G(x, k) in XIII and
therefore equations (58) and then (64) therein remain true if the additional
term

ζ(2)ζ(3)
ζ(6)

{x− θ(x)}2 log
Q2

Q1
(13)

be added to their final right-hand sides.
To benefit from this adjustment it is preferable to use the structure of

the second form of treatment originated in §6 of XIII. Having arrived at
equation (88) therein, we add the term (13) to its first two constituents and
therefore annihilate the effect of (x−θ(x))2 on the proceedings. Since it was
only here that the conditional estimate (83) was used in the work, we have
therefore elevated the proof to an unconditional status. Consequently, we
can now state

Theorem 1. Let E(x; a, k) be defined as in (1). Then, if Q ≤ x, we
have ∑

k≤Q

∑

0<a≤k
(a,k)=1

E2(x; a, k) >
(

2− log x
logQ

− ε
)
Qx logQ

for x > x0(ε).

It was stated in the Introduction that the initial inequality for G(x, k)
in XIII was founded on a comparable one for G∗(x, k). Since this is easily
confirmed, we see that we may replace E(x; a, k) by E∗(x; a, k) in Theorem 1
here or in Theorem 2 of XIII provided that we still assume that ζ(s) has no
zeros with real part exceeding 3/4.

4. The exponential sum f(θ) for rational values of θ and its
relation to G∗(x,Q). Since the exponential sum

f(θ) =
∑

p≤x
log p e2πipθ

plays an indispensable rôle in our work, we first develop some of its prop-
erties for rational values of θ and, in particular, its relationships with the
entities G∗(x, k) and E∗(x; a, k) in (2) and (3).

First, the sum of f(b/q) taken over a complete set of reduced residues b,
mod q, is

∑

0<b≤q
(b,q)=1

f

(
b

q

)
=

∑

0<b≤q
(b,q)=1

∑

p≤x
log p e2πipb/q =

∑

p≤x
cq(p) log p,
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in which cq(p) is a sum that equals µ(q) or µ(q)− µ(q/p)p according as p - q
or p | q. Hence, for q ≤ x,

∑

0<b≤q
(b,q)=1

f

(
b

q

)
= µ(q)

∑

p≤x
log p−

∑

p|q
µ

(
q

p

)
p log p

= µ(q)θ(x) +O
(
q
∑

p|q
log p

)
= µ(q)θ(x) +O(q log q)

and the dispersion D(x, q) of f(b/q) is accordingly determined by

φ(q)D(x, q) =
∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

− 1
φ(q)

(µ(q)θ(x) +O(q log 2q))2(14)

=
∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

− µ2(q)θ2(x)
φ(q)

+O

(
xq log2 2q
φ(q)

)

in this case.
Secondly, in somewhat similar vein, we deduce from equations (12)

and (11) the preparatory equation

G∗(x, k) =
∑

0<a≤k
(a,k)=1

θ2(x; a, k)− θ2(x)
φ(k)

+O

(
x log 2k
φ(k)

)
(k ≤ x)(15)

that participates in another analysis of f(b/q). This begins with the equation

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

=
∑

0<b≤q

∣∣∣∣f
(
b

q

)∣∣∣∣
2 ∑

d|b, d|q
µ(d) =

∑

d|q
µ(d)

∑

0<b′≤q/d

∣∣∣∣f
(
b′

q/d

)∣∣∣∣
2

=
∑

k|q
µ

(
q

k

) ∑

0<b′≤k

∣∣∣∣f
(
b′

k

)∣∣∣∣
2

,

wherein the last inner sum equals
∑

0<b′≤k

∑

p,p′≤x
log p log p′ e2πi(p−p′)b′/k =

∑

p,p′≤x
log p log p′

∑

0<b′≤k
e2πi(p−p′)b′/k

= k
∑

p,p′≤x
p−p′≡0,mod k

log p log p′ = k
∑

0<a≤k
θ2(x; a, k)

