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1. Introduction. Let q be an odd prime, and let hq and h+
q be the

class numbers of Q(ζq) and Q(ζq + ζ−1
q ) respectively (ζq = e2πi/q). It is well

known that h+
q |hq. The famous Kummer conjecture states that

h−q = hq/h
+
q ∼ 2q

(
q

4π2

)(q−1)/4

(as q → ∞)

is equivalent to
∏

χ(−1)=−1

L(1, χ) ∼ 1 (as q → ∞),

where χ runs through Dirichlet characters modulo q. This conjecture has
not been proved yet, but there are several works on the upper bound of h−q ;
for example, by using elementary methods, Feng Keqin [1] proved that

h−q < 2q

(
q − 1

31.997158 . . .

)(q−1)/4

,

and in [2] it is mentioned that the following results have been proved:

2

3
<

∏

χ(−1)=−1

L(1, χ) <
3

2
(for 5 ≤ q ≤ 523),

e−12.93

Lq1/2(log q)4
<

∏

χ(−1)=−1

L(1, χ) < e15.49L(log q)5 (for any q)

with L = e4.66/log q. In [4], M. Ram Murty and Yiannis N. Petridis proved
the following weak Kummer conjecture: There exists a positive constant c
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such that for almost all primes q,

c−1 ≤
∏

χ(−1)=−1

L(1, χ) ≤ c.

In this paper, we shall prove the following

Theorem 1. For every sufficiently large prime q with q ≡ 1 (mod4),
∏

χ(−1)=−1

L(1, χ) ≥ e−1.4(log q)−4/3(log log q)−1

(
1+O

(
1

log log q

))
,(1)

∏

χ(−1)=−1

L(1, χ) ≤ e0.84(log q)7/6(log log q)

(
1 +O

(
1

log log q

))
,(2)

where χ runs through Dirichlet characters modulo q.

Using the same method, we can prove the following conclusions:

Theorem 2. Let q be any sufficiently large prime. Assume that there is

no exceptional zero for L(s, χ), where χ is any Dirichlet character modulo q.
Then we have the same estimates as in Theorem 1.

Theorem 3. Assuming the Generalized Riemann Hypothesis (GRH ), for

every sufficiently large prime q we have

∏

χ(−1)=−1

L(1, χ) ≥ e−2.1(log q)−4/3

(
1 +O

(
1

log q

))
,(3)

∏

χ(−1)=−1

L(1, χ) ≤ e1.53(log q)7/6

(
1 +O

(
1

log q

))
.(4)

Theorem 4. For any fixed ε > 0, there is a positive number Q, which

depends only on ε, such that if q is a prime greater than Q, we have

e−1.4q−ε(log q)−1/3 ≤
∏

χ(−1)=−1

L(1, χ) ≤ e0.84qε(log q)1/6.(5)

The following symbols will be used in the proof of these theorems. For
q ≥ 3, (l, q) = 1, 1 ≤ l < q, we write

π(x; q, l) =
∑

p≤x
p≡l (mod q)

1, θ(x; q, l) =
∑

p≤x
p≡l (mod q)

log p,

ψ(x; q, l) =
∑

n≤x
n≡l (mod q)

Λ(n), ψ(x;χ) =
∑

n≤x

Λ(n)χ(n),

ψ(x) =
∑

n≤x

Λ(n), x1 = qlog log q, x2 = eq,

where Λ(n) is the von Mangoldt function.
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2. Some lemmas

Lemma 1. For every prime q ≥ 3,
∑

χ(−1)=−1

∑

p>x2

χ(p)

p
≪ q2e−c1

√
q,(6)

where χ runs through Dirichlet characters modulo q, and c1 > 0 is a constant

independent of q.

Proof. For an arbitrary number y > x2, by using the identity

∑

χ(−1)=1

χ(n) =

{ 1
2(q − 1) if n ≡ ±1 (mod q),

0 otherwise,
(7)

we have
∑

χ(−1)=−1

∑

x2<p≤y

χ(p)

p
=

∑

x2<p≤y

1

p

∑

χ(−1)=−1

χ(p)

=
q − 1

2

( ∑

x2<p≤y
p≡1 (mod q)

1

p
−

∑

x2<p≤y
p≡−1 (mod q)

1

p

)

=
q − 1

2

y\
x2

1

u
d{π(u; q, 1) − π(u; q,−1)}.

