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On the Iwasawa λ-invariants of real quadratic fields
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1. Introduction. Let k be a number field and k∞ =
⋃
n≥0 kn be a

Zp-extension of k for a prime p. Let An be the Sylow p-subgroup of the ideal
class group of kn and en be the exact power of p of #An, i.e., #An = pen .
It is well known that there are integers µ, λ ≥ 0 and ν, called Iwasawa
invariants of k∞/k, such that en = µpn + λn+ ν for n� 0 ([4]).

In [3], Greenberg conjectured that µ = λ = 0 if k is a totally real field and
gave several examples supporting the conjecture. Then in 1979, Ferrero and
Washington ([1]) proved that µ = 0 if k is an abelian field and k∞ is the basic
Zp-extension of k. Since then, a lot of results have been published on the
Iwasawa invariants including some recent work on the λ-invariant ([8], [12]).
Greenberg’s conjecture on the λ-invariant, however, still remains open even
when k is a real quadratic field.

In this paper we will study the λ-invariant when k is a real quadratic
field. One of the advantages of studying ideal class groups of abelian fields
as compared with other fields is that the former have circular units which
carry information about the class number. More precisely, let En be the
group of units and Cn the group of circular units of kn defined by Sinnott
([10]). Then the index theorem of Sinnott says that #An = #Bn if p is an
odd prime, where Bn is the Sylow p-subgroup of En/Cn.

From now on, we let k be a real quadratic field and k∞ be its Zp-
extension. Let S be the set of primes consisting of 2 and the prime factors
of the conductor and the class number of k. The aim of this paper is to find
a criterion for the vanishing of the λ-invariant λp of the Zp-extension k∞
over k for p 6∈ S.

If p remains inert in k, then An = 0 for all n ≥ 0 since p -h0 ([11]), and
so λp = 0. Thus, throughout this paper, we will always assume that p splits
in k. When p splits in k, indivisibility of h0 by p does not imply An = 0
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for all n ≥ 0. For instance, if k = Q(
√

85) and p = 3, then A0 = {0} but
A1 6= {0} ([6]). Despite this example, we can still hope that λ3 = 0.

We briefly explain the main theorems of this paper. Let Gn = Gal(kn/k)
and Γ = lim←−Gn = Gal(k∞/k). It is known that the Tate cohomology
group Ĥ0(Gn, Cn) is isomorphic to Z/pnZ ([6]). Let δ be a circular unit
of k which generates Ĥ0(Gn, Cn). We may assume that δ ≡ 1 mod p, for
otherwise we can replace δ by δp−1. To be more precise, we may let δ =∏
τ∈∆ (1− ζτd )χ(τ)(p−1), where ∆ = Gal(Q(ζd)/Q) and ζd is a primitive dth

root of 1 ([6]). Let vp be the p-adic valuation normalized by vp(p) = 1. Then
we have

Theorem 1. Let p 6∈ S. If vp(δ − 1) = maxt{t | Ĥ0(Gt, Et) = 0} + 1,
then λp = 0.

As an application of Theorem 1, we examine the following special case.
As was mentioned, #An = #Bn. The groups An and Bn are known to be
more deeply related. Indeed, as Gal(k∞/k)-modules, lim←−An and lim←−Bn have
the same characteristic ideals by the main conjecture which was proved by
Mazur and Wiles ([7]). And it is an open question if An ' Bn as abelian
groups or as Gn-modules. We prove

Theorem 2. Let p 6∈ S. Let M be the integer such that vp(δ−1) = M+1.
If #AGMM = #BGMM , then λp = 0.

Finally, in Theorem 3, we consider the p-adic L-function L(s, χ) attached
to the nontrivial character χ of k. It is known that if vp(Lp(1, χ)) = 0 (i.e.,
p - Lp(1, χ)), then An = {0} for all n ≥ 0 and thus λp = 0 ([6]). In
Theorem 3, we generalize this.

Theorem 3. Let p 6∈ S. If vp(Lp(1, χ)) ≤ 1, then λp = 0.

2. Lemmas. In this section, we prove several lemmas on cohomology
groups of units and circular units in the Zp-extension of a real quadratic
field k. We keep assuming that p splits in k and p 6∈ S. In particular, p does
not divide the class number h0 of k.

Lemma 1. Let Gn = Gal(kn/k) and Γ = lim←−Gn = Gal(k∞/k). Let
C∞ =

⋃
n≥0 Cn and E∞ =

⋃
n≥0 En. Then

(1) CGnn = C0,
Ĥ0(Gn, Cn) ' Z/pnZ,
H1(Gn, Cn) ' (Z/pnZ)2,
H1(Γ,C∞) ' (Qp/Zp)2,
H2(Γ,C∞) ' Qp/Zp.