= k
∑

0<a≤k
(a,k)=1

θ2(x; a, k) + k
∑

p|k
log2 p = k

∑

0<a≤k
(a,k)=1

θ2(x; a, k) +O(k log2 2k)
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when k ≤ x. Taken together and then considered with (15), these two equa-
tions imply that

(16)
∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

=
∑

k|q
µ

(
q

k

)
k
∑

0<a≤k
(a,k)=1

θ2(x; a, k) +O
(∑

k|q
k log2 2k

)

=
∑

k|q
µ

(
q

k

)
k

{
G∗(x, k) +

θ2(x)
φ(k)

+O

(
x log 2k
φ(k)

)}

+O(σ(q) log2 2q)

=
∑

k|q
µ

(
q

k

)
kG∗(x, k) + θ2(x)

∑

k|q
µ

(
q

k

)
k

φ(k)

+O(xd3(q) log 2q) +O(σ(q) log2 2q)

=
∑

k|q
µ

(
q

k

)
kG∗(x, k) +

µ2(q)θ2(x)
φ(q)

+O(xd3(q) log2 2q),

which evaluation is the source of two useful conclusions. To obtain the first,
we substitute in (14) to get

φ(q)D(x, q) =
∑

k|q
µ

(
q

k

)
kG∗(x, k) +O(xd3(q) log2 2q)

with the implication that
∑

k|q
µ

(
q

k

)
kG∗(x, k) > −Axd3(q) log2 x(17)

for q ≤ x. Hence, on writing

H(x, q) =
1
q

∑

k|q
µ

(
q

k

)
kG∗(x, k) and L(x,U) =

∑

q≤U
H(x, q),(18)

we deduce that

L(x,U) > −Ax log2 x
∑

q≤U

d3(q)
q

> −Ax log5 x(19)

for U ≤ x.
The virtues of this inequality rest on its universality and the fairly good

lower bound it provides. Accompanied by the positive bound for L(x,U)
the main method produces for values of U larger than x1−δ, it allows us
to proceed to a satisfactory final result in a way that would otherwise be
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denied us. Very possibly the left side of (19) is positive for much smaller
values of U but such a property we neither need nor are able to prove.

The second inference from (16), which forms the first step in the main
treatment of L(x,U), is that

(20) L(x,U2)− L(x,U1) =
∑

U1<q≤U2

H(x, q)

=
∑

U1<q≤U2

1
q

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

− θ2(x)
∑

U1<q≤U2

µ2(q)
qφ(q)

+O

(
x log2 x

∑

q≤U2

d3(q)
q

)

=
∑

U1<q≤U2

1
q

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

+O

(
x2

U1

)
+O(x log5 x).

Finally we should note that (16) is a much more accurate reflection of the
relationship between G∗(x, q) and

∑
b |f(b/q)|2 than the corresponding in-

equality

G(x, q) ≥ 1
q

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

found in [6] and [8] by the use of character sums. But to take advantage of
this superiority we need (17), which had no counterpart in the earlier works.

5. Preliminary treatment of the second moment of f(θ). We shall
now follow with appropriate modifications the mainstream of Liu’s argument
until its confluence in §7 with the tributary material of §4. First, letting c be
a positive number exceeding 1 whose definition must await the introduction
of the later equation (31), we let

δ1 <
1
4c

<
1
4

(21)

be a suitable positive constant and bring in the primary number Q that
we express as x1−δ, where it is supposed that 0 ≤ δ ≤ δ1 and where δ
will be seen to be a parameter with respect to which all limiting processes
pertaining to the passage of x to infinity are uniform. In terms of Q, we then
further introduce the quantities

Q1 = Q/log x, Q0 = (x/Q) logx = xδ log x(22)

even though, as we shall later see, we could dispense with Q1 and only work
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with a larger

