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Uniformly counting points of bounded height
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Thomas Loher (Zürich) and David Masser (Basel)

1. Introduction. In this paper we give some new uniform estimates
for the cardinalities of certain sets involving algebraic numbers of bounded
height. The estimates are nearly optimal with respect to the degree of the
number field. We mention some applications to problems about multiplica-
tively independent and dependent numbers in situations occurring in the
recent theory of linear forms in logarithms associated with the name of
Matveev. We also extend our counting estimates to algebraic vectors.

Let K be a number field of degree d = [K : Q] over the rational field Q.
We use the absolute height function defined for α in K by

(1.1) H(α)d =
∏

v

max{1, |α|v},

where the product is over all representatives v of equivalence classes of val-
uations on K. These representatives are normalized in such a way that
H(a) = a for all positive a in Q; this is possible in a unique way. For ex-
ample, if v corresponds to an embedding σ of K into the complex field,
then |α|v = |σ(α)|f , where f = 1 if σ(K) is in the real field R and f = 2
otherwise. In general see Lang [La2, pp. 19–21, 50–52] or Waldschmidt [W,
pp. 67–75].

To begin with, we are interested for real numbers H ≥ 1 in the sets K(H)
consisting of all α in K with H(α) ≤ H. A classical theorem of Northcott
[N] from 1949 implies that K(H) is a finite set. And a more recent theorem
of Schanuel [Scha] from 1979 (usually stated for projective space) implies
that its cardinality #K(H) is asymptotic as H →∞ to SKH2d, where SK
is independent of H. In fact

(1.2) SK = hKRK{2rK (2π)sK/
√
|∆K |}2 · 2rK+sK−1/{wKζK(2)}

involves several standard field constants; namely, the class number hK , the
regulator RK , the discriminant ∆K , the number wK of roots of unity in K,
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and the Dedekind zeta-function ζK(s), as well as the number rK of real
embeddings of K and the number sK of pairs of complex conjugate embed-
dings.

Schanuel gave an error term bounded by CKH
2d−1 logH (where the

logarithm can be omitted if d ≥ 2), but no published estimates for CK
appeared until 1995. They apply only to d = 2 (the case d = 1 being easy),
and are due to Schmidt [Schm3, Theorem 2, p. 345 for n = 1].

It was Evertse in 1984 who first proved the general existence of simple
explicit upper bounds for #K(H) and any H ≥ 1. His Lemma 1 (p. 570) in
[E] implies the bound 5 · 2dH3d + 1. In 1991 his argument was modified by
Schmidt [Schm1] to get the correct exponent 2d of H (see Lemma 8B, p. 29,
which however applies to a slightly different height). Shortly afterwards in
1993 Schmidt gave the upper bound 25d+22H2d; see the Theorem (p. 170)
of [Schm2] (in particular equation (1.4) for his d = n = 1 and X = Hd). In
fact his equation (4.3) on p. 176 (with s = 1, θ = 1) gives the slightly better
inequality

(1.3) #K(H) ≤ 2d+5H2d

for any H ≥ 1.
All these uniform estimates provide valuable alternatives to the asymp-

totic formulae, because they are independent of the complicated field struc-
ture of K; for example Evertse used them in [E] to prove his celebrated
uniform bounds for the number of solutions of S-unit equations over K.

But for small H they are not too accurate in view of the exponential
dependence on d. Thus if H = 1 is as small as possible then, by Kronecker’s
Theorem [K], #K(H) − 1 is just the number wK of roots of unity in K.
This satisfies φ(wK) ≤ d for Euler’s totient function φ. Now φ(x)/

√
x→∞

as x→∞, for example, and so wK is certainly of order at most d2.
And it was stated without proof by the second author in 1989 that there

is a positive constant C such that for the small value H = exp(1/Cd) one
has

(1.4) #K(H) ≤ Cd log d

provided d ≥ 2. See [Mas, p. 263].
A proof of (1.4), and indeed much more, was recently given by the first

author in 2001 in his Basel Ph.D. thesis [Lo]. In his Theorem 1 (p. 9) he
proved for any H ≥ 1 that

(1.5) #K(H) ≤ 37(d log d)H2d

provided d ≥ 2. This improves (1.3) and implies (1.4) with say C = 39.
For H = 1 it yields the upper bound wK < 37d log d. As remarked in

[Lo, p. 4], this compares quite well with the estimate φ(wK) ≤ d mentioned
above. For it is known (see for example [HW, Theorem 328, pp. 267, 353,
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354]) that φ(x) is asymptotically as small as e−γx/log log x when x = 2 · 3 ·
5 . . . is a product of consecutive primes, with Euler’s constant γ. So we get an
upper bound asymptotically eγd(log log d). Furthermore if K is cyclotomic
then φ(wK) = d, and we can take wK as such a product of primes, so this
asymptotic bound is best possible. It follows that (1.5) would be false with
O(d log d) replaced by o(d log log d).

Loher’s Theorem 1 also contains the estimate

(1.6) #K(H) ≤ 13(d log d)H2d

if K has a real embedding (rK ≥ 1). And if K has a prime ideal of norm 2, he
proved #K(H) ≤ 16(d log d)H2d; coincidentally one might expect SK also
to be slightly smaller in this case, as now ζK(2) > 5/4 in (1.2) is bounded
away from 1.

Indeed an amusing consequence of (1.5) is the inequality

(1.7) SK ≤ 37d log d

for Schanuel’s constant when d ≥ 2. It does not seem easy to prove this
directly from the definition; indeed the term 2rK+sK alone in (1.2) exceeds
2d/2.

As remarked in [Lo, p. 10] these asymptotic considerations show that we
cannot hope for similar uniform lower bounds for #K(H). In fact there is no
positive constant C = C(d) such that #K(H) ≥ C−1H2d for all H ≥ 1. For
this would imply SK ≥ C−1. But on the other hand ζK(2) > 1, and by the
Siegel–Brauer Theorem (see for example [La1, Corollary, p. 328]) we have
hKRK ≤ |∆K |3/4 if |∆K | is large enough. It follows that SK < C1|∆K |−1/4

for some C1 = C1(d), leading to a contradiction if further |∆K | ≥ (CC1)4.
In fact the results of Evertse [E] and Schmidt [Schm1] apply to a slightly

more general situation. It is well known that the height H(α) extends to all
α in the algebraic closure Q. These authors take an arbitrary non-zero θ in
Q and obtain similar uniform upper bounds, independent even of θ, for the
number of α in K with H(θα) ≤ H. For θ = 1 (or indeed for any θ in K)
this number is none other than #K(H).