(2) H1(Γ,E∞) ' (Qp/Zp)2,
H2(Γ,E∞) ' Qp/Zp.
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P r o o f. For (1), we refer to [6]. In [5], Iwasawa proved that H2(Γ,E∞) '
Qp/Zp and that H1(Γ,E∞) = (Qp/Zp)2 ⊕H for some finite group H.

Let In be the ideal group of kn and Pn the subgroup of In generated by
the principal ideals.

From 0→ En → k×n → Pn → 0, we have

0→ EGnn → k×n
Gn → PGnn → H1(Gn, En)→ H1(Gn, k×n )→

H1(Gn, Pn)→ Ĥ0(Gn, En)→ Ĥ0(Gn, k×n )→ . . .

Note that EGnn ' E0, k×n
Gn ' k×0 and H1(Gn, k×n ) ' 0. Hence

0→ k×0 /E0 → PGnn → H1(Gn, En)→ 0

and

0→ H1(Gn, Pn)→ Ĥ0(Gn, En)→ Ĥ0(Gn, k×n )→ . . .

Thus we have

H1(Gn, En) ' PGnn /P0

and

H1(Gn, Pn) ' ker(Ĥ0(Gn, En)→ Ĥ0(Gn, k×n )).

From 0→ Pn → In → In/Pn → 0, we have

0→ PGnn → IGnn → (In/Pn)Gn → H1(Gn, Pn)→ H1(Gn, In) ' 0→ . . .

Hence

0→ PGnn /P0 → IGnn /P0 → (In/Pn)Gn → H1(Gn, Pn)→ 0.

Therefore

0→ H1(Gn, En)→ IGnn /P0 → (In/Pn)Gn →
ker(Ĥ0(Gn, En)→ Ĥ0(Gn, k×n ))→ 0.

We also have an exact sequence

0→ I0/P0 → IGnn /P0 → IGnn /I0 → 0.

By tensoring the above sequence with Zp, we get

IGnn /P0 ⊗ Zp ' IGnn /I0 ⊗ Zp ' IGnn /I0 ' (Z/pnZ)2

since p -h0. Therefore, we obtain

(∗) 0→ H1(Gn, En)→ IGnn /I0 → (In/Pn)Gn →
ker(Ĥ0(Gn, En)→ Ĥ0(Gn, k×n ))→ 0.
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For m > n, we have a commutative diagram

0 H1(Gn, En) IGnn /I0 ' (Z/pnZ)2

0 H1(Gm, Em) IGmm /I0 ' (Z/pmZ)2

// //

�� ��
// //

By taking direct limits, we have

0→ lim−→H1(Gn, En) ' (Qp/Zp)2 ⊕H → lim−→(Z/pnZ)2 ' (Qp/Zp)2.

Hence H must be trivial, and so

H1(Γ,E∞) ' (Qp/Zp)2.

Lemma 2. The induced homomorphism H1(Γ,C∞)→ H1(Γ,E∞) is sur-
jective.

P r o o f. Let Bn = En/Cn⊗Zp be the Sylow p-subgroup of En/Cn. It is
known ([2]) that the natural map En/Cn → Em/Cm for m > n is injective.
Let B∞ = lim−→Bn be the direct limit under the natural injection. So B∞ =
lim−→(En/Cn ⊗ Zp) = E∞/C∞ ⊗ Zp. From 0 → C∞ → E∞ → E∞/C∞ → 0,
we have 0→ C∞⊗Zp → E∞⊗Zp → B∞ → 0. Then we obtain a long exact
sequence

0→ BΓ∞/B0 → H1(Γ,C∞)→ H1(Γ,E∞)→ H1(Γ,B∞)→ H2(Γ,C∞)

→ H2(Γ,E∞)→ H2(Γ,B∞)→ . . .

Note that BΓn∞ is finite ([11], Lemma 15.39, Proposition 15.44), where Γn =
Gal(k∞/kn). Thus BΓ∞ is also finite. Also note that H2(Γ,B∞) = {0}, since
B∞ is a torsion group ([9], Proposition 3.25, Example 17). Hence the above
long exact sequence reads

0→ finite→ (Qp/Zp)2→ (Qp/Zp)2→H1(Γ,B∞)→ Qp/Zp→ Qp/Zp→ 0.

Therefore H1(Γ,B∞) is a finite group. Since (Qp/Zp)2 has no nontrivial
cokernel, H1(Γ,C∞)→ H1(Γ,E∞) is surjective.

