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Non-trivial solutions to a linear equation in integers

by

Boris Bukh (Princeton, NJ)

Introduction. The problems of estimating the size of a largest subset
of [1, N ] not containing a solution to a given linear equation arise very
frequently in combinatorial number theory. For example, the sets with no
non-trivial solutions to x1 + x2 − 2x3 = 0 and x1 + x2 = x3 + x4 are sets
with no arithmetic progressions of length three, and Sidon sets respectively.
For several of the more prominent equations, like the two equations above,
there are large bodies of results that deal with the structure and size of
solution-free sets. The first systematic study of general linear equations was
undertaken by Ruzsa [Ruz93, Ruz95]. To ascribe a precise meaning to the
concept of a “set with no non-trivial solution” he introduced two definitions
of a trivial solution. One of them is that a solution is non-trivial if all the
variables are assigned different values.

For a fixed linear equation denote by R(N) the size of a largest set of
integers in [1, N ] with no solution to the equation in distinct integers. Ruzsa
[Ruz93] showed that if k ≥ 2, then for the symmetric equation

(1) a1x1 + · · · + akxk = a1xk+1 + · · · + akx2k

one has R(N) = O(N1/2). For k = 2, the estimate is tight for the Sidon
equation. Ruzsa gave the example of the equation

(2) x1 + d(x2 + · · · + xk) = xk+1 + d(xk+2 + · · · + x2k)

and the set A of integers in [1, N ] whose development in base d2k consists
only of digits 0, . . . , d− 1. Since addition of elements of A in (2) involves no
carries in base d2k, for every solution to (2) with elements of A one neces-
sarily has x1 and xk+1 equal digit by digit. Thus x1 = xk+1, implying that
A contains no solution (2) in distinct integers. Since |A| = Ω(N1/2−c/log d),
this example shows that there is no ε > 0 such that the estimate R(N) =
O(N1/2−ε) holds for all equations of the form (1). However, Ruzsa asked
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whether for k ≥ 3 there is an ε > 0 depending on the coefficients of (1) such

that R(N) = O(N1/2−ε). We answer this in the affirmative.

Theorem 1. Let ‖a‖1 =
∑k

i=1|ai|. If k ≥ 3 and ai 6= 0 for 1 ≤ i ≤ k,
then

R(N) = O(N1/2−1/c(k)‖a‖1).

To explain the idea behind the proof of Theorem 1 we examine the proof
that R(N) = O(N1/2). Let ak+i = −ai. Then equation (1) can be written
as

∑
aixi = 0. Assume that A ⊂ [1, N ] has M elements and contains only

trivial solutions to (1). Let r(m) denote the number of solutions to

a1x1 + · · · + akxk = m, xi ∈ A.

Then E =
∑

r(m)2 is the total number of solutions to (1) in A. Since there
are at most ‖a‖1N values of m for which r(m) > 0, by Cauchy–Schwarz it
follows that

(3) E =
∑

r(m)2 ≥
M2k

‖a‖1N
.

The next step is to bound the number of solutions with xi = xj from above.
Let 1 ≤ r ≤ 2k be any index other than i or j. Since

(4) xr = −
1

ar

( ∑

l 6=i,j,r

alxl + (ai + aj)xi

)
,

it follows that equation (1) uniquely determines xr in terms of the other x’s.
Thus at most one in every M assignments of variables results in a solution
to (1). Since there are

(
2k
2

)
choices of i and j,

(5) E ≤

(
2k

2

)
1

M
M2k−1.

The bound |A| = O(N1/2) follows by comparison with (3).
In order for this argument to be tight the linear form on the right side of

(4) should often take values in A. Heuristically it corresponds to the sumset∑
l 6=i,j,r xl · A + (xi + xj) · A being not much larger than A itself, where

t · A = {ta : a ∈ A} is the t-dilate of A. The Plünnecke–Ruzsa inequalities
tell us that if some sumset involving A is not much larger than A, then every
sumset involving only A is not much larger than A. In particular we expect∑

l≤k xl · A to be of size only M , as opposed to ∼ N which was assumed

in the derivation of the lower bound (3). Therefore, we expect that if (5) is
close to being tight, then (3) is not, and vice versa. The remainder of the
paper is a rigorous justification of the heuristic argument above.