Our first main result is a similar generalization of (1.5).

Theorem 1. Let θ 6= 0 be in Q, let K be a number field of degree d, and
let H ≥ 1 be real. If d ≥ 2 there are at most 68(d log d)H2d elements α in K
with H(θα) ≤ H; further if θ is in K this can be improved to 31(d log d)H2d.
If d = 1 the expression 68(d log d) can be replaced by 17.

It would be interesting to know if there are asymptotic formulae like
Schanuel’s for the cardinalities here, at least for fixed θ not in K. At any rate
the known formula for θ = 1 leads to the small improvement SK ≤ 31d log d
of (1.7). With a bit more effort we can prove
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Theorem 2. For Schanuel’s constant we have

SK ≤ 21d log d

provided d ≥ 2.

We can also deduce some reasonable lower bounds for heights; for exam-
ple in [Lo, Corollary 1, p. 23] it is shown that the logarithmic height

h(α) = logH(α)

satisfies h(α) ≥ (1/37)d−2(log d)−1 if d ≥ 2 and α 6= 0 in K is not a root of
unity. The present paper allows a small numerical improvement; however if
d ≥ 4 this is inferior to Voutier’s [V] inequality

h(α) ≥ 1
4d
−1(log d/log log d)−3.

It was pointed out to us by Amoroso that results like Theorem 1 for
θ = 1 imply lower bounds for products h(α1) . . . h(αn) that improve some
work of Matveev. This work is designed for applications to linear forms
in logarithms of algebraic numbers, for which it is important to have no
worse than exponential dependence on the number n. Using Theorem 1 for
a certain θ 6= 1 (which actually appears at first sight to be transcendental!),
we can improve this dependence even further.

During a lecture at Boulder in March 2001, Yu explained that Matveev’s
application involves a certain lattice defined for α1, . . . , αn in K, together
with an upper bound for a related lattice index. Conversations with Yu led us
to define a more intrinsic lattice, and we prove an index bound that includes
Matveev’s index bound. It also implies the lower bound for h(α1) . . . h(αn)
just mentioned.

Thus for n ≥ 1 let α1, . . . , αn be non-zero elements of our field K. We
look at r1, . . . , rn, s ≥ 1 in the ring Z of all rational integers, and we define
MK(α1, . . . , αn) as the set of all (r1/s, . . . , rn/s) in Qn such that αr11 . . . αrnn
is a perfect sth power in K. Taking s = 1 we see that this set contains Zn.
Alternatively MK(α1, . . . , αn) is the set of all (ξ1, . . . , ξn) in Qn such that
some (and therefore every) determination of αξ11 . . . αξnn has the form µβ for
some root of unity µ in Q and some β in K.

Theorem 3. For n ≥ 1 let α1, . . . , αn be multiplicatively independent
non-zero elements of a number field K of degree d. Then the set M =
MK(α1, . . . , αn) is an additive subgroup of Qn and the index [M : Zn] is
finite. If d ≥ 2 we have

wK [M : Zn] ≤ 58(n!en/nn)dn+1(log d)h(α1) . . . h(αn),

and if d = 1 the expression 58dn+1(log d) may be replaced by 17.

The quantity n!en/nn is at most e
√
n and is asymptotic to

√
2πn, so

apart from dn+1 there is no exponential dependence on n at all.
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The consequence for heights is immediate.

Corollary 3.1. For n ≥ 1 let α1, . . . , αn be multiplicatively indepen-
dent non-zero elements of a number field K of degree d ≥ 2. Then

(1.8) h(α1) . . . h(αn) ≥ (wK/58)(n!en/nn)−1d−n−1(log d)−1.

A result similar to (1.8), without the wK and weaker essentially by an ex-
tra exponential factor 2n, occurs as Theorem 4 (p. 23) of [Lo]. It is precisely
the possibility θ 6= 1 in our Theorem 1 which eliminates the 2n.

Matveev’s work [Mat2], especially equation (6.5) on p. 418, implies a re-
sult like (1.8) with an extra (3.053 . . .)n, provided K has a real embedding.
If K has no real embedding then his substitute (6.4) appears to involve ad-
ditional complex logarithms of α1, . . . , αn; see also equation (5.1) on p. 1228
of his later paper [Mat3].

And in equation (6.3) of [Mat2] (p. 418) there is a lattice index [Λn : Λ′n],
which also appears to involve complex logarithms.

Regarding (1.8), we should mention that for d → ∞ and fixed n much
sharper lower bounds of the form

(1.9) h(α1) . . . h(αn) ≥ C(n)−1d−1(log d)−Λ(n)

were established by Amoroso and David; see Théorème 1.6 (p. 148) of [AD].
Here Λ(n) behaves like (n!)n, and C(n) > 0 is not yet explicitly calculated.

Amoroso has also remarked that conversely any lower bound like (1.9)
implies via Minkowski’s Second Theorem an index bound of the shape

(1.10) [M : Zn] ≤ C ′(n)d(log d)Λ(n)h(α1) . . . h(αn)

like Theorem 3 but without the factor wK . An extra wK in (1.10) would
have interesting consequences for lower bounds of heights over cyclotomic
fields. Otherwise (1.10) is much better than Theorem 3 for large d.

In this context one should also point out that an observation of Bilu [Bi]
leads to a lower bound

h(α1) . . . h(αn) ≥ c−n/2d−n/2(log d)−λn/2

with c = C(2) and λ = Λ(2) in (1.9). This is a nice compromise between
(1.8) and (1.9), and indeed it beats (1.8) as soon as d exceeds a certain
absolute constant.

Here is another consequence of Theorem 3, now for multiplicatively de-
pendent algebraic numbers. The idea for this came from Yu, and we are
grateful to him for permission to include the details in the present paper.