Q0 = (x3/Q3) log x = x3δ log x(23)

provided that we were willing to accept a smaller useful value of δ.
Thus equipped, we bound the integral

1�

0

|f(θ)|2 dθ =
∑

p≤x
log2 p = x log x+O(x)(24)

from above by

∑

q≤Q

∑

0<b≤q
(b,q)=1

1/Qq�

−1/Qq

∣∣∣∣f
(
b

q
+ φ

)∣∣∣∣
2

dφ =
∑

q≤Q0

+
∑

Q0<q≤Q1

+
∑

Q1<q≤Q
(25)

= S1 + S2 + S3, say,

because the unit interval, mod 1, is covered by all intervals of the type
|φ − b/q| ≤ 1/Qq that answer to the above conditions of summation. But,
for interest and for a later ephemeral requirement, we should mention the
companion inequality

S1 + S2 + S3 ≤ 2
1�

0

|f(θ)|2 dθ,(26)

which is verified by noting that, if b1/q1 < b2/q2 be two adjacent fractions in
the Farey series of order [Q], then their distance apart is (b2q1−b1q2)/q1q2 =
1/q1q2 > 1/Qq1, 1/Qq2 so that no point in the unit interval, mod 1, is
covered more than twice by the intervals b/q ± 1/Qq. In the meanwhile,
having deduced that

S3 ≥ x log x− S1 − S2 +O(x),(27)

we need upper bounds for S1 and S2 to find a lower bound for S3.
As in [6] and [8], an upper bound for S2 is easily found through the large

sieve inequality although here we prefer to avoid using a dissection of the
range of q. This we do by changing the order in which the summation and
integration are performed, thereby shewing that

(28) S2 =
1/QQ0�

−1/QQ0

∑

Q0<q≤min(1/Q|φ|,Q1)

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q
+ φ

)∣∣∣∣
2

dφ

= O
(1/QQ0�

0

{x2 log x+ min2(1/Qφ,Q1)x log x} dφ
)
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= O

(
x2 log x
QQ0

)
+O

(
x2Q2

1 log x
1/QQ1�

0

dφ
)

+O

(
x log x
Q2

∞�

1/QQ1

dφ

φ2

)

= O

(
x2 log x
QQ0

)
+O

(
xQ1 log x

Q

)
= O(x)

owing to (22).
Before we embark on the estimation of S1, which represents the hardest

part of the work, it is desirable to summarize some definitions and theorems
relating to characters and Dirichlet’s L-functions that are specifically stated
to suit the present context (Davenport’s monograph [1] is a useful reference).
Here χq denotes a character, mod q, induced by a primitive character χ∗q∗ ,
where of course q∗ | q and the trivial character, mod 1, is regarded as being
primitive. Then the sum

τ(χq) =
∑

0<h≤q
χq(h)e2πih/q

has the properties that

|τ(χ∗q∗)| = q∗1/2(29)

and

τ(χq) =
{
µ(r)χ∗q∗(r)τ(χ∗q∗) if q = q∗r and (q∗, r) = 1,

0 otherwise,
(30)

so that |τ(χq)| never exceeds q1/2. Next, if N(α, T, χ∗q∗) denote the number
of zeros of L(s, χ∗q∗) in the region

σ > α, |t| ≤ T (α ≤ 1/2− 0;T > Q′ ≥ 2)

then ∑

q∗≤Q′

∑

χ∗
q∗

N(α, T, χ∗q∗) = O(T c(1−α)),(31)

as was shewn by Gallagher [2] for a suitable positive constant c > 1; this is
the number used in (21) in anticipation of this statement. Also, if now

T = Q2
0 log3 x(32)

be chosen in terms of the Q0 defined by (22) and if d be a suitably small
positive absolute constant, then for q∗ ≤ Q0 no zeros β+ iγ of the functions
L(s, χ∗q∗) lie in the region

σ > 1− d

log T
= 1− T1, say, |t| ≤ T(33)

with the possible exception of one real zero β0 = β0(Q0) of one such function
formed with a non-principal real character χ∗q∗0 mod q∗0.
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6. Estimations of S1 and S3. For any positive integer not exceeding x,

f(θ) =
∑

p≤x
p-q

log p e2πipθ +O
(∑

p|q
log p

)

=
∑

n≤x
(n,q)=1

Λ(n)e2πinθ +O(logx) +O(x1/2)

= fq(θ) +O(x1/2), say,

and thus
|f(θ)|2 = |fq(θ)|2 +O(x3/2).