Proof. This section is organized as follows. First we state the tools from
additive combinatorics that we need. Then we introduce the notation that
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is going to be used in the proof of Theorem 1. Finally, after a couple of
preliminary lemmas the Theorem 1 is proved.

Lemma 2 (Ruzsa’s triangle inequality, [TV06, Lemma 2.6]). For any

finite A, B, C ⊂ Z we have

|A − C| ≤
|A − B| |B − C|

|B|
.

Lemma 3 (Plünnecke’s inequality, [TV06, Corollary 6.26]). For any fi-

nite sets A, B ⊂ Z, if |A + B| ≤ K|A|, then |kB| ≤ Kk|A|.

We will also use the hypergraph version of the Balog–Szemerédi–Gowers
theorem due to Sudakov, Szemerédi and Vu [SSV05]. Let A1, . . . , Ak be sets
of integers. If H is a subset of A1 × · · · × Ak, then

∑
H Ai is the collection

of all sums a1 + · · · + ak where (a1, . . . , ak) ∈ H.

Lemma 4 ([SSV05, Theorem 4.3]). For any integer k ≥ 1 there are

positive-valued polynomials fk(x, y) and gk(x, y) such that the following

holds. Let n, C, K be positive numbers. If A1, . . . , Ak are sets of n posi-

tive integers, H ⊂ A1 ×· · ·×Ak with |H| ≥ nk/K and |
∑

H Ai| ≤ Cn, then

one can find subsets A′
i ⊂ Ai such that

|A′
i| ≥ n/fk(C, K) for all 1 ≤ i ≤ k, |A′

1 + · · · + A′
k| ≤ gk(C, K)n.

From the heuristic argument above it is clear that we will need to count
the number of solutions of various equations. It is therefore advantageous to
introduce appropriate notation. Let r(A1, . . . , Ak; m) denote the number of
solutions to

a1 + · · · + ak = m, ai ∈ Ai.

Then E(A1, . . . , Ak; B1, . . . , Bl) =
∑

m r(A1, . . . , Ak; m)r(B1, . . . , Bl; m)
counts the number of solutions to

a1 + · · · + ak = b1 + · · · + bl, ai ∈ Ai, bj ∈ Bj .

We write E(A1, . . . , Ak) to denote E(A1, . . . , Ak; A1, . . . , Ak).

Lemma 5. There is a positive-valued polynomial hk(x) such that if

A1, . . . , Ak are sets of integers with n elements each, and E(A1, . . . , Ak) ≥
cn2k−1, then there are subsets A′

i ⊂ Ai such that

|A′
i| ≥ hk(c)n for all 1 ≤ i ≤ k, |A′

1 + · · · + A′
k| ≤ n/hk(c).

Proof. For brevity write E = E(A1, . . . , Ak) and r(m) = r(A1, . . . , Ak; m).
Let S = {m : r(m) > cnk−1/2} and H = {(a1, . . . , ak) ∈ A1 × · · · × Ak :
a1 + · · · + ak ∈ S}. Note that

∑
H Ai = S and

|S| ≤
nk

cnk−1/2
=

2

c
n.
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Since r(m) ≤ nk−1 for every m, and
∑

m 6∈S r(m) = nk − |H|, it follows that

E =
∑

m∈S

r(m)2 +
∑

m 6∈S

r(m)2 ≤ |H|nk−1 + (nk − |H|)cnk−1/2.

Therefore |H| ≥ cnk/2, and we deduce from Lemma 4 the existence of
subsets A′

i with the desired properties.

Lemma 6. For every k ≥ 2 there is a positive-valued polynomial pk(x)
such that if t1, . . . , tk are any k positive integers, and A ⊂ Z is an n-element

set satisfying E(t1 ·A, . . . , tk ·A) ≥ cn2k−1, then for every l-tuple of positive

integers s1, . . . , sl we have E(s1 · A, . . . , sl · A) ≥ pk(c)
‖s‖1n2l−1.