The Siegel–Walfisz theorem yields

∑

χ(−1)=−1

∑

x2<p≤y

χ(p)

p
≪ qe−c1

√
log x2 + q

y\
x2

e−c1
√

log u du

u

≪ qe−c1
√

log x2 + qe−c1
√

log x2 log x2 ≪ q2e−c1
√

q.

Since y is arbitrary, we can easily get (6) by letting tend y to infinity in the
last formula.

Lemma 2 (see [5, §17.1]). Assume q ≥ 3 is any integer and s = σ + it.
Then there is at most one character χ modulo q such that the function

L(s, χ) has a zero in the region

σ ≥ 1 − c2
log(q(|t| + 2))

,(8)

where c2 is a positive constant. If such an exceptional function exists, the

corresponding character χ̃ must be a nonprincipal real character modulo q,
and L(s, χ̃) has only one zero β̃ (this zero must be a real zero) in the above

region.

Lemma 3 (see [5, Theorem 33.3.1]). If the exceptional zero β̃ in Lemma 2

exists, then there are positive constants c3, c4 such that β̃ is the only zero
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of
∏

χ mod q L(s, χ) in the region



σ ≥ 1 − c3

log(q(|t| + 2))
log

c4e

δ̃ log(q(|t| + 2))
,

δ̃ log(q(|t| + 2)) ≤ c4,

(9)

where δ̃ = 1 − β̃.

Lemma 4 (see [5, Theorem 33.2.8]). Assume q ≥ 3 is any integer and

χ is a Dirichlet character modulo q. Denote by N(α, T, χ) the number of

zeros of L(s, χ) in the region α ≤ σ ≤ 1, |t| ≤ T , and write N(α, T, q) =∑
χ mod q N(α, T, χ). Then for any T ≥ 2 and 1/2 ≤ α ≤ 1, we have

N(α, T, q) ≪ (qT )3(1−α).(10)

Lemma 5 (see [5, Theorem 18.1.5]). Assume x ≥ 2, T ≥ 2, q ≥ 3. Then

for every nonprincipal character χ modulo q,

ψ(x, χ) = −Ẽ xβ̃

β̃
−

∑′

|γ|≤T

x̺

̺
+O

(
x log2(xqT )

T
+ log2(xq) + Ẽx1/4

)
,(11)

where

Ẽ =

{
1, χ = χ̃,

0, χ 6= χ̃,

χ̃ is the exceptional character that possibly exists, and
∑′

is the sum over

all nontrivial zeros ̺ = β + iγ of L(s, χ) except the exceptional zeros β̃

and 1 − β̃.

Lemma 6. Assume x ≥ 2, T ≥ 2, q ≥ 3 is a prime number , and l is a

positive integer satisfying 1 ≤ l < q. Then

θ(x; q, l) =
ψ(x)

q − 1
− Ẽ(q)χ̃(l)

q − 1
· x

β̃

β̃
− 1

q − 1

∑

χ 6=χ0

χ(l)
∑′

|γ|≤T

x̺

̺

+O

(
x log2(xqT )

T
+ log2(xq) + x1/2

)

where

Ẽ(q) =

{
1 if the exceptional character χ̃ mod q exists,

0 otherwise.

Proof. We have

ψ(x; q, l) =
∑

n≤x

Λ(n)

φ(q)

∑

χ mod q

χ(l)χ(n) =
1

q − 1

∑

χ mod q

χ(l)ψ(x, χ).
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Since q is a prime number, we easily get

ψ(x, χ0) =
∑

n≤x
(n,q)=1

Λ(n) = ψ(x) −
∑

n≤x, q|n
Λ(n)

= ψ(x) −
∑

qm≤x

log q = ψ(x) +O(log x).

Combining this with Lemma 5, we have

ψ(x; q, l) =
ψ(x)

q − 1
+

1

q − 1

∑

χ 6=χ0

χ(l)ψ(x, χ) +O

(
1

q
log x

)

=
ψ(x)

q − 1
− Ẽ(q)χ̃(l)

q − 1
· x

β̃

β̃
− 1

q − 1

∑

χ 6=χ0

χ(l)
∑′

|γ|≤T

x̺

̺

+O

(
x log2(xqT )

T
+ log2(xq) + Ẽ(q)

x1/4

q

)
,

which proves the lemma by using θ(x; q, l) = ψ(x; q, l) +O(x1/2).