Corollary 3.2 (Yu). For n ≥ 1 let α0, . . . , αn be multiplicatively de-
pendent non-zero elements of a number field K of degree d ≥ 2. Suppose
that any n from α0, . . . , αn are multiplicatively independent. Then there are
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non-zero rational integers b0, . . . , bn with αb00 . . . αbnn = 1; further if d ≥ 2
one can take

|bi| ≤ 58(n!en/nn)dn+1(log d)h(α0) . . . h(αn)/h(αi) (0 ≤ i ≤ n),

and if d = 1 the expression 58dn+1(log d) may be replaced by 17.

Such results are also familiar in the theory of linear forms in logarithms.
Some particularly good recent versions occur in the work [Mat1] of Matveev
(for example Theorem 4, p. 423); compare also Bertrand’s paper [Be] (for ex-
ample p. 207). These supply bounds for all relations. See also the references
in [W] (p. 222).

The result above for a single relation is especially favourable as a function
of n. It would actually become false if there are more relations, that is, with-
out the extra independence hypothesis. For then we could take α0, . . . , αn
all equal to some α in K not a root of unity, and the inequalities in this case
would trivially imply 1 ≤ 58(n!en/nn)dn+1(log d)(h(α))n; but now making
n → ∞ would yield h(α) ≥ 1/d, easily seen to be an impossibly strong
version of the Lehmer inequality.

So much for counting K(H) and applications. Our arguments lead nat-
urally to analogous counting results in higher dimensions.

Thus for m ≥ 1 and α1, . . . , αm in K one defines

(1.11) H(α1, . . . , αm)d =
∏

v

max{1, |α1|v, . . . , |αm|v}

generalizing (1.1), and for H ≥ 1 correspondingly Km(H) as the set of all
(α1, . . . , αm) in Km with H(α1, . . . , αm) ≤ H. Again Northcott’s Theorem
implies that Km(H) is finite; and Schanuel’s Theorem leads to the asymp-
totic expression

(1.12) SK(m)H(m+1)d

for #Km(H) as H →∞, where now

(1.13) SK(m)

= hKRK{2rK (2π)sK/
√
|∆K |}m+1(m+1)rK+sK−1/{wKζK(m+ 1)}

generalizes (1.2). Again the shape of the error term is known, but the only
published estimates are for d = 2, also due to Schmidt [Schm3] (p. 345, just
after Theorem 2).

And in 1993 Schmidt [Schm2] was the first to obtain uniform upper
bounds in higher dimensions. His equation (1.4) of the Theorem (p. 170)
implies the estimate

(1.14) #Km(H) ≤ 2m
2+10m+11 · 2(m+4)d ·H(m+1)d

for any H ≥ 1.
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The first step towards removing the above exponential factor in d was
taken by the first author [Lo] in dimension m = 2. His Theorem 4 (p. 26)
states that

(1.15) #K2(H) ≤ 217(d log d)2H7d/2

provided d ≥ 2. As the exponent 7d/2 is not the exponent (m + 1)d = 3d
of (1.12), there are no immediate consequences for the associated Schanuel
constant SK(2). However (1.15) does improve the estimate {37(d log d)H2d}2
arising from (1.5) and the elementary inequality H(α1, α2) ≥ max{H(α1),
H(α2)}.

Here we obtain the correct exponent in (1.15) and generalize to arbi-
trary m.

Theorem 4. Let K be a number field of degree d ≥ 2, let m ≥ 1, and
let H ≥ 1 be real. Then there are at most (1088d log d)mH(m+1)d elements
(α1, . . . , αm) in Km with H(α1, . . . , αm) ≤ H.

As in (1.5), the roots of unity mean that the factor (d log d)m is fairly
near best possible; Km contains at least wmK elements with height 1.

The following is an immediate consequence after comparing with (1.12).

Corollary 4.1. For Schanuel’s constant we have

SK(m) ≤ (1088d log d)m

provided d ≥ 2.

Another curious consequence is the following. If ∆ is the discriminant
of a number field of degree d ≥ 2 with r real embeddings and s pairs of
complex conjugate embeddings then

(1.16) |∆| ≥ 4r(2π)2s/(1088d log d)2.

This comes from making m → ∞ in the above corollary and noting that
ζK(m+ 1)→ 1 in (1.13). It may be compared with the classical Minkowski
bound (dd/d!)2(π/4)2s, which behaves asymptotically like (e2)r(πe2/4)2s.
Although our 4 is inferior to e2 = 7.389 . . . , our 2π = 6.283 . . . is su-
perior to πe2/4 = 5.803 . . . So (1.15) is sometimes better, for example if
r < (.1146 . . .)d and d→∞.

This consequence (1.16) is actually no more than curious, because the
Minkowski bound has been sharpened by several authors, including Blich-
feldt [Bl], Rogers [Ro], Mulholland [Mu], and most recently Odlyzko [O];
the last-named with an asymptotic lower bound of 60r222s. And even Blich-
feldt’s result (from 1939) is asymptotically much better than (1.16).

We close this introduction with some remarks about the proofs of our
results. The main idea behind (1.3) is the following. If #K(H) is very large
the Box Principle gives two different α1 and α2 in K(H) which are very
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close with respect to some embedding of K. Then the Product Formula on
α1 − α2 yields a contradiction. The 2d in (1.3) arises specifically from the
coefficient 2 in the inequality

(1.17) |z1 − z2| ≤ 2 max{1, |z1|}max{1, |z2|}
for the other conjugates z1, z2 of α1, α2. The first author’s main idea in
[Lo] was to find not just two but N different numbers α1, . . . , αN which are
close. The corresponding quantity

∏
1≤i<j≤N |zi−zj | can then be estimated

using Hadamard’s inequality on the Vandermonde determinant, leading to
a coefficient NN/2 instead of 2. This is a lot better than the coefficient
2N(N−1)/2 which would arise from applying (1.17) to each |zi−zj | separately.
In Section 2 we record such estimates as well as a suitable version of the
Box Principle.

Then in Section 3 we use these results to prove a basic technical counting
Proposition. In Section 4 we deduce Theorems 1 and 2.