Also, at θ = b/q + φ, we have in the usual way that

fq(θ) =
∑

0<h≤q
(h,q)=1

e2πihb/q
∑

n≤x
n≡h,mod q

Λ(n)e2πinφ

=
1

φ(q)

∑

0<h≤q
(h,q)=1

e2πihb/q
∑

χq

χq(h)
∑

n≤x
χq(n)Λ(n)e2πinφ

=
1

φ(q)

∑

χq

χq(b)τ(χq)
∑

n≤x
χq(n)Λ(n)e2πinφ

=
1

φ(q)

∑

χq

χq(b)τ(χq)F (φ, χq), say.

From these two equations we see that the inner sum in S1 as defined by (25)
is given by

∑

0<b≤q
(b,q)=1

1/Qq�

−1/Qq

∣∣∣∣fq
(
b

q
+ φ

)∣∣∣∣
2

dφ+O
( ∑

0<b≤q
x3/2

1/Qq�

−1/Qq

dφ
)

=
1/Qq�

−1/Qq

∑

0<b≤q
(b,q)=1

∣∣∣∣fq
(
b

q
+ φ

)∣∣∣∣
2

dφ+O

(
x3/2

Q

)
,

the integrand in which is
1

φ2(q)

∑

χq ,χ′q

τ(χq)τ(χq)F (φ, χq)F (−φ, χq)
∑

0<b≤q
(b,q)=1

χqχ
′
q(b)

=
1

φ(q)

∑

χq

|τ(χq)|2|F (φ, χq)|2.

Hence, on summing over q, we infer that
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S1 =
∑

q≤Q0

1
φ(q)

1/Qq�

−1/Qq

∑

χq

|τ(χq)|2F (φ, χq)|2 dφ+O

(
x3/2Q0

Q

)
(34)

= S′1 +O(x), say,

on account of (22) and (21).
If a typical character χq appearing in the definition of S′1 be induced by

the primitive character χ∗q∗ where q∗ | q, then

F (φ, χq) = F (φ, χ∗q∗) +O(log2 x)

as usual so that we have the estimate

|F (φ, χq)|2 = |F (φ, χ∗q∗)|2 +O(x log2 x),

which with (34), (30), and (29) implies that

S1 ≤
∑

q∗≤Q0

q∗

φ(q∗)

1/Qq∗�

−1/Qq∗

∑

χ∗q∗

|F (φ, χ∗q)|2 dφ
∑

r≤Q0/q∗

(r,q∗)=1

µ2(r)
φ(r)

(35)

+O

(
x log2 x

Q

∑

q≤Q0

1
)

+O(x)

≤ (1 + ε) logQ0

∑

q∗≤Q0

∑

χ∗q∗

1/Qq∗�

−1/Qq∗
|F (φ, χ∗q∗)|2 dφ+O(x)

= (1 + ε) logQ0

∑

q∗≤Q0

∑

χ∗q∗

G(χ∗q∗) +O(x)

= (1 + ε) logQ0 H(Q0) +O(x), say,

by (22).
To treat G(χ∗q∗) we use a theorem of Gallagher’s that is described in

Lemma 1.9 of Montgomery’s tract [7]. Here, taking their T and δ to be
1/Qq∗ and εQq∗ and considering the ensuing constants implicit in their
calculation, we find that