Lemma 7. Let A = min(c2, c3, c4), where c2, c3, c4 are defined in Lem-

mas 2 and 3. Then for every sufficiently large integer q, we have

∑

χ mod q

∑′

|γ|≤T

uβ−1 ≪
(

u

(qT )3

)−A/log(qT )

+ u−1/2qT log(qT )(12)

for u ≥ x1 = qlog log q and T = q4;
∑′ and β are defined in Lemma 5.

Proof. From Lemmas 2 and 3, we have:

(i) If the exceptional zero β̃ exists and satisfies δ̃ log(qT ) ≤ A, then∏
χ mod q L(s, χ) does not vanish in the region

σ ≥ 1 − A

log(qT )
log

Ae

δ̃ log(qT )
, |t| ≤ T

except at s = β̃.

(ii) If δ̃ log(qT ) > A or the exceptional zero does not exist, then∏
χ mod q L(s, χ) does not vanish in the region σ ≥ 1 − A/log(qT ),

|t| ≤ T .

Hence if we choose

η0 = A log
Ae

δ0 log(qT )
,

where

δ0 =

{
δ̃, δ̃ log(qT ) ≤ A,

A/log(qT ), δ̃ log(qT ) > A or the exceptional zero does not exist,
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then η0 ≥ A, and
∏

χ mod q L(s, χ) 6= 0 in the region σ ≥ 1 − η0/log(qT ),

|t| ≤ T except at one point s = β̃. Hence

∑

χ mod q

∑′

|γ|≤T

uβ−1 ≪
∑

χ mod q

∑′

|γ|≤T
β≥1/2

uβ−1 = −
1−η0/log(qT )\

1/2

uα−1 dαN(α, T, q).

Making use of N(1/2, T, q) ≪ qT log(qT ) and Lemma 4, we obtain

∑

χ mod q

∑′

|γ|≤T

uβ−1≪
1−η0/log(qT )\

1/2

N(α, T, q)uα−1 log u dα+ u−1/2qT log(qT )

≪ (log u)

1−η0/log(qT )\
1/2

(
u

(qT )3

)α−1

dα+ u−1/2qT log(qT )

≪ log u

log u−3 log(qT )

(
u

(qT )3

)−η0/log(qT )

+ u−1/2qT log(qT ),

and (12) follows at once from the choice of u, T and η0 ≥ A.

Lemma 8. For every sufficiently large prime q ≡ 1 (mod4), we have

∑

χ mod q
χ(−1)=−1

∑

x1<p≤x2

χ(p)

p
≪ (log q)−A/5(log log q)−1,(13)

where A is defined in Lemma 7.

Proof. Making use of (7) and Lemma 6, we have

∑

χ mod q
χ(−1)=−1

∑

x1<p≤x2

χ(p)

p
=

∑

x1<p≤x2

1

p

∑

χ(−1)=−1

χ(p)

=
q − 1

2

( ∑

x1<p≤x2

p≡1 (mod q)

1

p
−

∑

x1<p≤x2

p≡−1 (mod q)

1

p

)

=
q − 1

2

x2\
x1

1

u log u
d{θ(u; q, 1) − θ(u; q,−1)}

=

x2\
x1

1

u log u
d

{
Ẽ(q)

2
(χ̃(−1) − 1)

uβ̃

β̃
− 1

2

∑

χ 6=χ0

(1 − χ(−1))
∑′

|γ|≤T

u̺

̺

}

+O

(
q log2(x2qT)

T log x2
+

q√
x1 log x1

+

x2\
x1

(
uq log2(uqT)

T
+u1/2q

)
log u+1

u2 log2 u
du

)
.
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Notice that q is a prime and χ̃ is nonprincipal real character, so that

χ̃(−1) =

(−1

q

)
= (−1)(q−1)/2 = 1,

where
(

n
q

)
is the Legendre symbol modulo q. Hence

∑

χ mod q
χ(−1)=−1

∑

x1<p≤x2

χ(p)

p
= −

x2\
x1

( ∑

χ(−1)=−1

∑′

|γ|≤T

u̺−1
) du

u log u

+O

(
q log2(x2qT )

T log x2
+

q√
x1 log x1

+

x2\
x1

(
uq log2(uqT )

T
+u1/2q

)
log u+1

u2 log2 u
du

)

= −
x2\
x1

( ∑

χ(−1)=−1

∑′

|γ|≤T

u̺−1
) du

u log u
+O

(
q log2(qT ) log2 x2

T
+

q√
x1 log x1

)
.