In Section 5 we prove Theorem 3, and finally in Section 6 we deduce
Theorem 4 from the Proposition using essentially the same ingenious induc-
tive argument of Schmidt in [Schm2]. This replaces the original argument in
Chapter 2 of [Lo], which proves (1.15) by means of a generalization of the
Vandermonde determinant associated with Laurent’s method in transcen-
dence theory and the Bombieri–Pila method for counting points on curves.

After most of this paper was completed we realized that our underly-
ing proof strategy is not really all that different from that introduced by
Matveev in [Mat2]. Thus our Proposition in Section 3 plays a role similar to
that of his Lemma 7.2 (p. 419), except that we build in the Box Principle
while he applies it separately on p. 421. Both proofs are based on the Van-
dermonde determinant. We estimate it directly using our Lemmas 1 and 2
of Section 2, while he uses the Maximum Modulus Principle on p. 420.

We wish to thank Francesco Amoroso for his many comments on [Lo]
and in particular about the applications to Matveev’s estimates. We are
also grateful to Yu Kunrui for conversations about these applications, and
especially for permission to include his Corollary 3.2.

2. Geometric preparations. We require two results on the “discrim-
inant function”

∆(t1, . . . , tN ) =
∏

1≤i<j≤N
(ti − tj)

for an integer N ≥ 2. This function also plays an important role in [Ro] and
[Mu] (but not [O]). Our results can be found in [Lo], but for the convenience
of the reader we reproduce everything here.
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Lemma 1. For any real r > 0 and any complex t1, . . . , tN in any disc of
radius r we have

|∆(t1, . . . , tN )| ≤ NN/2rN(N−1)/2.

Proof. This is Lemma 1 (p. 11) of [Lo]. By translation we may assume
that the centre of the disc is 0; and by replacing each ti by ti/r using homo-
geneity we may further assume that r = 1. Now the result is an immediate
consequence of the Hadamard inequality for the Vandermonde determinant
for (−1)N(N−1)/2∆(t1, . . . , tN ), in which the ith row (1, ti, . . . , tN−1

i ) has
squared length

1 + |ti|2 + . . .+ |tN−1
i |2 ≤ N (1 ≤ i ≤ N).

The theory of the transfinite diameter (see for example [Ra]) shows
that Lemma 1 is quite sharp. In fact an upper bound of the shape
exp{o(N2)}xN(N−1)/2 for any x < r independent of N would imply that
the transfinite diameter of a complex disc of radius r is at most x; but this
transfinite diameter is exactly r.

And even any bound N c(N)N/2rN(N−1)/2 with lim c(N) < 1 is also false,
because |∆(1, µ, . . . , µp−2)| = p(p−2)/2 if p = N + 1 is prime and µ = e2πi/p.

If t1, . . . , tN are real then of course the estimate of Lemma 1 remains
valid. But the transfinite diameter of a real interval of half-length r is r/2,
not r. So some improvement can be expected, as in the following result.

Lemma 2. For any real r > 0 and any real t1, . . . , tN in any interval of
half-length r we have

|∆(t1, . . . , tN )| ≤ UN (r/2)N(N−1)/2,

where

UN = {2N(N−1)(N − 1)N−1NN}1/2
N−2∏

k=1

{kk/(2k + 1)(2k+1)/2} (N ≥ 3)

and U2 = 4.

Proof. This is Lemma 2 (p. 12) of [Lo]. By translation and homogeneity
we may assume that the interval is [−1, 1], so that r = 1. In this case the
true maximum of |∆(t1, . . . , tN )| was determined by Schur [Schu, p. 378] as
2−N(N−1)/2UN . The result follows.

Thus again any upper bound exp{o(N 2)}xN(N−1)/2 for x < r/2 would
be false.

In fact UN behaves like NN/2 for large N . But to estimate it explicitly
we need the following remark.

Lemma 3. For every N ≥ 2 we have UN ≤ N2N .
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Proof. This is Lemma 3 (p. 12) of [Lo]. If N = 2 the inequality is
trivial; however U2 = 4 and so it is not good. If N ≥ 3 we observe that
kk/(2k+ 1)(2k+1)/2 ≤ 2−k in UN , so the product is at most 2−(N−1)(N−2)/2.
It follows that UN < N2N as desired.

In standard applications of the Box Principle say in two dimensions, there
is not much of a problem if the boxes are small squares in a large square.
But some inefficiency may arise if we use circles. A simple way of dealing
with this was given in Lemma 4 (p. 12) of [Lo], which we now reformulate
in terms of multiple packings.

Let f ≥ 1 and N ≥ 2 be integers. We say that a set of balls forms
an (N − 1)-fold packing of a set S in real Euclidean space Rf if they are
contained in S and no point of S lies in N of the interiors; that is, when the
balls are B1, . . . ,BM , then there is no subset I of {1, . . . ,M} with cardinality
N such that some point of S is in the interior of all Bi (i in I). When N = 2
this is just the definition of a packing.

Lemma 4. For any real r > 0, R ≥ r suppose that we are given M balls
of radius r that form an (N − 1)-fold packing of a ball of radius R in Rf .
Then

(2.1) M ≤ (N − 1)(R/r)f .

If further f = 2 and N = 2 then

(2.2) M ≤ max{1, (π/
√

12)(R/r)2}.
Proof. Actually (2.1) is equivalent to Lemma 4 of [Lo], but the packing

language makes the proof almost obvious: the sum of all the measures of the
small balls cannot exceed N − 1 times the measure of the large one.

And if f = N = 2 then we have a finite packing problem in the plane,
solved by Fejes Tóth [FT] (p. 90, see also p. 67): a convex set of area A ≥

√
12

contains at most A/
√

12 disjoint unit discs. If π(R/r)2 ≥
√

12 we apply this
to a suitable disc of radius R/r to deduce (2.2). And if π(R/r)2 <

√
12 then

(2.2) is trivial.

The constant π/
√

12 in (2.2) is the optimal asymptotic packing density
of equal discs in the plane, as first proved by Thue, and so it is optimal
in our finite non-asymptotic situation. Already in R3 the determination of
the asymptotic density is the Kepler Problem. And in R2 the asymptotic
density for N = 9 is not known, even for lattice packings. See for example
[GL, pp. 526–527].

