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1. Introduction. Let F be a totally real number field and let p be
an odd prime. Suppose we are given a Hilbert modular newform f over
F of level nf , character ψ and (parallel) weight k ≥ 2. For a prime q not
dividing nf , let c(q, f) denote the eigenvalue of the Hecke operator T (q)
acting on f ; denote by Kf the number field generated by the c(q, f)’s and
ψ(Frobq)’s, and by Of the integer ring of Kf . Then for each prime ℘ | p of
Of one has a continuous, odd, absolutely irreducible representation ρf,℘ :
GF → GL2(Of,℘) with the following property: ρf,℘ is unramified outside
primes dividing pnf , and at a prime q - pnf the characteristic polynomial

of ρf,℘(Frobq) is X2 − c(q, f)X + ψ(Frobq)Nm(q)k−1. We denote the p-adic
cyclotomic character by χ. Thus the determinant of ρf,℘ is ψχk−1.

From now on we assume that the character ψ is unramified at p. Suppose
that f is ordinary at p. Then, by Wiles [17], and Mazur–Wiles [11], for every
prime p | p we have

ρf,℘|Gp ∼

(
ψ1pχ

k−1 ∗
0 ψ2p

)
where Gp is a decomposition group at p and ψ1p, ψ2p are unramified char-
acters. In fact, with a(p, f) defined to be the unit root of X2 − c(p, f)X +
ψ(Frobp)Nm(p)k−1 = 0, we have ψ2p(Frobp) = a(p, f). A natural question
is to ask when the restriction(s) ρf,℘|Gp actually split(s). If ρf,℘ mod ℘ is
absolutely irreducible then the splitting (or not) of ρf,℘|Gp mod ℘n is inde-
pendent of the choice of a lattice used to define ρf,℘. This is explained in
greater detail at the beginning of Section 3.

Now suppose we are given a second newform g which is also ordinary at p.
Fix a p-adic integer ring O in which Of and Og embed. Given a non-zero,
non-unit π ∈ O, we say that g is a mod π weak companion form for f if
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c(q, f) ≡ c(q, g)Nm(q)k−1 mod π for all but finitely many primes q. If the
residual representations are absolutely irreducible—which will be the case in
this article—then g being a mod π weak companion form to f is equivalent
to ρf ∼ ρg⊗χk−1 mod π where ρf , ρg : GF → GL2(O) are the p-adic Galois
representations associated to f, g. By applying the determinant condition
to this companionship criterion, we see that the weight k′ of g satisfies the
congruence χk

′−1 ≡ χ1−k mod π on each decomposition group above p. Note
that we do not enforce any optimality requirement on the level of g (and
hence the prefix ‘weak’).

Classically, companion forms mod p played an important part in the
weight optimisation part of Serre’s Modularity Conjecture. Serre’s predicted
equivalence between local splitting for the residual modular representation
(tame ramification) and the existence of companions was established by
Gross in [7]. In much the same spirit, the main result of the present paper,
which we now state, proves the equivalence between splitting mod pn and
the existence of mod pn weak companion forms.

Main Theorem. Let F be a totally real number field, p be an odd prime
unramified in F, and let f be a p-ordinary Hilbert modular newform f of
squarefree level n, character ψ with order coprime to p and unramified at p,
and weight k ≥ 2. Let n ≥ 2 and set kkk := Of/℘, ρf,n := ρf,℘ mod pn,
ρf := ρf,℘ mod ℘. Assume the following hypotheses:

• Global conditions:

(GC1) ρf,n takes values in GL2(W/p
n) where W is the Witt ring of

kkk := Of/℘ (under the natural injection W/pn ↪→ Of/pn).
(GC2) The image of ρf contains SL2(kkk). Furthermore, if p = 3 then

the image ρf,n contains a transvection
(
1 1
0 1

)
.

• Local conditions:

(LC1) If p is a prime dividing p then c(p, f)2 6≡ ψ(Frobp) mod ℘.
(LC2) Let q be a prime dividing the level n where ρf is unramified. If

Nm(q) ≡ 1 mod p then p divides the order of ρf (Frobq).

Let k′ ≥ 2 be the smallest integer such that k+k′ ≡ 2 mod (p− 1)pn−1. Then
f splits mod pn if and only if it has a p-ordinary mod pn weak companion
form g of weight k′ and character ψ.

The proof, given in Section 3.2, relies on being able to adapt Taylor’s
generalisation, [16], of Ramakrishna’s methods, [13], to lift ρf,n ⊗ χ1−k to
characteristic 0 with prescribed local properties. Modularity of this lift is
established by using results of Skinner and Wiles in [15] along with the
existence of companion forms mod p over totally real fields due to Gee ([4,
Theorem 2.1]). The construction of characteristic 0 lifts for certain classes
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of mod pn representations is carried out in Section 3.1. (See Theorem 3.2
for the statement.)