If we choose T = q4 and make use of Lemma 7 as well as the definition of
x1, x2, we obtain

∑

χ mod q
χ(−1)=−1

∑

x1<p≤x2

χ(p)

p
≪

x2\
x1

( ∑

χ mod q

∑′

|γ|≤T

u̺−1
) du

u log u
+

log2 q

q

≪
x2\
x1

{(
u

q15

)−A/5 log q

+ u−1/2q5 log q

}
du

u log u
+

log2 q

q

≪
x2\
x1

u−1−A/5 log q du

log u
+

log2 q

q

≪ 1

log x1
· 5 log q

A
x
−A/5 log q
1 +

log2 q

q

≪ (log q)−A/5(log log q)−1.

This completes the proof of the lemma.

Lemma 9 (see [5, Theorem 28.6.1]). Assume (q, l) = 1 and 1 ≤ l < q <
y ≤ x. Then

π(x; q, l) − π(x− y; q, l) <
2

φ(q)
· y

log(y/q)
.(14)

Lemma 10. Let q ≥ 3 be a prime number , 1 ≤ l < q, l is not a prime,
and x ≥ q2. Then

∑

p≤x
p≡l (mod q)

1

p
≤ 2

q − 1

(
log log

x

q
+

1

2
+

1

log q

)
.(15)
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Proof. Using Abel’s identity, we obtain

∑

2q<p≤x
p≡l (mod q)

1

p
=

1

x
π(x; q, l) − 1

2q
π(2q; q, l) +

x\
2q

1

u2
π(u; q, l) du.(16)

If we choose x = y > q in Lemma 9, we have

π(x; q, l) <
2

φ(q)
· x

log(x/q)
(x > q).

Combining this with (16), we find that

∑

2q<p≤x
p≡l (mod q)

1

p
≤ 1

x
· 2

q − 1
· x

log(x/q)
+

x\
2q

1

u2
· 2

q − 1
· u

log(u/q)
du

≤ 2

q − 1
log log

x

q
+

2

q − 1
· 1

log q
;

we have used x ≥ q2 in the last inequality. Since l is not a prime, we have
∑

p≤2q
p≡l (mod q)

1

p
≤ 1

q
,

and we easily deduce (15) from the discussion above.

Lemma 11. Assume q is a sufficiently large prime with q ≡ 1 (mod4),
and define ∑

1
=

∑

χ mod q
χ(−1)=−1

∑

p

χ(p)

p
.

Then ∣∣∣
∑

1

∣∣∣ ≤ log log q + log log log q +
1

2
+O

(
1

log log q

)
.(17)

Proof. From (7) we get
∑

χ(−1)=−1

∑

p≤x1

χ(p)

p
=

∑

p≤x1

1

p

∑

χ(−1)=−1

χ(p)

=
q − 1

2

( ∑

p≤x1

p≡1 (mod q)

1

p
−

∑

p≤x1

p≡−1 (mod q)

1

p

)
.

Thus

−q − 1

2

∑

p≤x1

p≡−1 (mod q)

1

p
≤

∑

χ(−1)=−1

∑

p≤x1

χ(p)

p
≤ q − 1

2

∑

p≤x1

p≡1 (mod q)

1

p
.(18)

If we choose x = x1, l = 1 and x = x1, l = q − 1 respectively in Lemma 10,
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and put the results into (18), we obtain
∣∣∣∣

∑

χ(−1)=−1

∑

p≤x1

χ(p)

p

∣∣∣∣ ≤ log log
x1

q
+

1

2
+

1

log q

≤ log log q + log log log q +
1

2
+

1

log q
.

Applying Lemmas 1 and 8 yields (17).

Lemma 12. Let q be a sufficiently large prime, and define

∑
2

=
∑

χ mod q
χ(−1)=−1

∑

p

∞∑

j=2

χ(pj)

jpj
.

Then
∑

2
≥ −1

3
log log q − 1

6

(
2 + log

8

log2 2
+ γ

)
+O

(
1

log q

)
,(19)

∑
2
≤ 1

6
log log q +

1

12

(
2 + log

2

log2 2
+ γ

)
+O

(
1

log q

)
,(20)

where γ is the Euler constant.