3. The main estimate. Here we state and prove a Proposition from
which all our theorems can be deduced. Apart from the numerical constants,
it comes about by combining the considerations in the works [E], [Schm1]
and [Schm2] of Evertse and Schmidt.
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Let K be a number field of degree d and let v be a valuation on K
normalized as in Section 1. We will define a local height Hv on Qm as
follows. Any α = (α1, . . . , αm) in Qm lies in Lm for some number field L
containing K. Then

(3.1) Hv(α)[L:Q] =
∏

w

max{|α1|w, . . . , |αm|w},

where the product is taken over all valuations w of L, properly normalized
with respect to L, that lie over v. Just as for H this is independent of the
choice of L. The definition includes a definition of Hw for any w on L;
then H[L:Q]

w coincides with the corresponding factor on the right-hand side
of (3.1). Thus (3.1) could be rewritten as Hv =

∏
wHw over the same w.

It is also convenient to define an “anti-local” height Hv(α) by the prod-
uct (3.1) taken over all w not lying over v. Then

H(α) = Hv(α)Hv(α)

is not quite the height H(α1, . . . , αm) in (1.10), and indeed if m = 1 then
H(α) = 1 for all α = (α1) with α1 6= 0 by virtue of the Product Formula.
In general if α is non-zero in Qm then H(α) ≥ 1.

We also define, for N ≥ 2,

u1(N) = U
2/(N(N−1))
N , u2(N) = N1/(N−1)

in the notation of Lemma 2.

Proposition. Let v be an archimedean valuation of K and put f = 1 if
it corresponds to a real embedding and f = 2 otherwise. Let l ≥ 1, let φ in
Ql be non-zero, and let X ≥ 1, Y ≥ 1 be real. Then for any integer N ≥ 2
the number of α in K with

(3.2) Hv(φ, α) ≤ XHv(φ), Hv(φ, α) ≤ YHv(φ)

is at most

(3.3) (N − 1)
{

1 + 1
2fuf (N)Zd/f

}f

where
Z = u2(N)XY 2H(φ).

Further if f = 2 and N = 2 then the factor N −1 can be replaced by π/
√

12.

Proof. Let σ be the embedding of K corresponding to v, considered as
a map from K to Rf . Define

R = {XHv(φ)}d/f

and
r = 2{u2Y

2Hv(φ)}−d/f/(fuf ),
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with u2 = u2(N), uf = uf (N) for brevity. We will verify in a moment that
as α runs over all the different elements in K satisfying (3.2), the balls B(α)
with centre σ(α) and radius r form an (N − 1)-fold packing of the ball B
with centre 0 and radius r + R. Assuming this, we get from Lemma 4 the
estimate

M ≤ (N − 1)(1 +R/r)f

for their cardinality M . But this is just (3.3) of the Proposition.
And if f = N = 2 we get

M ≤ max{1, (π/
√

12)(1 +R/r)2}.
However, now

R/r = 2Zd/2 ≥ 21+d/2 ≥ 23/2

and so the 1 in the maximum can be omitted. This also leads to the bound
of the Proposition.

It remains to prove the above packing assertion. Let L be a number field
containing K and the components of φ. Throwing away these components
on the left-hand side of the first inequality in (3.2) yields Hv(α) ≤ XHv(φ).
As α is in K we have Hv(α) = |α|1/dv = |σ(α)|f/d. So |σ(α)| ≤ R and this
implies that the ball B(α) of radius r is contained in the ball B of radius
r +R.

Finally it will suffice to deduce a contradiction from the existence of
different α1, . . . , αN such that B(α1), . . . ,B(αN ) have a common point z in
their interiors. But this would imply that σ(α1), . . . , σ(αN ) lie in some ball
(with centre z) of radius strictly less than r. Our contradiction will come
from applying the Product Formula to the number ∆ = ∆(α1, . . . , αN ) in K.

Certainly the above together with Lemma 1 (if f = 2) or Lemma 2 (if
f = 1) implies

|∆|v < (fufr/2)fQ

with Q = N(N − 1)/2 for brevity. However we want to work over L and so
this should be written as

(3.4)
∏

w

|∆|w < (fufr/2)fQe/d

for e = [L : Q], where the product is over all w lying over v.
Next suppose that w is any non-archimedean valuation (thus certainly

not lying over v) of L. We use the fact that ∆ is a sum of terms δ =
±αi11 . . . αiNN with 0 ≤ ij ≤ N − 1 (1 ≤ j ≤ N) and i1 + . . . + iN = Q. For
each of these, and any real λ > 0, we have

|δ|w = λQ(|α1|w/λ)i1 . . . (|αN |w/λ)iN ,
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which is at most

λQ max{1, |α1|w/λ}N−1 . . .max{1, |αN |w/λ}N−1

= λ−Q max{λ, |α1|w}N−1 . . .max{λ, |αN |w}N−1.

Choosing λ = Hw(φ)e and noting that

(3.5) max{Hw(φ)e, |αj |w} = Hw(φ, αj)e (1 ≤ j ≤ N),

we end up with upper bounds for each |δ|w that lead to the same upper
bound
(3.6) |∆|w ≤ Hw(φ)−eQ · Hw(φ, α1)e(N−1) . . .Hw(φ, αN )e(N−1)

for the sum ∆ of the δ.
Finally suppose that w is any archimedean valuation of L. The same

argument leads to extra powers of N ! but we prefer to use Hadamard’s
inequality. If w corresponds to an embedding τ of L then again for any real
λ > 0 we have

|τ(∆)| = |∆(τ(α1), . . . , τ(αN ))| = λQ|∆(τ(α1)/λ, . . . , τ(αN )/λ)|,
which is at most

λQNN/2 max{1, |τ(α1)|/λ}N−1 . . .max{1, |τ(αN )|/λ}N−1

= λ−QNN/2 max{λ, |τ(α1)|}N−1 . . .max{λ, |τ(αN )|}N−1.