δ2(1 + ε)−1
T�

−T
|F (φ, χ∗q∗)|2 dφ ≤ δ2 sin2 πε

π2ε2

T�

−T
|F (φ, χ∗q∗)|2 dφ

≤
∞�

−∞

∣∣∣
∑

t−εQq∗<n≤t
0<n≤x

Λ(n)χ∗q∗(n)
∣∣∣
2
dt
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and hence that

G(χ∗q∗) ≤
1 + ε

ε2(Qq∗)2(36)

×
x+εQq∗�

0

|ψ{min(t, x), χ∗q∗}−ψ{max(0, t− εQq∗), χ∗q∗}|2 dt,

where the value of ε will not be allowed to change until the end of (40). But,
for εQq∗ < t ≤ x+ εQq∗,

|ψ{min(t, x), χ∗q∗} − ψ{max(0, t− εQq∗), χ∗q∗}|

≤ ψ(t)− ψ(t− εQq∗) < (1 + ε)εQq∗

because Q > x3/4 and Qq∗ ≤ x log x, the inequality remaining true for
t ≤ εQq∗ as then its left side does not exceed

ψ(t) < (1 + ε)t ≤ (1 + ε)εQq∗.

Thus we arrive at the inequality

G(χ∗q∗) ≤
(1 + ε)2

εQq∗
(37)

×
x+εQq∗�

0

|ψ{min(t, x), χ∗q∗} − ψ{max(0, t− εQq∗), χ∗q∗}| dt

that lends itself to an application of the explicit formula (1) for ψ(w,χ∗q∗).
To facilitate our expressing ψ(w,χ∗q∗) in terms of the zeros % = β+ iγ of

L(s, χ∗q∗), we let υ(χ∗q∗) be defined as 1 or 0 accordingly as χ∗q∗ is principal
or otherwise with the consequence that

ψ(w,χ∗q∗) = υ(χ∗q∗)w −
∑

|γ|≤T
β≥1/2

w%

%
+O

(
x log2 x

T

)
(38)

if 0 ≤ w ≤ x and T be given by (31), whence

(39) |ψ(w2, χ
∗
q∗)− ψ(w1, χ

∗
q∗)|

≤ υ(χ∗q∗)(w2 − w1) +
∑

|γ|≤T
β≥1/2

∣∣∣∣
w%2 − w%1

%

∣∣∣∣+O

(
x log2 x

T

)

(1) The explicit formulae for ψ(w,χ) containing an infinite series summed over % are
false when w < 1; the same is not true of (38) as the result is seen to be trivial over the
latter range because of the relationship between x and T .
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= υ(χ∗q∗)(w2 − w1) +
∑

|γ|≤T
β≥1/2

∣∣∣
w2�

w1

u%−1 du
∣∣∣+O

(
x log2 x

T

)

≤ υ(χ∗q∗)(w2 − w1) +
∑

|γ|≤T
β≥1/2

w2�

w1

uβ−1 du+O

(
x log2 x

T

)

for 0 ≤ w1 ≤ w2 ≤ x. Then, by taking w1 = max(0, t−εQq∗), w2 = min(t, x)
to treat the integrand in (37), we infer that the impact of an individual
integrand in the final line of (39) on G(χ∗q∗) does not exceed

(40)
(1 + ε)2

εQq∗

x+εQq∗�

0

dt

min(t,x)�

max(0,t−εQq∗)
uβ−1 du

=
(1 + ε)2

εQq∗

x�

0

uβ−1 du

u+εQq∗�

u

dt =
(1 + ε)2xβ

β
<

(1 + ε)xβ

β
,

on restoring our introductory convention regarding ε that has been held in
abeyance since the formation of (36). In particular, if there be an exceptional
zero β0 = β0(Q0) of the type described through (33) in §5, then for χ∗q∗ the
upper bound supplied by (40) becomes