Lemma 3. The induced maps H1(Gn, Cn)→H1(Gn, En) and Ĥ0(Gn, Cn)
→ Ĥ0(Gn, En) are surjective for all n ≥ 1.

P r o o f. From 0 → Cn → En → En/Cn → 0, we get a long exact
sequence

0→ B0 → BGnn → H1(Gn, Cn)→ H1(Gn, En)
f→ H1(Gn, Bn)→ .

Since p -h0, we have B0 = {0}. Then consider the following commutative
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diagram:

H1(Gn, Cn) H1(Gn, En) H1(Gn, Bn)

H1(Γ,C∞) H1(Γ,E∞) H1(Γ,B∞)

// //

��

f //

��

//

��
// // zero map // //

where vertical maps are inflations. From the injectivity of the inflation map
H1(Gn, Bn) → H1(Γ,B∞), one can easily see that f is a zero map. Hence
H1(Gn, Cn)→ H1(Gn, En) is surjective. The surjectivity of Ĥ0(Gn, Cn) '
C0/NnCn → Ĥ0(Gn, En) ' E0/NnEn follows immediately from the as-
sumption p -h0, where Nn is the norm map from kn to k0.

3. λ-invariant. In this section, we will prove the main theorems stated
in the introduction. Since p splits in k, the completion of k at a prime ℘
above p is Qp. We denote the completion of kn at the prime of kn above
℘ by Qp,n. Let δ =

∏
τ∈∆ (1− ζτd )χ(τ)(p−1) be a circular unit of k which

generates Ĥ0(Gn, Cn) as in the introduction.

Theorem 1. Let p 6∈ S. If vp(δ − 1) = maxt{t | Ĥ0(Gt, Et) = 0} + 1,
then λp = 0.

Remark. Since NmEm ⊂ NnEn for m > n, Ĥ0(Gn, En) is a quotient
group of Ĥ0(Gm, Em). Thus if Ĥ0(Gm, Em) = 0, then Ĥ0(Gn, En) = 0.
And since E0/

⋂
n≥0NnEn ' Qp/Zp (we are assuming that p splits in k),

Ĥ0(Gm, Em) 6= 0 for sufficiently large m. Thus maxt{t | Ĥ0(Gt, Et) = 0} is
well defined. Also note that Ĥ0(Gt, Et) is generated by δ since Ĥ0(Gt, Ct)→
Ĥ0(Gt, Et) is surjective. Hence, if Ĥ0(Gt, Et) = {0}, then δ = Nt(ηt)
for some ηt ∈ kt. By reading this equation in the completion, i.e.,
ηt ∈ Qp,t and Nt = NQp,t/Qp , we get δ ≡ 1 mod pt+1. Therefore vp(δ − 1) ≥
maxt{t | Ĥ0(Gt, Et) = 0}+ 1.

Proof of Theorem 1. We will prove the vanishing of λp by showing that
every ideal in kn capitulates in k∞. Let Dn be the kernel of the natural
map jn : An → lim−→Am. Since Gn acts on Dn, An/Dn is a Gn-module. To
prove An/Dn = {0}, it is enough to show that (An/Dn)Gn = {0}. Let C be
a class in An such that Cσ−1 ∈ Dn, where σ is a topological generator of
Γ = Gal(k∞/k). Thus Cσ−1 = 0 in Am for m � n. Let jn,m : An → Am
be the natural map and write jn,m(C) = C ′. Let a be an ideal of km which
represents C ′. Thus aσ−1 = (α) for some α ∈ km.

Since (Nm(α)) = Nmaσ−1 = (1),Nm(α) = ε is a unit in k. Let a, 0 ≤ a <
pm, be such that ε mod NmEm = δa mod NmEm. That is, ε = δaNm(ηm)
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for some unit ηm ∈ Em. This is possible by Lemma 3. Then δa = Nm(αη−1
m ).

Thus δa is a norm from Qp,m to Qp. Therefore δa ≡ 1 mod pm+1.
Let M = maxt{t | Ĥ0(Gt, Et) = 0} = vp(δ − 1) − 1. So δ ≡ 1 mod

pM+1 but δ 6≡ 1 mod pM+2. Since δa ≡ 1 mod pm+1, we must have a ≡ 0

mod pm−M . Let a = pm−Mb. Then ε = δaNm(ηm) = (δb)
pm−M

Nm(ηm).
Since Ĥ0(GM , EM ) = 0, δb = NM (ηM ) for some ηM ∈ EM . Hence δa =

(δb)
pm−M

= Nm(ηM ), and thus ε = Nm(ηMηm). Therefore ε = Nm(α) =
Nm(η) for a unit η = ηMηm ∈ Em. So α = ηβ1−σ for some β ∈ km. Hence
aσ−1 = (α) = (β)1−σ, which means that a(β) is fixed under Gm. Thus a(β)
is a product of ideals from k0 and primes above p. Since primes above p
capitulate, jm(C ′) = 0. Therefore jn(C) = 0. This completes the proof.