The Main Theorem, in practice, is not useful for checking when a given
newform fails to split mod pn because we have very little control over the
level of the weak companion form. However, as we show in Section 4, in
the situation when the dimension of the tangent space tD (associated to a
deformation condition D of ρ) is 0, we can use higher companion forms to
computationally verify a conjecture of Greenberg connecting local splitting
with complex multiplication. We conclude by giving examples in support of
this conjecture.

2. Toolkit. The method we use for obtaining a fine structure on de-
formations of a mod pn representation is an adaptation of the more famil-
iar mod p case and has two key components: the existence of sufficiently
well-behaved local deformations, and, for the existence of characteristic 0
liftings, being able to place local constraints so that the dual Selmer group
vanishes. Naturally, both of these present difficulties in the general mod pn

case. In this section, we discuss the tools that will enable us to manage the
difficulties for certain classes of mod pn representations.

Throughout this section p is an odd prime, kkk is a finite field of charac-
teristic p, and W is the Witt ring of kkk.

2.1. Deformations and substantial deformation conditions. In
the main, we follow Mazur’s treatment of deformations and deformation
conditions in [10]. Given a residual representation, a deformation condition is
simply a collection of liftings with some additional properties (closure under
projections, a Mayer–Vietoris property etc.). The fundamental consequence
then is the existence of a (uni)versal deformation.

We expand on this: Suppose we are given a ‘nice’ profinite group Γ , and
a continuous representation ρ : Γ → GL2(kkk). If D is a deformation condition
for ρ then there is a complete local Noetherian W -algebra R with residue
field kkk and a lifting ρ : Γ → GL2(R) in D with the following property: If
ρ′ : Γ → GL2(A) is a lifting of ρ in D then there is a morphism R → A
which gives, on composition with ρ, a representation strictly equivalent to ρ′.
In addition, we require that the morphism above is unique when A is the
ring of dual numbers kkk[ε]/(ε2). If the projective image of ρ has trivial cen-
traliser then R, together with ρ, represents the functor that assigns type D
deformations to a coefficient ring. We shall use the natural identification of
the tangent space tD with a subspace of H1(Γ, ad ρ) (and as a subspace of
H1(Γ, ad0 ρ) when considering deformations with a fixed determinant). The
(uni)versal deformation ring R then has a presentation W [[T1, . . . , Tn]]/J
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where n = dimkkk tD. We will be particularly interested in smooth deforma-
tion conditions (so the ideal of relations J will be (0)).

As hinted at the beginning of this section, the method we use for con-
structing smooth global deformation conditions depends upon being able to
find local (uni)versal deformation rings smooth in a large number of vari-
ables. It will be convenient to make the following definition:

Definition 2.1. Let F be a local field and let ρ : GF → GL2(kkk) be a
residual representation. We call a deformation condition for ρ with fixed de-
terminant a substantial deformation condition if it is smooth and its tangent
space t satisfies the inequality

dimkkk t ≥ dimkkkH
0(GF , ad0 ρ) + [F : Qp]δ

where δ is 1 when F has residue characteristic p and 0 otherwise. Accord-
ingly, any lift ρ : GF → GL2(A) of ρ in this collection of liftings will be
called a substantial deformation.

We now give examples of substantial deformation conditions. (The reader
may compare these with examples E1–E4 in [16].) From now on, for the rest
of the section, F is a finite extension of Ql for some prime l. As in the
definition above, let ρ : GF → GL2(kkk) be a residual representation.

Example 2.2. Assume that the residue characteristic of F is different
from p. Suppose that the order of ρ(IF ) is co-prime to p, and let d : GF →
W× be a character lifting det ρ. The collection of liftings of ρ which factor
through GF /(IF ∩ker ρ) and have determinant d is a substantial deformation
condition. The tangent space has dimension dimkkkH

0(GF , ad0 ρ).

Example 2.3. Suppose that

ρ ∼

(
χ ∗
0 1

)
ε

for some character ε : GF → kkk×. Moreover, assume that if ρ is semisimple
then χ is non-trivial. Fix a character ε : GF → W× lifting ε. Then the
collection of liftings strictly equivalent to(

χ ∗
0 1

)
ε

is a substantial deformation condition. Note that ρ is equivalent to a repre-
sentation of the form considered above only if p divides the order of ρ(IF ).
(See Example 3.3 of [9].)

Example 2.4. We now assume that the residue characteristic of F is p.
Suppose we are given an integer k ≥ 2 and a representation ρ : GF → GL2(kkk)
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such that

ρ =

(
χk−1ψ1 ∗

0 ψ2

)
where ψ1, ψ2 are unramified characters. Let ψ be the Teichmüller lift of
ψ1ψ2. If A is a coefficient ring, we shall call a lifting ρA : GF → GL2(A) of
ρ a ψ2-good weight k lifting with character ψ if ρA is strictly equivalent to a
representation of the form (

ψ̃1χ
k−1 ∗

0 ψ̃2

)
for some unramified characters ψ̃1, ψ̃2 :GF→A× lifting ψ1, ψ2 and ψ̃1ψ̃2 =ψ.