Proof. We have

∑
2

=
∑

p

∞∑

j=2

1

jpj

∑

χ(−1)=−1

χ(pj)(21)

=
q − 1

2

{ ∑

p

∞∑

j=2
pj≡1 (mod q)

1

jpj
−

∑

p

∞∑

j=2
pj≡−1 (mod q)

1

jpj

}
.

Since
∑

p

∞∑

j=2
pj≡1 (mod q)

1

jpj
=

∑

p<q

∞∑

j=2
pj≡1 (mod q)

1

jpj
+O

(∑

p>q

∞∑

j=2

1

jpj

)

=
∑

p<q

∞∑

j=2
pj≡1 (mod q)

1

jpj
+O

(∑

p>q

1

p2

)

=
∑

p<q

∞∑

j=2
pj≡1 (mod q)

1

jpj
+O

(
1

q log q

)
,

and in the same way
∑

p

∞∑

j=2
pj≡−1 (mod q)

1

jpj
=

∑

p<q

∞∑

j=2
pj≡−1 (mod q)

1

jpj
+O

(
1

q log q

)
,
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we deduce from (21) that

∑
2

=
q − 1

2

( ∑

p<q

∞∑

j=2
pj≡1 (mod q)

1

jpj
−

∑

p<q

∞∑

j=2
pj≡−1 (mod q)

1

jpj

)
+O

(
1

log q

)
.

Let g be a primitive root modulo q, δ(p) be the exponent order of p modulo q
for p < q (that is to say, δ(p) = min{d > 0 : pd ≡ 1 (mod q)}), and let k(p)
(1 ≤ k(p) ≤ q − 1) denote the integer satisfying p ≡ gk(p) (mod q) for p < q.
Then

δ(p) =
q − 1

(k(p), q − 1)
,

and thus

∑
2
=
q − 1

2

(∑

p<q

∞∑

j=2
k(p)j≡0 (mod q−1)

1

jpj
−

∑

p<q

∞∑

j=2
k(p)j≡(q−1)/2 (mod q−1)

1

jpj

)

+O

(
1

log q

)

=
q − 1

2

(∑

p<q

∞∑

j=2
j≡0 (mod δ(p))

1

jpj
−

∑

p<q
2|δ(p)

∞∑

j=2
j≡δ(p)/2 (mod δ(p))

1

jpj

)
+O

(
1

log q

)
.

Since δ(p) ≥ 3 when p < q because q is a sufficiently large prime, we
have

(22)
∑

2

=
q − 1

2

(∑

p<q

∞∑

j=1

1

jδ(p)pjδ(p)
−

∑

p<q
2|δ(p)

∞∑

j=1

1

(j − 1/2)δ(p)p(j−1/2)δ(p)

)

+O

(
1

log q

)

=
q − 1

2

(
−

∑

p<q

1

δ(p)
log

(
1 − 1

pδ(p)

)
−

∑

p<q
2|δ(p)

1

δ(p)
log

1 + p−δ(p)/2

1 − p−δ(p)/2

)

+O

(
1

log q

)

=
q − 1

2

{ ∑

p<q
2∤δ(p)

1

δ(p)
log

(
1+

1

pδ(p)−1

)
−2

∑

p<q
2|δ(p)

1

δ(p)
log

(
1+

1

pδ(p)/2

)}

+O

(
1

log q

)
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and this implies that

∑
2
≥ −(q − 1)

∑

p<q
2|δ(p)

1

δ(p)
log

(
1 +

1

pδ(p)/2

)
+O

(
1

log q

)

≥ −(q − 1)
∑

p<q
2|δ(p)

1

δ(p)
· 1

pδ(p)/2
+O

(
1

log q

)
.

Notice that 2 | δ(p) implies pδ(p)/2 ≡ −1 (mod q), thus pδ(p)/2 ≥ q − 1 and

1

pδ(p)/2
≤ 1

pδ(p)/2 + 1
· q

q − 1
,

so that
∑

2
≥ −q

∑

p<q
2|δ(p)

1

δ(p)
· 1

pδ(p)/2 + 1
+O

(
1

log q

)
.