Choosing now λ = Hw(φ)e/f(τ) for the local degree f(τ) of τ and using
again (3.5), we end up with

(3.7) |∆|w≤Hw(φ)−eQ·Nf(τ)N/2·Hw(φ, α1)e(N−1) . . .Hw(φ, αN )e(N−1).

We now take the product of (3.4) together with (3.6) and (3.7) for w
not lying over v. The product of the Hw terms gives just Hv, for which the
second inequality in (3.2) is available. Also

∑
f(τ) ≤ e, and N eN/2 = ueQ2 .

We find for the product over all w that
∏

w

|∆|w < {(fufr/2)f/d · u2Y
2Hv(φ)}eQ.

From the definition of r the right-hand side is 1, and as ∆ 6=0 this contradicts
the Product Formula, according to which the left-hand side is 1. The proof
of the Proposition is thereby complete.

4. Proofs of Theorems 1 and 2. We start with some numerical esti-
mates which will be useful also in later sections. For an integer N ≥ 2 define
χ(N) = N − 1 (N ≥ 3) and χ(2) = π/

√
12. For an integer d ≥ 2 set

A = A(N, d) = χ(N)/(d log d),

B = B(N, d) = 2χ(N)u2(N)1+d/2/(d log d),

C = C(N, d) = χ(N)u2(N)2+d/(d log d).
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We will also need the linear combinations

B′ = B′(N, d) = A+ 2B/(
√

2− 1),

C ′ = C ′(N, d) = B′ + 4C,

C ′′ = C ′′(N, d) = 2A+ 2B + 2C,

C ′′′ = C ′′′(N, d) = B′/
√
e+ 4C.

None of these are constants, but we will see that they can be treated as
such.

Lemma 5. For each d ≥ 2 there exists N = N(d) such that

(a) C ≤ C(2, 2) = (π/
√

12)(8/log 2) = 10.46 . . . ,
(b) B′ ≤ B′(9, 4) = 33.20 . . . ,
(c) C ′ ≤ C ′(2, 2) = 67.79 . . . ,
(d) C ′′ ≤ C ′′(12, 5) = 28.07 . . . (d 6= 2, 4),
(e) C ′′′ ≤ C ′′′(2, 2) = 57.59 . . .

Proof. We choose N = N(d) so as to minimize C(N, d), at least approx-
imately. If d = 2, 3, 4, 5, 6, 7 the inequalities can be checked directly with the
values N = 2, 2, 9, 12, 15, 19 respectively.

For d≥ 8 we take N = 1 + [d log d]≥ 17 and note that χ(N) = N − 1
≤ d log d in A,B,C. Also the function F (x) = x1/x decreases as x ≥ e
increases. So

u2(N) = F (N)N/(N−1) ≤ F (d log d)ν

for ν = 17/16. Substituting this into V = u2(N)2+d we get

V ≤ (d log d)ν/log d · F (d log d)2ν ≤ c(d log d)ν/log d

for c = F (8 log 8)2ν . Finally F (x) increases as x increases from 1 to e, so
log d is

exp{(log d)(logF (log d))} ≤ exp{(log d)(logF (e))} = d1/e,

leading to

(4.1) V ≤ ceν(1+1/e) ≤ 6.13.

Now A ≤ 1, B ≤ 2
√
V , C ≤ V and the estimates (a)–(e) follow.

We also need

C̃ = C̃(N, d) = (N − 1){1 + 2u1(N)u2(N)d}/(d log d),

C̃ ′ = C̃ ′(N, d) = (N − 1)
{

1 + 1
2u1(N)u2(N)d

}
/(d log d).

Lemma 6. For each d ≥ 2 there exists N = Ñ(d) such that

C̃ ≤ C̃(2, 2) = 33/(2 log 2) = 23.80 . . . ,

C̃ ′ ≤ C̃ ′(2, 2) = 9/(2 log 2) = 6.49 . . .
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Proof. For 2 ≤ d ≤ 7 these come from taking N = 1 + [d log d] and a
direct calculation. If d ≥ 8 we use Lemma 3 to see that u1(N) ≤ u2(N)4, so
again, with N = 1 + [d log d],

C̃ ≤ 1 + 2u2(N)4+d = 1 + 2V (4+d)/(2+d).

Using (4.1) and bounding the exponent by 6/5 we find C̃ < 18.7. Similarly
for C̃ ′ ≤ 1 + 1

2V
6/5 < 5.5. This completes the proof.

With these numerical preparations out of the way, we turn to the proofs
proper. Let θ, K, d, H be as in Theorem 1. Fix any archimedean valuation v
of K, and let f be as in the Proposition. Now

H(θα) = H(1, θα) = Hv(1, θα)Hv(1, θα) ≤ H,
and so there is an integer i ≥ 1 with

(4.2) 2(i−1)/d ≤ Hv(1, θα) < 2i/d.

Thus Hv(1, θα) ≤ 2−(i−1)/dH. With φ = 1/θ these inequalities imply

Hv(φ, α) < XHv(φ), Hv(φ, α) ≤ YHv(φ),

where
X = 2i/d > 1, Y = 2−(i−1)/dH ≥ 1.

As H(φ) = 1 the Proposition shows that for this value of i the number of α
is at most

(4.3) (N − 1)
{

1 + 1
2fufu

d/f
2 · 2−(i−2)/fH2d/f

}f

where uf = uf (N), u2 = u2(N) for an arbitrary integer N ≥ 2. Further if
f = N = 2 then N − 1 can be replaced with π/

√
12.

It turns out that the worst numerical constants arise from the case f = 2
(and N = 2, which is why we went to the trouble with [FT]). So we treat
this case f = 2 first. Then d ≥ 2, and the number of α for fixed i is at most

(4.4) (d log d){A+ 2−(i−2)/2BHd + 2−(i−2)CH2d}
with A, B, C as above. So summing over all integers i with

(4.5) 1 ≤ i ≤ 1 + [(logHd)/(log 2)] ≤ Hd

we find the bound

(4.6) (d log d)(B′Hd + 4CH2d)

for the total number of α in K with H(θα) ≤ H, at least if f = 2 (so d ≥ 2).
For the purposes of Theorem 1 it suffices to estimate this by

(4.7) C ′(d log d)H2d ≤ C ′(2, 2)(d log d)H2d

using Lemma 5(c).
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We said that the case f = 1 gives better results. If d ≥ 2 then (4.3) is
(N −1)

{
1 + 1

2u1u
d
2 ·2−(i−2)H2d

}
. Now summing over i as in (4.5) and using

Lemma 6 gives the estimate

(4.8) C̃(2, 2)(d log d)H2d

for the number of α in K with H(θα) ≤ H, at least if f = 1 and d ≥ 2. This
is well within the bound of Theorem 1.