We then have the following property of weight k liftings (proof immedi-
ate, Example 3.4 in [9]):

Proposition 2.5. Let ρ : GF → GL2(kkk) be as above in Example 2.4,
and further assume that χk−1ψ1 6= χψ2. Then the deformation condition
consisting of weight k liftings of ρ is a smooth deformation condition. The
dimension of its tangent space is equal to [F : Qp] + dimkkkH

0(GF , ad0 ρ).

2.2. Subgroups of GL2(W/p
n). We now derive some properties of cer-

tain subgroups of GL2(W/p
n) which will be of relevance in constructing

global deformations. Let us recall that p is an odd prime, and that kkk is
the residue field W/p. We denote by ad0 the the vector space of trace zero
2×2-matrices over kkk with GL2(W/p

n) acting by conjugation, and by ad0(i)
its twist by the ith power of the determinant. For convenience, we record
the following useful identity:

(2.1)

(
1 x

0 1

)(
a b

c −a

)(
1 −x
0 1

)
=

(
a+ cx b− 2ax− cx2

c −a− cx

)
.

Lemma 2.6. For p ≥ 3:

(a) H1(GL2(kkk), ad0(i)) = 0 if i = 0, 1 and kkk = F5.
(b) H1(SL2(kkk), ad0(i)) = 0 if i = 0, 1 and kkk 6= F5.

Proof. The claim is well known when kkk 6= F5 and i = 0—see Lemma
2.48 of [1], for instance. The proof, in general, is a simple exercise following
the proof of Lemma 1.2 of [3].

Proposition 2.7. Let G be a subgroup of GL2(W/p
n). Suppose that the

mod p reduction of G contains SL2(kkk). Furthermore, assume that if p = 3
then G contains a transvection

(
1 1
0 1

)
. Then:

(a) G contains SL2(W/p
n).
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(b) Suppose that p ≥ 5. If kkk = F5, assume further that G mod 5 =
GL2(F5). Then H1(G, ad0(i)) = 0 for i = 0, 1.

(c) The restriction map H1(G, ad0(i)) → H1
(〈(

1 1
0 1

)〉
, ad0(i)

)
is an in-

jection (for all p ≥ 3).

Proof. (a) We shall only verify that if G is a subgroup of SL2(W/p
n)

whose mod pn−1 reduction is SL2(W/p
n−1) then G = SL2(W/p

n). The ker-
nel of the reduction map G→ SL2(W/p

n−1) consists of matrices of the form
I+pn−1A with A an element of some additive subgroup of ad0 stable under
the action of G. Consequently, either G = SL2(W/p

n) or else the reduction
map G → SL2(W/p

n−1) is an isomorphism. We will now discount the sec-
ond possibility. So suppose that G→ SL2(W/p

n−1) is an isomorphism. For
p ≥ 5 it follows from [14, IV-23 Lemma 3], that G ⊂ GL2(W/p

n) contains
a transvection

(
1 1
0 1

)
(simply consider G ∩ GL2(Z/pn)). For p = 3 this is

true by hypothesis. However,
(
1 1
0 1

)
has order pn in G and order pn−1 in

SL2(W/p
n−1)—a contradiction.

(b) The hypothesis and Lemma 2.6 imply that H1(G mod p, ad0(i)) = 0.
So assume that n ≥ 2 and that H1(G mod pn−1, ad0(i)) = 0, and suppose
that 0 6= ξ ∈ H1(G, ad0(i)). Then the restriction ξ to H := ker(G →
G mod pn−1) is a group homomorphism compatible with the action of
SL2(W/p

n−1). It follows from part (a) that H is in fact ker(SL2(W/p
n) →

SL2(W/p
n−1)). Since H is naturally identified with ad0, it follows that ξ|H

is an isomorphism. Denote by W ν the ring W/pn−1⊕kkkε where ε2 = pε = 0.
(Or equivalently W ν ∼= W [ε]/(pn−1, ε2, pε).) We then see that the homomor-
phism SL2(W/p

n)→ SL2(W
ν) given by

g 7→ (I + εξ(g))(g mod pn−1)

is an isomorphism. To finish off, we proceed as in part (a): The transvection(
1 1
0 1

)
∈ SL2(W

ν) has order pn−1 while its pre-image in SL2(W/p
n), a matrix

of the form
(
I + pn−1

(
a b
c −a

))(
1 1
0 1

)
, has order pn.

(c) Suppose 0 6= ξ ∈ H1(G, ad0(i)) restricts to a trivial cohomology class
in H1

(〈(
1 1
0 1

)〉
, ad0(i)

)
. Then the restriction of ξ to

(
1 pn−1

0 1

)
is trivial. Set

N := ker(G → G mod pn−1). Then ξ|N has a non-trivial kernel, and hence
ξ|N is trivial. Thus ξ is a non-zero element of H1(G mod pn−1, ad0(i)). We
are thus reduced to the case when n = 1. Now H1(SL2(kkk), ad0) = 0 except
when kkk = F5, so we are reduced to the case when G is a subgroup of GL2(F5)
containing SL2(F5). But in this case

〈(
1 1
0 1

)〉
is the Sylow 5-subgroup of G,

and hence if ξ|( 1 1
0 1

) = 0 then ξ = 0.