On the other hand, we can also deduce from (22) that

∑
2
≤ q − 1

2

∑

p<q
2∤δ(p)

1

δ(p)
· 1

pδ(p) − 1
+O

(
1

log q

)
.

Since δ(p) ≥ 3 for p < q, we have

∑
2
≥ −q

3

∑

p<q
2|δ(p)

1

pδ(p)/2 + 1
+O

(
1

log q

)
,(23)

∑
2
≤ q

6

∑

p<q
2∤δ(p)

1

pδ(p) − 1
+O

(
1

log q

)
.(24)

We write pδ(p) = l(p)q+ 1. Because 2 | δ(p) implies pδ(p)/2 ≡ −1 (mod q), we
can write pδ(p)/2 = h(p)q − 1 if 2 | δ(p). Then

∑

p<q
2∤δ(p)

1

pδ(p) − 1
=

∑

p<q
2∤δ(p)

1

l(p)q
(25)

=
1

q

( ∑

p<q
2∤δ(p), l(p)<q

1

l(p)
+

∑

p<q
2∤δ(p), l(p)≥q

1

l(p)

)

=
1

q

∑

p<q
2∤δ(p), l(p)<q

1

l(p)
+O

(
1

q log q

)
.
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Using the same method, we have

∑

p<q
2|δ(p)

1

pδ(p)/2 + 1
=

1

q

∑

p<q
2|δ(p), h(p)<q

1

h(p)
+O

(
1

q log q

)
.(26)

Since l(p) < q ⇒ δ(p) ≤ n1 = [(2 log q)/log 2] and h(p) < q ⇒ δ(p) ≤ n2 =
[(4 log q)/log 2], we deduce from (25), (26) that

∑

p<q
2∤δ(p)

1

pδ(p) − 1
≤ 1

q

∑

p<q
2∤δ(p), δ(p)≤n1

1

l(p)
+O

(
1

q log q

)
,(27)

∑

p<q
2|δ(p)

1

pδ(p)/2 + 1
=

1

q

∑

p<q
2|δ(p), δ(p)≤n2

1

h(p)
+O

(
1

q log q

)
.(28)

It is well known that for every d | q − 1, there are exactly φ(d) integers in the
reduced residue class modulo q with d as their exponent order modulo q,
so the number of terms of the sum on the right hand side of (27) is less
than ∑

n≤n1

n|q−1, 2∤n

φ(n) ≤ n1

∑

n≤n1

n|q−1, 2∤n

1 ≤ 1

2
n2

1 ≤ 2

log2 2
log2 q.

It is obvious that l(p) is different for each p, and

l(p)

{
is even if p > 2,

≥ 1 if p = 2,

so we infer from (27) that

∑

p<q
2∤δ(p)

1

pδ(p)−1
≤ 1

q

(
1 +

∑

n≤ 2

log2 2
log2 q

1

2n

)
+O

(
1

q log q

)
(29)

=
1

q

{
1 +

1

2

(
log

(
2

log2 2
log2 q

)
+ γ +O

(
1

log2 q

))}

+O

(
1

q log q

)

=
1

q

(
log log q + 1 +

1

2
log

2

log2 2
+
γ

2

)
+O

(
1

q log q

)
.

Also, the number of terms of the sum on the right hand side of (28) is less
than ∑

n≤n2

n|q−1, 2|n

φ(n) ≤ 1

2
n2

2 ≤ 8

log2 2
log2 q.
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Because h(p) is different for each p, and

h(p)

{
is even if p > 2,

≥ 1 if p = 2,

we deduce from (28) that

∑

p<q
2|δ(p)

1

pδ(p)/2+1
≤ 1

q

(
1 +

∑

n≤ 8

log2 2
log2 q

1

2n

)
+O

(
1

q log q

)
(30)

=
1

q

(
log log q+1+

1

2
log

8

log2 2
+
γ

2

)
+O

(
1

q log q

)
.

The lemma now follows at once from (23), (24), (29), (30).