The missing case d = 1 (so f = 1) comes directly from choosing N = 2,
so that (4.3) becomes 1 + 4 · 2−(i−2)H2, and summing over i to yield 17H2.

Now all the assertions for arbitrary θ in Theorem 1 follow from this and
(4.7), (4.8).

If however θ lies in K we can assume θ = 1, and now the “Inverse Trick”
of [Lo, p. 14] can be used to avoid the summation over i.

Namely the α in K with H(α) ≤ H include 0 and ±1, and apart from
these they come in pairs (α, α−1) with α 6= α−1, thanks to H(α) = H(α−1).
Suppose there are M − 3 ≥ 0 such pairs; then the total number #K(H) =
2M − 3. Fixing v as above, and noting that at least one of |α|v, |α−1|v is no
greater than 1, we obtain M different β in K with |β|v ≤ 1 and H(β) ≤ H.
We can therefore apply the Proposition with φ = 1, X = 1, Y = H. It shows
that

(4.9) M ≤ (N − 1)
{

1 + 1
2fufu

d/f
2 ·H2d/f

}f

and if f = N = 2 the N − 1 can be replaced by π/
√

12. If f = 2 the same
calculations as before give

(4.10) M ≤ (d log d)(A+BHd + CH2d).

If d 6= 2, 4 it is enough to use #K(H) ≤ 2M and appeal to Lemma 5(d). If
d = 2, 4 we take N = 2 and shamelessly exploit the extra “3” in #K(H) =
2M − 3. We get 2M − 3 ≤ a+ bx+ cx2 for

a = 2A(d log d)− 3, b = 2B(d log d), c = 2C(d log d)

and x = Hd ≥ 1. But the elementary inequality a+ bx ≤ (a+ b)x2 is easily
verified for all x ≥ 1 provided a+ b ≥ 0 and 2a+ b ≥ 0; and this is the case
here. It follows that

#K(H) ≤ (a+ b+ c)H2d < 31(d log d)H2d

for d = 2, 4.
This completes the proof of Theorem 1 for θ in K and f = 2.
If f = 1 then (4.9) gives

M ≤ (N − 1)
(
1 + 1

2u1u
d
2 ·H2d

)
≤ C̃ ′(d log d)H2d

and it is enough to use #K(H) ≤ 2M and Lemma 6 to get #K(H) ≤
13(d log d)H2d. This completes the proof of Theorem 1 and by the way
establishes Loher’s improved estimate (1.6) if K has a real embedding.
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Theorem 2 comes out quickly now. If f = 2 it suffices to use (4.10) with
H → ∞ and Lemma 5(a). And if f = 1 we already got the coefficient 13
just above.

In preparation for the following section we would like to draw attention
to the estimate (4.6), which for any N ≥ 2 is an upper bound for the number
of α in K with H(θα) ≤ H, valid for any θ in Q provided K has a non-real
embedding (so d ≥ 2). If K has a real embedding and d ≥ 2 we can use
(4.8) instead. Finally if d = 1 the bound 17H2 is valid.

5. Proof of Theorem 3. Let n ≥ 1 and let α1, . . . , αn be non-zero
multiplicatively independent elements of K. The setM =MK(α1, . . . , αn)
was defined as the set of all (ξ1, . . . , ξn) in Qn such that some (and therefore
every) determination of αξ11 . . . αξnn has the form µβ for some root of unity
µ in Q and some β in K. It is easy to see that this is an additive subgroup
containing Zn. The finiteness of the index [M : Zn] comes implicitly out
of our proof of Theorem 3, but it could also be verified directly by noting
that an infinite index would imply non-discreteness and so arbitrarily small
non-zero (ξ1, . . . , ξn) in M; but then any determination of αξ11 . . . αξnn = µβ
would have arbitrarily small logarithmic height h(µβ) = h(β); on the other
hand β in K is not a root of unity and so h(β) is bounded away from 0.

In other words, M is a lattice in Rn.
For the actual upper bound we use the Geometry of Numbers. Write for

brevity hi = h(αi) (1 ≤ i ≤ n) and for H ≥ 1 consider the subset S of Rn
defined by

(5.1) h1|x1|+ . . .+ hn|xn| < logH.

Its measure is

(5.2) V = (2n/n!)(logH)n/(h1 . . . hn).

The latticeM has determinant

(5.3) D = d(M) = d(Zn)/[M : Zn] = 1/[M : Zn].

We apply Blichfeldt’s Theorem (see [C, Theorem I, p. 69]) with the greatest
integer M < V/D. We obtain

(5.4) M + 1 ≥ V/D
different points P0, . . . , PM of S such that the differences Pi−P0 (1 ≤ i ≤M)
are in M. Since S is open, by moving P0 slightly we can assume that it is
also in Qn.

Thus if P0 = (ξ10, . . . , ξn0) then all determinations of the number
αξ10

1 . . . αξn0
n are in Q; choose any such determination θ0. Similarly if Pi =

(ξ1i, . . . , ξni) choose any determination θi of αξ1i1 . . . αξnin in Q (1 ≤ i ≤M).
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As Pi − P0 is in M, we deduce that θi/θ0 = µiβi for some root of unity µi
in Q and some βi in K; this trivially holds for i = 0 as well. And

h(θ0βi) = h(θi) < logH

by (5.1), since Pi is in S (0 ≤ i ≤M).
So β0, . . . , βM lie in K with H(θ0βi) < H (0 ≤ i ≤M). The multiplica-

tive independence of α1, . . . , αn implies that β0, . . . , βM are different and
even different modulo roots of unity in K. From (4.6) we therefore deduce
an upper bound for (M+1)wK which in view of (5.4), (5.2) and (5.3) implies

(5.5) wK [M : Zn](2n/n!)(logH)n/(h1 . . . hn)

≤ (d log d)(B′Hd + 4CH2d)

with B′ = B′(N, d) and C = C(N, d) for any N ≥ 2, provided K has a
non-real embedding (so d ≥ 2). In this case we choose H = en/2d to get

(5.6) wK [M : Zn] ≤ Cn(n!en/nn)dn+1(log d)h1 . . . hn.