3. Constructing characteristic 0 lifts of mod pn Galois repre-
sentations. Firstly, we elaborate on the remark made in the introduction
that if ρf,℘ mod ℘ is absolutely irreducible then the splitting (or not) of
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ρf,℘ mod ℘n is independent of the choice of a lattice used to define ρf,℘. In-
deed, if for some M ∈ GL2(Kf,℘) the conjugate Mρf,℘M

−1 is integral and
stabilises the upper triangular decomposition group Gp, then M is a scalar
multiple of

(
u v
0 1

)
where u ≡ 1 mod ℘ and v ≡ 0 mod ℘. If we denote by

cp ∈ H1(Gp,Of,℘(ψ1pψ
−1
2p χ

k−1)) the cohomology class for ρf,℘|Gp , then the

cohomology class for the extension at p determined by Mρf,℘M
−1 is ucp.

Hence, if ρf,℘ mod ℘ is absolutely irreducible, we can speak of ρf,℘ mod ℘n

being split without any ambiguity.

We can now formulate precise conditions under which a given mod pn

Galois representation can be lifted to characteristic 0, and use the lifts con-
structed to prove the existence of weak companion forms.

3.1. Deformations of mod pn representations to W (k). We now
suppose we are given a totally real number field F and continuous odd
representations ρ : GF → GL2(kkk), ρn : GF → GL2(W/p

n), n ≥ 2, with
ρ = ρn mod p. We shall also assume that the ρ, ρn satisfy the following.

Hypothesis A. The image of ρ contains SL2(kkk). Furthermore, if p = 3
then the image of ρn contains the transvection

(
1 1
0 1

)
.

Fix a character ε : GF → W× lifting the determinant of ρn. We wish
to consider global deformation conditions D for ρ with determinant ε such
that ρn is a deformation of type D. We shall abbreviate this and call D a
deformation condition for ρn. Except for a change in choice of lettering for
primes of F we keep the notation of [9]. Thus Dq is the local component at
a prime q, tDq is the tangent space there, and t⊥Dq

⊆ H1(GFq , ad0 ρ(1)) is
the orthogonal complement of tDq under the pairing induced by

ad0 ρ× ad0 ρ(1)
trace−−−→ kkk(1).

The tangent space for D is the Selmer group H1
{tDq}

(F, ad0 ρ); the dual

Selmer group H1
{t⊥Dq

}(F, ad0 ρ(1)) is determined by the local conditions t⊥Dq
.

(See for instance [12, Definition 8.6.19].) We also set

δ(D) := dimkkkH
1
{tDq}

(F, ad0 ρ)− dimkkkH
1
{t⊥Dq

}(F, ad0 ρ(1)).

Proposition 3.1. Suppose we are given a deformation condition D for
ρn with determinant ε. Let S be a fixed finite set of primes of F including
primes where D is ramified and all the infinite primes. If δ(D) ≥ 0, we can
find a deformation condition E for ρn with determinant ε such that:

• The local conditions Eq and Dq are the same at primes q ∈ S.
• Eq is a substantial deformation condition for q /∈ S.
• H1

{t⊥Eq}
(F, ad0 ρ(1)) = (0).
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Proof. Let K be the splitting field of ρn adjoined with the pnth roots of
unity. We claim that we can find elements g, h ∈ Gal(K/F ) such that

(R1) ρn(g) ∼
(−1 0

0 1

)
and χ(g) = −1 mod pn;

(R2) ρn(h) ∼ a
(
1 1
0 1

)
and χ(h) = 1 mod pn.

For (R1), we can take g to be complex conjugation. For (R2), by considering
ε = χ(εχ−1) or otherwise, we can write ε = χε0ε

2
1 where ε0 is a finite order

character of order co-prime to p. Our assumptions on the size of ρ and ρn
(when p = 3) along with Proposition 2.7 imply that the image of the twist
of ρn⊗ε−11 contains SL2(W/p

n). Thus we can find h1 ∈ Gal(K/F ) such that
ρn(h1) =

(
1 1
0 1

)
ε1(h1) and we get ε0(h1)χ(h1) = 1. We can then take h to be

hp
k−1

1 where pk is the cardinality of kkk.

We first adjust D and define a deformation condition E0 for ρn with
determinant ε as follows. We make no change if p ≥ 5 and the projective
image of ρ strictly contains PSL2(F5); so E0 is D. Now for the remaining
cases: Suppose that either p = 3 or the projective image of ρ is A5 (so kkk
is necessarily F5). Using the Chebotarev Density Theorem and (R2) above,
we can find a prime q0 /∈ S with q0 ≡ 1 mod pn and ρn(Frobq0) = a

(
1 1
0 1

)
.