(1 + ε)xβ0

β0
<

(1 + ε)x
1− T1

< (1 + ε)x(41)

when β = β0; similarly, should χ∗q∗ be the principal character, then we must
also account for the additional effect of not more than

(1 + ε)x(42)

from the first term in (38).
The contribution of the special terms (40) and (41) to H(Q0) in (35)

can in no circumstances exceed (2 + ε)x, while that of the remainder term
in (39) is

O

(
x log2 x(x+ εQ0Q)

εT

∑

q∗≤Q0

q∗

Qq∗

)
= O

(
xQ0 log2 x

T

∑

q≤Q0

1
)

= O

(
xQ2

0 log2 x

T

)
= O

(
x

log x

)

by (22), (37), and (32). Hence, in summation of what has been recently
gained, we have
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H(Q0) < (2 + ε)x+ 2
∑

q∗≤Q0

∑

χ∗q∗

∑

|γ|≤T
1/2≤β<1−T1

xβ(43)

= (2 + ε)x− 2
1−T1�

1/2−0

xσ d
( ∑

q∗≤Q0

∑

χ∗
q∗

N(σ, T, χ∗q∗)
)
,

to which we should append the inequalities

T = Q2
0 log3 x = x2δ log5 x < x3/4c, T c < x3/4

that are based on (32), (22), and (21).
At this point we exploit Gallagher’s bound (31) and partial integration

to deduce that the above integral is

O(x1/2T 1/2c) +O

(
x log x

1/2�

T1

(
x

T c

)−σ′
dσ′
)

= O(x7/8) +O

{
x

(
x

T c

)−T1
}

= O

{
x

(
x

T c

)−T1
}
,

in which, by (33),
T1 = d/(2δ + 5X) log x

with X = (log log x)/logx. Thence

H(Q0) < (2 + ε)x+O(x · x−d{1−c(2δ+5X)}/(2δ+5X) log x)

= (2 + ε)x+O(xe−d/(2δ+5X))

= (2 + ε)x+O(xe−d/2δ) +O

(
x log log x

log x

)

≤ (2 + ε)x+ Axe−d/2δ,

the definition of e−d/2δ at δ = 0 being taken to be 0.
Assimilating this in (35), we then reach the inequality

S1 < (1 + ε)(2 + Ae−d/2δ + ε)x logQ0 +O(x)

< {(2 + Ae−d/2δ)δ + ε}x log x,

which in combination with (27) and (28) yields the lower bound

S3 > {1− δ(2 + Ae−d/2δ)− ε}x log x = (A(δ)− ε)x log x, say,(44)

we sought. Note here that A(δ) is a decreasing function of δ that tends to 1 as
δ → 0 and that its zero is less than 1/2. However, we cannot easily tell if this
zero be greater than or less than the number δ1 that essentially constrains
the scope of the method on account of the rôle of c in the application of
(31) to (45), although it can be seen that these two numbers have roughly
the same order of size in terms of c.
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7. Transition to L(x,Q). We move from S3 to L(x,Q) by comparing
the integrals in the former with their integrands at φ = 0. In fact

∣∣∣∣f
(
b

q
+ φ

)
− f

(
b

q

)∣∣∣∣ =
∣∣∣
∑

p≤x
(e2πi(b/q+φ)p − e2πibp/q) log p

∣∣∣

≤ |φ|
∑

p≤x
p log p = O

(
x2

Qq

)