Here
Cn = B′e−n/2 + 4C ≤ B′/√e+ 4C = C ′′′

as in Section 4. So we can choose N by Lemma 5(e) to make Cn < 58.
If K has a real embedding (and still d ≥ 2) we use (4.8) on the right-hand

side of (5.5) to get (5.6) with Cn = C̃(2, 2) < 24. This proves Theorem 3
whenever d ≥ 2; and the case d = 1 follows equally easily using the corre-
sponding part of Theorem 1.

We already proved Corollary 3.1. For the proof of Corollary 3.2 consider
the set of all (r0, . . . , rn) in Zn+1 for which there exists a root of unity µ in
K with

(5.7) αr00 . . . αrnn = µ.

This set is an additive group, and our hypotheses imply that its rank is 1.
Thus there is a single generator, which we could also denote by (r0, . . . , rn).
Further r0, . . . , rn are all non-zero and also coprime.

Now the vector ξ = (r1/r0, . . . , rn/r0) lies in M = MK(α1, . . . , αn).
Thus [M : Zn]ξ lies in Zn. It follows that |r0|≤ [M : Zn]. And αb00 . . . αbnn = 1
with bi = riwK (0 ≤ i ≤ n), and this yields the required upper bound for
|b0| using Theorem 3. The bounds for the other |bi| follow on grounds of
symmetry.

6. Proof of Theorem 4. This proceeds via two lemmas. Again we use
the height H of Section 3. But from now on we work only over K, with
d = [K : Q] ≥ 2.
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Lemma 7. Let l ≥ 1 and let φ in Kl be non-zero. Then for any real
T ≥ 1 the number of α in K with

(6.1) H(φ, α) ≤ TH(φ)

is at most 68(d log d)T 2dH(φ)d.

Proof. Taking l = 1 and φ = (1/θ) we recover the first part of Theo-
rem 1, at least for θ in K. The present proof runs on the same lines.

Fix an archimedean valuation v on K. If α satisfies (6.1) there is an
integer i ≥ 1 with

2(i−1)/d ≤ Hv(φ, α)/Hv(φ) < 2i/d.

So
Hv(φ, α)/Hv(φ) ≤ 2−(i−1)/dT.

We are therefore back in the situation of the Proposition, with X = 2i/d > 1
and Y = 2−(i−1)/dT ≥ 1. So for this value of i the number of α is at most

(N − 1)
{

1 + 1
2fufu

d/f
2 · 2−(i−2)/f · T 2d/f · Hd/f

}f

for any N ≥ 2 and H = H(φ). This coincides with the expression (4.3) if
H = TH1/2, and so if f = 2 the arguments following (4.3) give the estimate

68(d log d)H2d = 68(d log d)T 2dHd

just as in (4.7). And if f = 1 we get the better estimate (4.8). This completes
the proof.

After all the counting in K, we can now start to count points of Km.

Lemma 8. Let l ≥ 1, m ≥ 1, and let φ in K l be non-zero. Then for any
real H ≥ 1 the number of α = (α1, . . . , αm) in Km with

(6.2) H(φ,α) ≤ HH(φ)

is at most
(1088d log d)mH(m+1)dH(φ)md.

Proof. We use induction on m, just as in the proof of the “Main Lemma”
of [Schm2, p. 175]. The case m = 1 is slightly weaker than Lemma 7. So it
suffices to prove the present lemma for m ≥ 2 assuming that the counting
works as stated in Km−1.

Again fix an archimedean valuation v. Fix also E = E(m,d) > 1. If
α = (α1, . . . , αm) satisfies (6.2), write α′ = (α1, . . . , αm−1). Then there is
an integer i ≥ 1 with

(6.3) Ei−1 ≤ H(φ,α′)/H(φ) < Ei

and furthermore

(6.4) Ei−1 ≤ H.
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Now

(6.5) H(φ,α)/H(φ,α′) ≤ E−(i−1)H.

By the induction hypothesis the number of α′ satisfying (6.3) for this i is
at most

(6.6) (1088d log d)m−1 ·Eimd · H(φ)(m−1)d.

For each such α′ we can apply Lemma 7 to (6.5) to count the number of
αm, and we find the upper bound

(6.7) 68(d log d){E−(i−1)H}2dH(φ,α′)d.

Substituting the right-hand inequality of (6.3) into (6.7) and multiplying by
(6.6), we find for the number of α = (α′, αm) with fixed i the upper bound

(1/16)(1088d log d)m ·Ei(m−1)d+2d ·H2d · H(φ)md.

Choose now E = 21/((m−1)d) and sum over all i from i = 1 to the biggest
value, say I, satisfying (6.4). Since E2d = 22/(m−1) ≤ 4 and

I∑

i=1

Ei(m−1)d = 2I+1 − 1 < 4 · 2I−1 ≤ 4H(m−1)d

the conclusion of the present lemma drops out.

The proof of Theorem 4 is immediate on taking l = 1 and φ = (1).

References

[AD] F. Amoroso et S. David, Le problème de Lehmer en dimension supérieure,
J. Reine Angew. Math. 513 (1999), 145–179.

[Be] D. Bertrand, Duality on tori and multiplicative dependence relations, J. Austral.
Math. Soc. Ser. A 62 (1997), 198–216.

[Bi] Y. Bilu, Math. Rev. 2000g:11058.
[Bl] H. Blichfeldt, Note on the minimum value of the discriminant of an algebraic

field , Monatsh. Math. und Phys. 48 (1939), 531–533.
[C] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren

Math. Wiss. 99, Springer, 1959.
[E] J.-H. Evertse, On equations in S-units and the Thue–Mahler equation, Invent.

Math. 75 (1984), 561–584.
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