Let E0 be the deformation condition for ρ with determinant ε characterised
by the following local conditions:

• at primes q 6= q0, E0q = Dq;
• at q0, E0q0 consists of deformations of the form(

χ ∗
0 1

)
ε′

where ε′ : Gv0 →W× is unramified and ε|Gq0
= χε′2.

By our choice of q0, E0 is a deformation condition for ρn. Further, E0q0 is a
substantial deformation and all non-zero cohomology classes in tE0q0 , t

⊥
E0q0

are ramified.

We claim that the restriction maps

H1
{tE0q}

(F, ad0 ρ)→ H1(GK , ad0 ρ),

H1
{t⊥E0q}

(F, ad0 ρ(1))→ H1(GK , ad0 ρ(1))

are injective. When p ≥ 5 and the projective image of ρ strictly contains A5,
an easy calculation using Proposition 2.7 shows H1(Gal(K/F ), ad0 ρ) and
H1(Gal(K/F ), ad0 ρ(1)) are trivial, and so the injectivity follows. In the
case when p = 3 or the projective image of ρ is A5, we argue as follows: If
ξ ∈ ker(H1

{tE0q}
(F, ad0 ρ) → H1(GK , ad0 ρ)), then ξ is naturally an element

of H1(Gal(K/F ), ad0 ρ). Thus ξ is unramified at q0 and so the restriction of
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ξ to the decomposition group at q0 must be trivial. From Proposition 2.7 it
follows that ξ ∈ H1(Gal(K/F ), ad0 ρ) is trivial. A similar argument works
for ad0 ρ(1).

The proof is now standard: If the dual Selmer group for E0 is non-trivial
then we can find

0 6= ξ ∈ H1
{tE0q}

(F, ad0 ρ), 0 6= ψ ∈ H1
{t⊥E0q}

(F, ad0 ρ(1)).

Take g ∈ Gal(K/L) as in (R1), consider pairs (M1, N1), (M2, N2) where{(
0 ∗
∗ 0

)}
= N1 ⊂ M1 = ad0 ρ,

{( ∗ ∗
0 ∗
)}

= N2 ⊂ M2 = ad0 ρ(1) and apply
Proposition 2.2 of [9]. One can then find a prime r /∈ S ∪ {q0} lifting g such
that the restrictions of ξ, ψ to Gr are not in H1(Gr, N1), H

1(Gr, N2).
Now take E1 to be the deformation condition with determinant ε as

follows: E1 and E0 differ only at r, and the local component at r consists
of deformations of the form

( χ ∗
0 1

)
(ε/χ)1/2 considered in Example 2.3. Here,

(ε/χ)1/2 is the unramified character determined by taking the square root
of ε(Frobr)χ

−1(Frobr). Since Frobr lifts g, we have χ(Frobr) ≡ −1 mod pn,
and consequently E1 is a substantial deformation condition for ρn. The rest
is identical to the proof of Proposition 4.2 of [9]: The dual Selmer group for
E1 has dimension one less than that of the dual Selmer group for E0. (Of
course δ(E1) = δ(E0) = δ(D).)

We can now prove a general result for lifting a mod pn representation to
characteristic 0.

Theorem 3.2. Let D be a deformation condition for ρn with determi-
nant ε, and let S be a fixed finite set of primes of F including primes where
D is ramified and all the infinite primes. Suppose that each local compo-
nent is substantial. We can then find a deformation condition E for ρn with
determinant ε such that:

• The local conditions Eq and Dq are the same at primes q ∈ S.
• Each local component is a substantial deformation condition.
• The dual Selmer group H1

{t⊥Eq}
(F, ad0 ρ(1)) is trivial.

Furthermore, E is a smooth deformation condition and the universal defor-
mation ring is a power series ring over W in δ(D) variables. In particular,
there is a representation ρ : GF → GL2(W ) of type E lifting ρn.

Proof. The only verification required is to check that δ(D) ≥ 0 and that
dimkkkH

1
{tEq}

(F, ad0 ρ) = δ(E) = δ(D). This is done using Wiles’ formula (cf.

[12, Theorem 8.6.20]).

3.2. Modular characteristic 0 lifts and proof of Main Theorem.
We now look at the question of producing characteristic zero liftings which
are modular. Given a mod pn Galois representation ρn : GF → GL2(W/p

n)
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with ρn mod p modular, when can we guarantee the existence of a modular
form f with ρf,p mod pn ∼ ρn? Our answer is a modest attempt using
Theorem 3.2 to produce a characteristic 0 lift and then invoking results of
Skinner and Wiles [15] to prove that it is modular.

For the rest of this section, F is a totally real field and ψ : GF →W× is
a finite order character of GF unramified at primes dividing p.

Proposition 3.3. Let ρn : GF → GL2(W/p
n) be a continuous odd rep-

resentation satisfying Hypothesis A. Suppose ε := ψχa, a ≥ 1, lifts the
determinant of ρn. Assume that:

(i) At a prime q - p where ρn is ramified, the restriction ρn|Gq is sub-
stantial there and a substantial deformation condition Dq is specified
for ρn.