Proof. Apply the lemma above with Ai = ti · A to obtain A′
i. Ruzsa’s

triangle inequality applied to −A′
1 and A′

2 + · · · + A′
k yields

|A′
1 − A′

1| ≤
|A′

1 + A′
2 + · · · + A′

k|
2

|A′
2 + · · · + A′

k|
≤

n

hk(c)3
.

Set Ã = (1/t1) · A
′
1. Then Ã is a subset of A satisfying |Ã| ≥ hk(c)n and

|Ã − Ã| ≤ n/hk(c)
3. Plünnecke’s inequality then implies that | ‖s‖1Ã| ≤

hk(c)
−3‖s‖1n. The inclusion s1 · Ã + · · · + sl · Ã ⊂ ‖s‖1Ã together with the

Cauchy–Schwarz inequality yields

E(s1 · A, . . . , sl · A) ≥ E(s1 · Ã, . . . , sl · Ã) ≥
|Ã|2l

|s1 · Ã + · · · + sl · Ã|

≥
hk(c)

2ln2l

| ‖s‖1Ã|
≥ hk(c)

3‖s‖1+2ln2l−1.

Since s1, . . . , sl are positive integers, ‖s‖1 ≥ l, and the lemma follows.

Proof of Theorem 1. Without loss of generality we may assume that
a1, . . . , ak are positive. Rewrite equation (1) as

(6) a1x1 + · · · + a2kx2k = 0,

where ak+i = −ai. Let A ⊂ [1, N ] with |A| = M contain only trivial solutions
to (6). The number of solutions to (6) with variables in A is E = E(a1 · A,
. . . , ak ·A). Let Ti,j be the number of solutions with xi = xj . By the pigeon-

hole principle for at least one pair i 6= j we have Ti,j ≥ E/
(2k

2

)
. Fix such a

pair.
Next we partition {1, . . . , 2k}\{i, j} arbitrarily into I1 = {l1,1, . . . , l1,k−1}

and I2 = {l2,1, . . . , l2,k−1} with k − 1 elements each. For convenience write

r1(m) = r(al1,1
· Al1,1

, . . . , al1,k−1
· Al1,k−1

; m)

and E1 =
∑

r1(m)2. Define r2 and E2 analogously with respect to I2. Then
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by Cauchy–Schwarz,

Ti,j =
∑

x∈A

∑

m

r1(m)r2(−(ai + aj)x − m) ≤
∑

x∈A

E
1/2
1 E

1/2
2 = ME

1/2
1 E

1/2
2 .

Either E1 or E2 is at least E/
(
2k
2

)
M . We can assume it is E1. Then by

Lemma 6 above we have

E ≥ pk−1

(
E1

M2k−3

)‖a‖1

M2k−1 ≥ pk−1

(
E(

2k
2

)
M M2k−3

)‖a‖1

M2k−1.

If deg pk−1 = d, then we obtain

E = O(M2k−2−1/(d‖a‖1−1)).

Since E ≥ M2k/‖a‖1N , the theorem follows.

Conclusion. Theorem 1 gives the estimate R(N) = O(N1/2−1/r) with
r = c(k)‖a‖1. Ruzsa’s example shows that no estimate better than r =
c(k) log‖a‖1 can be true.

After this paper was written, a Plünnecke-type estimate on sums of di-
lates of the form s1 ·A+ · · ·+sl ·A, which appears in the proof of Lemma 6,
was established in [Buk07]. Whereas Plünnecke’s inequality and the inclu-
sion s1 ·A+· · ·+sl ·A ⊂ ‖s‖1A yield the exponent of ‖s‖1, the new inequality
yields the exponent C log‖s‖1 for an absolute constant C. Plugging that into
the proof of Lemma 6, one finds that the estimate in Theorem 1 is valid with
r = c(k) log‖a‖1, which is sharp in view of Ruzsa’s example.

Acknowledgement. I thank Benjamin Sudakov for stimulating discus-
sions.
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