when |φ| ≤ 1/Qq. So, with Q and Q1 as in (22),

(45)
2
Q

∑

Q1<q≤Q

1
q

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

=
∑

Q1<q≤Q

∑

0<b≤q
(b,q)=1

1/Qq�

−1/Qq

∣∣∣∣f
(
b

q
+ φ

)
+O

(
x2

Qq

)∣∣∣∣
2

dφ,

and this by a derivative of Minkowski’s theorem is not less than

∑

Q1≤q≤Q

∑

0<b≤q
(b,q)=1

1/Qq�

−1/Qq

∣∣∣∣f
(
b

q
+ φ

)∣∣∣∣
2

dφ

+O

{
x2

Q

( ∑

Q1<q≤Q

∑

0<b≤q
(b,q)=1

1/Qq�

−1/Qq

∣∣∣∣f
(
b

q
+ φ

)∣∣∣∣
2

dφ

)1/2

×
( ∑

Q1<q≤Q

∑

0<b≤q

1
q2

1/Qq�

−1/Qq

dφ

)1/2}

+O

(
x4

Q2

∑

Q1<q≤Q

∑

0<b≤q

1
q2

1/Qq�

−1/Qq

dφ

)

= S3 +O

{
x2

Q3/2

(∑

q>Q1

1
q2

)1/2

S1/2
3

}
+O

(
x4

Q3

∑

q>Q1

1
q2

)

= S3 +O

(
x2

Q3/2Q
1/2
1

S1/2
3

)
+O

(
x4

Q3Q1

)

= S3 +O(x1/2 S1/2
3 ) +O(x).

From this we can easily navigate to the required inequality for the left-side
of (45) by a variety of routes. For example, most obviously, we may liken
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the size of an expression u2 + au + b containing bounded values of a and
b with u2 as u → ∞; alternatively, but unnecessarily, we may use in the
second term of the final line above the inequality S3 < 3x log x that stems
from (26) and (24). Consequently, whatever argument be used, we infer from
(44) and (45) that

∑

Q1<q≤Q

1
q

∑

0<b≤q
(b,q)=1

∣∣∣∣f
(
b

q

)∣∣∣∣
2

>
1
2
{A(δ)− ε}Qx log x

and observe in passing that Liu’s procedure at this point would only have
derived an inequality of this type with the factor 1/4 instead of 1/2 in the
right-hand side.

Interpreted in the language of equation (20) of §4, this inequality gives

L(x,Q)− L(x,Q1) >
1
2
{A(δ)− ε}Qx log x+O

(
x2

Q1

)
+O(x log5 x)

>
1
2
{A(δ)− ε}Qx log x,

to which we add the estimate (19) for L(x,Q1) to produce

L(x,Q) >
1
2
{A(δ)− ε}Qx log x− Ax log5 x >

1
2
{A(δ)− ε}Qx log x.(46)

8. The final theorem. To derive the final theorem we first aver that,
whatever value of δ1 be chosen in (21), the inequality (46) remains true when
δ1 is replaced by a larger fixed constant less than 1/4c. Then, still assuming
that δ < δ1 and letting ξ = ξ(x) be a sufficiently slowly increasing function
of x that tends to infinity, we use the Möbius inversion formula to rewrite
(18) as

G∗(x, k) =
∑

lm=k

H(x,m)
l

so that, by (2),

S∗(x,Q) =
∑

lm≤Q

H(x,m)
l

=
∑

l≤Q

1
l

∑

m≤Q/l
H(x,m) =

∑

l≤Q

1
l
L(x,Q/l)(47)

=
∑

l≤ξ

1
l
L(x,Q/l) +

∑

ξ<l≤Q

1
l
L(x,Q/l)

= S∗a(x,Q) + S∗b (x,Q), say.

The exponent δ(l) pertaining to the parameter Q/l = x1−δ(l) in the pri-
mary sum S∗a(x,Q) equals

δ +
log l
log x

≤ δ1 +
log ξ
log x
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with the consequence that here

L(x,Q/l) >
1
2
{A(δ(l))− ε}(Q/l)x logx

by (46) and that also A(δ(l)) > A(δ)− ε. Therefore

S∗a(x,Q) >
1
2
{A(δ)− ε}Qx log x

∑

l≤ξ

1
l2
>
π2

12
{A(δ)− ε}Qx log x.(48)