Theorem 2. Let p 6∈ S. Let M be the integer such that vp(δ−1) = M+1.
If #AGMM = #BGMM , then λp = 0.

P r o o f. By the remark after Theorem 1, it is enough to show that
vp(δ − 1) ≤ maxt{t | Ĥ0(Gt, Et) = 0} + 1. Thus it suffices to show that
Ĥ0(GM , EM ) = {0}.

Since δ ≡ 1 mod pM+1, δ = NQp,M/Qp(η) for some unit η in Qp,M .
Since primes of k above q (q 6= p) are unramified in kM , δ is a local norm
for all primes. Therefore δ is a global norm by the Hasse theorem. That
is, Ĥ0(GM , CM ) → Ĥ0(GM , k∗M ) is a zero map. Since Ĥ0(GM , CM ) →
Ĥ0(GM , EM ) is surjective by Lemma 3, Ĥ0(GM , EM )→ Ĥ0(GM , k∗M ) is a
zero map. Hence ker(Ĥ0(GM , EM )→ Ĥ0(GM , k∗M )) = Ĥ0(GM , EM ). Thus
from a sequence similar to (∗) in Section 2, we have an exact sequence

0→ H1(GM , EM )→ IGMM /I0 → AGMM → Ĥ0(GM , EM )→ 0.

Since the Herbrand quotient for EM is pM , we have
#H1(GM , EM )/#Ĥ0(GM , EM ) = pM .

Since #IGMM /I0 = p2M , we get #AGMM = pM .
By Lemma 3, we have another exact sequence

0→ BGMM → H1(GM , CM )→ H1(GM , EM )→ 0.

Note that #BGMM = #AGMM = pM and that #H1(GM , CM ) = p2M . Therefore
#H1(GM , EM ) = pM , and so #Ĥ0(GM , EM ) = 0.

To prove Theorem 3, we need a lemma. We let δ=
∏
τ∈∆ (1− ζτd )χ(τ)(p−1)

as before.

Lemma 4. If p | Lp(1, χ), then Ĥ0(G1, E1) = {0}.
P r o o f. Consider the exact sequence 0 → BG1

1 → H1(G1, C1) →
H1(G1, E1)→ 0. Since p | Lp(1, χ), B1 6= {0} ([6] or [8]) and so BG1

1 6= {0}.



The Iwasawa λ-invariants 173

Since H1(G1, C1) ' Z/pZ × Z/pZ, we see that H1(G1, E1) is either {0}
or Z/pZ. But πσ−1 is a nontrivial element of H1(G1, E1), where π is a
prime element of Q1, the subextension of Q(ζp2) of degree p over Q. Thus
H1(G1, E1) ' Z/pZ. Since the Herbrand quotient for E1 is p, we have
Ĥ0(G1, E1) = {0}.

Theorem 3. Let p 6∈ S. If vp(Lp(1, χ)) ≤ 1, then λp = 0.

P r o o f. If vp(Lp(1, χ)) = 0, then there is nothing to prove as was ex-
plained in the introduction. So we assume that vp(Lp(1, χ)) = 1. Let δ be
as above. Note that

Lp(1, χ) = −
(

1− 1
p

)
g(χ)
d

∑

τ∈∆
χ(τ)logp(1− ζτd )

= −g(χ)
pd

logp
( ∏

τ∈∆
(1− ζτd )χ(τ)(p−1)

)
= −g(χ)

pd
logpδ,

where g(χ) =
∑d
a=1 χ(a)ζad is the Gauss sum for χ. Thus vp(logp δ) =

vp(Lp(1, χ)) + 1 = 2.
Since δ ≡ 1 mod p, we have vp(logp δ) = vp(δ−1). Therefore vp(δ−1) = 2.

By Lemma 4, Ĥ0(G1, E1) = {0}. But Ĥ0(G2, E2) is not trivial, for otherwise
vp(δ − 1) ≥ 2 + 1 = 3 by the Remark after Theorem 1. Hence vp(δ − 1) =
2 = maxt{t | Ĥ0(Gt, Et) = 0}+ 1, and thus λp = 0 by Theorem 1.
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