(ii) At a prime p dividing p,

ρn|Gp ∼

(
χaψ1p ∗

0 ψ2p

)
where ψ1p, ψ2p are unramified, χaψ1p 6≡ ψ2p mod p and χaψ1p 6≡
χψ2p mod p.

(iii) There is an ordinary, of parallel weight at least 2, modular form
which is a (ψ2p mod p)-good lift of ρn mod p.

There is then a modular form f such that its associated p-adic representation
ρf,p : GF → GL2(W ) lifts ρn, has determinant ψχa, is of type Dq at primes
q - p where ρn is ramified, and

ρf,p|Gp ∼

(
ψ′1pχ

a ∗
0 ψ′2p

)
at primes p | p with ψ′2p an unramified lift of ψ2p mod p.

Proof. At a prime p | p take Dp to be the class of deformations of the
form (

ψ′1pχ
a ∗

0 ψ′2p

)
where ψ′1p (resp. ψ′2p) is an unramified lifting of ψ1p mod p (resp. ψ2p mod p),
and ψ1pψ2p = ψ. This is a substantial deformation for ρn at p by Proposition
2.5. By Theorem 3.2, there is a smooth deformation condition E for ρn which
agrees with Dp at primes above p and primes where ρn is ramified. Thus
there is a continuous representation ρ : GF → GL2(W ) with ρ mod pn =
ρn, unramified outside finitely many primes, of determinant ψχa and with
ρ|Ip ∼

(
χa ∗
0 1

)
at primes p | p. The proposition now follows from Skinner–

Wiles [15].
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Proof of Main Theorem. Let us recall the set-up: We are given a Hilbert
modular newform f of weight k ≥ 2 character ψ which is ordinary at p and
whose reduction mod pn gives ρf,n : GF → GL2(W/p

n). For each prime p of
F over p, let ψ1p, ψ2p be the unramified characters such that

ρf |Gp ∼

(
ψ1pχ

k−1 ∗
0 ψ2p

)
.

As ψ1pψ2p = ψ and ψ2p(Frobp) = c(p, f), hypothesis (LC1) ensures ψ1p, ψ2p

are distinct modulo ℘. From this, one deduces easily that if f has a weak
companion form mod pn then ρf,n splits at p. We now show that ‘split at p’
implies the existence of a weak companion form.

Let ρn := ρf,n ⊗ χ1−k, and set ρ := ρn mod p. Recall that k′ ≥ 2 is
the smallest integer satisfying the congruence k + k′ ≡ 2 mod (p− 1)pn−1.
Define a global deformation condition D for ρ⊗χ1−k mod p by the following
requirements:

(a) Deformations are unramified outside primes dividing pn and have
determinant ψχk

′−1.
(b) At a prime p | p, the local condition Dp consists of deformations of

the form (
ψ′2pχ

k′−1 ∗
0 ψ′1p

)
where ψ′1p (resp. ψ′2p) is an unramified lifting of ψ1p mod p (resp.
ψ2p mod p), and ψ1pψ2p = ψ.

(c) Let q be a prime dividing n, the level of f . We need to distinguish
two cases:

(i) If q does not divide the conductor of ψ then ρ|Gq ∼
(
χ ∗
0 1

)
ε̄ for

some character ε̄. Further, hypothesis (LC2) ensures that if ρ|Gq

is semisimple then χ 6= 1. We then take Dq to be local liftings

with determinant ψχk
′−1 of the type considered in Example 2.3.

(ii) If q divides the conductor of ψ then ρf (Iq), ρ(Iq) are finite and
have the same order. In this case we take Dq as in Example

2.2, i.e. the lifts with determinant ψχk
′−1 which factor through

Gq/(Iq ∩ ker ρ).

It then follows that ρn is a deformation of type D and that at each prime
q - p where ρn is ramified the local deformation condition Dq is substantial
there. As p is unramified in F , the distinctness of ψ1p, ψ2p modulo p im-
plies that ρ satisfies hypothesis (ii) of Proposition 3.3. From the existence
of mod p companion forms ([4, Theorem 2.1]) it follows that ρ has an ordi-
nary modular lift which is (ψ1p mod p)p|p-good. The existence of a mod pn

weak companion form g for f of weight k′ character ψ now follows from
Proposition 3.3.



170 R. Adibhatla and J. Manoharmayum

4. Checking local splitting: A computational approach. The lift-
ing result of the previous section is not suitable for computational purposes
in general because, except in the case when the dual Selmer group was al-
ready trivial, we had no control of the level. There is, however, one case
when we do have absolute control. We now describe this situation and go
on to verify examples of local splitting.

4.1. A special case. Suppose ρ : GQ → GL2(kkk) is absolutely irre-
ducible and D is a deformation condition for ρ such that its tangent space
is 0-dimensional. Then the universal deformation ring RD is a quotient of
W (kkk). If we also knew that there is a characteristic 0 lift of type D, then
we must have RD ' W . Consequently, any mod pn representation of type
D lifts to characteristic 0.