As for S∗b (x,Q), equation (19) gives

S∗b (x,Q) > −Ax log5 x
∑

ξ<l≤Q

1
l

= O(x log6 x),

which with (48) and (47) yields the final estimate

S∗(x,Q) >
π2

12
{A(δ)− ε}Qx log x

that we embody in

Theorem 2. Let

S∗(x,Q) =
∑

k≤Q

∑

0<a≤k
(a,k)=1

E∗2(x; a, k),

where E∗(x; a, k) is defined in equation (2) of the Introduction. Suppose also
that Q is a number not exceeding x that is expressed as x1−δ, where δ is
less than some positive constant δ1. Then there is a decreasing continuous
function (2) A(δ) of δ equal to 1 at δ = 0 with the property that

S∗(x,Q) >
π2

12
{A(δ)− ε}Qx log x (x > x0(ε))

uniformly with respect to δ. In particular ,

S∗(x,Q) >
(
π2

12
− ε
)
Qx log x

if δ = o(1) as x→∞.

Improvements in this theorem of two types are desirable. Putting on one
side the first in which we would like to increase the constant in the inequality
to a value beyond π2/12, we make some comments on finding good bounds
on the values of Q for which S∗(x,Q) is bounded below by some (possibly
small) constant multiple of Qx log x. Such a search, as explained at the end
of §6, is governed both directly by the value of c in (31) and the form of
the function A(δ) that can be produced for our theorem. As it is, without
unnecessarily complicating the argument, we have laid out the exposition

(2) We can naturally arrange for A(δ) to be always positive by adjusting the value of
δ1 if necessary.
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so that an example of A(δ) could be explicitly constructed through the con-
stants latent in (31) and (32) without gratuitous wastage. In fact, we have
already advanced below the limits set in Liu’s method by a more efficacious
use of Gallagher’s procedure in (36), which obviates the inefficiencies asso-
ciated with the previous need to lift out certain items from F (φ, χq) when
χq is associated with a principal or exceptional character. As a consequence,
the deficiency from 1 represented in A(δ) in (44) has been reduced to at
most a third of what it would have been had the previous procedure been
explicitly conducted through its appeal to the Cauchy–Schwarz inequality.
So whether or not our improvement has reduced the range of Q for which
there is no meaningful result, we have at least strengthened the bounds for
S∗(x,Q) for the larger values of Q.

In an opposite direction, if we wished for a shorter derivation at the cost
of a weaker value of A(δ), we could begin by dispensing with the large sieve
by setting Q1 = Q0 as in (23) so that the sum S2 disappears (the presence
of the log x in (23) is inessential but facilitates comparison between the two
methods). The treatment of S3 remains the same, whereas it quickly becomes
clear that 3δ takes over the rôle previously played by δ in the estimation
of S1 although it is now wise to make a harmless adjustment to the value
of δ1. Thus, without taking into account any compensating features of the
new circumstances, we would obtain

S∗(x,Q) >
π2

6
{A(3δ)− ε}Qx log x

in place of Theorem 2.
But, if we sought to curtail the treatment yet further, we could avoid

all explicit reference to the zero-free regions and exceptional zeros of Dirich-
let’s L-functions and rely only on Gallagher’s estimate (31). In fact, had we
abstained from using the properties and definitions associated with equa-
tion (33), we would still have had available the analogue

H(Q0) < (1 + ε)x+ 2
∑

q∗≤Q0

∑

χ∗
q∗

∑

|γ|≤T
1/2≤β<1

xβ

of (43), to which we could apply (31) to gain the estimate

H(Q0) < (1 + ε)x+O(x) < Ax

in place of the previous more accurate one. This then leads ultimately to
the lower bound

S∗(x,Q) >
π2

12
(1− Aδ − ε)

that is obviously inferior to what was obtained before. However, since Gal-
lagher’s estimate does itself depend on the properties of exceptional zeros,
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this last diversion involves an illusory economy and represents an inefficient
deployment of resources.
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