3. Proof of the theorems

Proof of Theorem 1. It is easy to verify that
∏

χ(−1)=−1L(1, χ) is a
positive real number. Making use of the identity

L(1, χ) =
∏

p

(
1 − χ(p)

p

)−1

(χ 6= χ0),

we have

log
( ∏

χ(−1)=−1

L(1, χ)
)

= log

( ∏

χ(−1)=−1

∏

p

(
1 − χ(p)

p

)−1)
(31)

= −
∑

χ(−1)=−1

∑

p

log

(
1 − χ(p)

p

)

=
∑

χ(−1)=−1

∑

p

∞∑

j=1

χ(pj)

jpj
=

∑
1
+

∑
2
,

so that Lemmas 11 and 12 imply

log
( ∏

χ(−1)=−1

L(1, χ)
)
≥−4

3
log log q − log log log q + logA1 +O

(
1

log log q

)
,

log
( ∏

χ(−1)=−1

L(1, χ)
)
≤ 7

6
log log q + log log log q + logA2 +O

(
1

log log q

)
,

with

A1 = exp

(
−1

6

(
5 + log

8

log2 2
+ γ

))
,

A2 = exp

(
1

12

(
8 + log

2

log2 2
+ γ

))
.
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A simple calculation shows that

A1 > e−1.4, A2 < e0.84,(32)

and Theorem 1 follows at once.

Proof of Theorem 2. Inspecting the proof of Lemma 8 shows that
if the exceptional zero does not exist, then the assertion of Lemma 8
holds for every sufficiently large prime q, and therefore so does the as-
sertion of Lemma 11. If we now invoke Lemma 12, the result follows at
once.

Proof of Theorem 3. We separate log(
∏

χ(−1)=−1 L(1, χ)) into two parts

as in (31). Because we are assuming GRH, we have

θ(x; q, l) =
ψ(x)

q − 1
+O(x1/2 log2 x)(33)

for x ≥ 2, q ≥ 3, (q, l) = 1. This implies

∑

χ(−1)=−1

∑

p>q3

χ(p)

p
≪ log q√

q
.(34)

Choosing x = q3 in Lemma 10 yields

∑

p≤q3

p≡l (mod q)

1

p
≤ 2

q − 1

(
log log q +

1

2
+ log 2 +

1

log q

)
(35)

for l = ±1. Similar to Lemma 11, from (34), (35) we deduce that assuming
GRH, for every sufficiently large prime q,

∣∣∣
∑

1

∣∣∣ ≤ log log q +
1

2
+ log 2 +O

(
1

log q

)
.(36)

By using (36) and Lemma 12, we have

log
( ∏

χ(−1)=−1

L(1, χ)
)
≥ −4

3
log log q + logA3 +O

(
1

log q

)
,

log
( ∏

χ(−1)=−1

L(1, χ)
)
≤ 7

6
log log q + logA4 +O

(
1

log q

)
,

with

A3 = exp

(
−1

6
(5 + 9 log 2 − 2 log log 2 + γ)

)
,

A4 = exp

(
1

12
(8 + 13 log 2 − 2 log log 2 + γ)

)
.
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A simple calculation shows that

A3 > e−2.1, A4 < e1.53,

which completes the proof of Theorem 3.

Proof of Theorem 4. The procedure is similar to the proof of Theorem 3,
but now we have to use the Siegel–Walfisz theorem instead of (33). Hence,
for every ε > 0, write x3 = exp(qε). We have the following formula corre-
sponding to (34):

∑

χ(−1)=−1

∑

p>x3

χ(p)

p
≪ q1+ε exp(−c5qε/2),(37)

where c5 is a constant dependent on ε. Choosing x = x3 in Lemma 10 yields
∑

p≤x3

p≡l (mod q)

1

p
≤ 2

q − 1

(
ε log q +

1

2
+

1

q

)
(38)

for l = ±1. Similar to Lemma 11, from (37), (38) we infer that for every
sufficiently large prime q and all ε > 0,

∣∣∣
∑

1

∣∣∣ ≤ ε log q +
1

2
+O

(
q1+ε exp(−c5qε/2) +

1

log q

)
.(39)

Combining this with Lemma 12 and (31), we conclude that for all ε > 0 and
every sufficiently large prime q,

log
( ∏

χ(−1)=−1

L(1, χ)
)
≥ − ε log q − 1

3
log log q + logA1

+O

(
q1+ε exp(−c5qε/2) +

1

log q

)
,

log
( ∏

χ(−1)=−1

L(1, χ)
)
≤ ε log q +

1

6
log log q + logA2

+O

(
q1+ε exp(−c5qε/2) +

1

log q

)
.

Together with (32) this completes the proof of Theorem 4.
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