The question now is: How can one check if the tangent space is 0-
dimensional? Observe that we must necessarily have exactly one character-
istic 0 lift of type D. This alone might not be enough though. For instance,
RD might be W [X]/(X2).

To proceed further, and with the examples we have in mind, we shall
assume that ρ : GQ → GL2(kkk) is an absolutely irreducible representation
with determinant χ such that

• ρ|Gp ∼
(
χψ−1 ∗

0 ψ

)
with ψ unramified and ψ 6= ψ−1,

• if q - p then #ρ(Iq) | p.
By Lemma 3.24 of [1], the restriction ρ|GL

is absolutely irreducible where

L = Q(
√

(−1)(p−1)/2p).
Let N be the Artin conductor of ρ. For an integer k ≥ 2, let S(k,N, ρ)

be the (possibly empty) set of newforms of level N with ρf mod p ' ρ.
With notation as in Theorem 3.42 of [1], we then have an isomorphism

R∅
∼−→ T∅, where R∅ is the universal deformation ring for minimally ram-

ified ordinary lifts and T∅ is the reduced Hecke algebra generated by the
Fourier coefficients of the newforms in S(2, N, ρ). In particular, the dimen-
sion of the tangent space in the minimally ramified case is 0 if and only if
#S(2, N, ρ) = 1.

For n ≥ 1 set kn := (p − 1)pn−1 − (p − 1) + 2 and define a deformation
condition Dkn for ρ as follows: A lift ρ : GQ → GL2(A) is a deformation of
type Dkn if

• det ρ = χkn−1 and ρ is unramified outside primes dividing N ,
• at primes q |N , ρ|Gq ∼

( χ ∗
0 1

)
up to twist, and

• at p,

ρ|Gp ∼

(
ψ̃−1χkn−1 ∗

0 ψ̃

)
,

where ψ̃ is an unramified lift of ψ.
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Note that for n = 1 the universal deformation ring RDkn
is R∅ ' T∅.

Clearly, the type Dkn deformations to kkk[ε]/(ε2) are in bijection with the type
D2 deformations. Hence if the tangent space of D2 has dimension 0 then so
does Dkn . We conclude that RDkn

'W , corresponding to a unique newform
in S(kn, N, ρ).

Proposition 4.1. Let f be a newform of weight k ≥ 2, level N , trivial
character and ordinary at p, such that

• ρf is absolutely irreducible,
• the conductor of ρf is N ,

• ρ|Gp ∼
( ∗ ∗
0 ψ

)
with ψ unramified and ψ2 6= 1,

• if q - p then #ρf (Iq) | p.

Assume that p − 1 divides k and that f has exactly one companion form
mod p of level N . Then ρf splits mod pn iff f has a companion form mod pn

of level N .

Proof. We need to explain why splitting implies the existence of a com-
panion form. Set ρ := ρf ⊗ χ̄1−k. By hypothesis ρ is modular and, in
fact, #S(2, N, ρ) = 1. Therefore, as noted above, the tangent space of D2

has dimension 0. The preceding discussion thus shows that RDkn
' W ,

corresponding to a unique newform gn in S(kn, N, ρ). Now, if ρf splits
mod pn then ρf ⊗ χ1−k is a deformation of type Dkn and hence ρgn ∼
ρf ⊗ χ1−k mod pn.

4.2. Greenberg’s conjecture. In this section we give some examples
of the existence (or non-existence) of higher companion forms. We shall
restrict ourselves to the setting of classical elliptic modular forms as we only
give examples in this case.

Recall that a newform f is said to have complex multiplication, or just
CM, by a quadratic character φ : GQ → {±1} if T (q)f = φ(Frobq)c(q, f)f
for almost all primes q. We will also refer to CM by the corresponding
quadratic extension. It is well known that a modular form has CM if and
only if its associated p-adic representation is induced from an algebraic Hecke
character.

Let O be a p-adic integer ring with uniformiser π and residue field kkk.
Suppose the newform f is p-ordinary and ρf : GQ → GL2(O). Then, as
indicated in the introduction, ρf |Gp can be assumed to be upper triangu-
lar with an unramified lower diagonal entry and this leads to the natural
question of determining when ρf splits at p.

There is a well-known conjectural connection between ρf to be split
at p, and f to have CM. The antecedents are sketchy, but Hida [8] calls it
Greenberg’s local non-semisimplicity conjecture; we will simply refer to it
as Greenberg’s conjecture which asserts:
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If f is ordinary at p and ρf splits at p then f has complex
multiplication.

This is satisfactorily known for modular forms over Q of weight 2. For
higher weights, the question remains largely unresolved although some in-
teresting results involving Hida families are shown in Ghate [5], which also
has a survey of results for weight 2. The analogous problem for Λ-adic mod-
ular forms was resolved in Ghate–Vatsal [6] by using deformation theory but
similar methods appear not to bear fruit in the classical case. Emerton [2]
shows how this conjecture would follow from a p-adic version of the varia-
tional Hodge conjecture. Through the Main Theorem and Proposition 4.1,
higher congruence companions offer a slightly different perspective to the
question of ρf splitting at p.

To describe this further, let N be the level of the p-ordinary newform f .
Assume that f has trivial character and has weight p− 1. For each positive
integer n we set

kn := pn−1(p− 1)− (p− 1) + 2.

We then proceed as follows:

(a) Check that f has a companion form mod p. Check congruences to
make sure that the residual representation ρf mod π is absolutely
irreducible and that c(p, f) 6≡ ±1 mod π. We can therefore write

ρf mod π =

(
χk−1ψ 0

0 ψ
−1

)

with ψ
−1 6= ψ.

(b) In order to be able to check fewer cases, ensure that ρf is minimally
ramified, i.e. the Artin conductor of ρf mod π is N .

(c) Set ρ := ρf ⊗χ1−k mod π. For each n ≥ 1 let Dkn be the weight kn,
trivial character deformation condition as described in Section 4.1.
Check if the tangent spaces can be taken to be 0-dimensional. Thus
we have to check if f has precisely one companion form of type Dk1 .
We then apply Proposition 4.1 to deduce that ρf splits mod pn if and
only if f has a companion form mod pn, i.e. there is a newform g of
level N , trivial character, weight kn such that f ≡ g⊗χk−1 mod pn.

We check Greenberg’s conjecture explicitly for two known non-CM forms
of weight 4. The computations were done on MAGMA. In both cases p = 5.
We note that in these examples, taking N to be the level of f , one may
check its companionship with a form g “by hand” by simply verifying the
congruences c(f,m) ≡ m3c(g,m) mod 5n for (m, 5N) = 1 up to the Sturm
bound.
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Example 4.2. Let f be the newform of weight 4, level 21 and trivial
character with the following Fourier expansion:

g = q − 3q2 − 3q3 + q4 − 18q5 + 9q6 + 7q7 + 21q8 + 9q9 + 54q10 − 36q11

− 3q12 − 34q13 − 21q14 + 54q15− 71q16 + 42q17− 27q18−124q19−18q20

− 21q21 + 108q22 − 63q24 + 199q25 + 102q26 − 27q27 + 7q28 + 102q29

− 162q30 − 160q31 + 45q32 + 108q33 − 126q34 − 126q35 + 9q36 + 398q37

+ 372q38 + 102q39 − 378q40 − 318q41 + 63q42

− 268q43 − 36q44 − 162q45 + 240q47 + 213q48 + 49q49−597q50 + · · · .
MAGMA outputs, modulo 5, a unique companion form g of weight 2, level 21
and trivial character with the following Fourier expansion:

f = q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 + 2q10 + 4q11 − q12

− 2q13 + q14 − 2q15 − q16 − 6q17 − q18 + 4q19 + 2q20 − q21 − 4q22

+ 3q24 − q25 + 2q26 + q27 + q28 − 2q29 + 2q30 − 5q32 + 4q33

+ 6q34 + 2q35 − q36 + 6q37 − 4q38 − 2q39 − 6q40 + 2q41

+ q42 − 4q43 − 4q44 − 2q45 − q48 + q49 + q50 + · · · .
Clearly there are no companions of weight 2 and level 3 or 7. Modulo 52, f
has no companion forms of weight 18, level dividing 21 and trivial character.
Thus f does not split mod 52.

Example 4.3. Let f be the newform of weight 4, level 57 and trivial
character with Fourier expansion

f = q − q2 + 3q3 − 7q4 − 12q5 − 3q6 − 20q7 + 15q8 + 9q9 + 12q10 − 4q11

− 21q12 − 76q13 + 20q14 − 36q15 + 41q16 + 22q17 − 9q18 − 19q19

+ 84q20 − 60q21 + 4q22 + 82q23 + 45q24 + 19q25 + 76q26 + 27q27

+ 140q28 + 242q29 + 36q30 − 126q31 − 161q32 − 12q33 − 22q34 + 240q35

− 63q36 − 180q37 + 19q38 − 228q39 − 180q40 − 390q41 + 60q42 + 308q43

+ 28q44 − 108q45 − 82q46 − 522q47 + 123q48 + 57q49 − 19q50 + · · · .
It has a unique mod 5 companion form g of weight 2, level 57 and trivial
character with Fourier expansion

g = q − 2q2 − q3 + 2q4 − 3q5 + 2q6 − 5q7 + q9 + 6q10 + q11 − 2q12

+ 2q13 + 10q14 + 3q15 − 4q16 − q17 − 2q18 − q19 − 6q20 + 5q21 − 2q22

− 4q23 + 4q25 − 4q26 − q27 − 10q28 − 2q29 − 6q30 − 6q31 + 8q32

− q33 + 2q34 + 15q35 + 2q36 + 2q38 − 2q39 − 10q42 − q43 + 2q44

− 3q45 + 8q46 − 9q47 + 4q48 + 18q49 − 8q50 + · · · .
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and no other companions of level dividing 57. Modulo 52, f has no compan-
ion forms of weight 18, level dividing 57 and trivial character.
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