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Estimating heights using auxiliary functions
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1. Introduction. Let K be a number field and let v be a place of K
dividing the place p of Q. Of course, if v is non-Archimedean then p is a
rational prime while if v is Archimedean then p =∞. We write Kv to denote
the completion of K at v and Qp to denote the completion of Q at p. It is
clear that these completions do not depend on a specific absolute value taken
from the places v and p. We write d = [K : Q] for the global degree and
dv = [Kv : Qp] for the local degree.

We now select two absolute values on Kv for each place v. The first
absolute value, denoted ‖ · ‖v, is the unique extension of the p-adic absolute
value on Qp. The second, denoted | · |v, is defined by

|x|v = ‖x‖dv/d
v

for all x ∈ Kv. We note the important identity

d =
∑
v|p

dv

as well as the product formula ∏
v

|α|v = 1

for all α ∈ K×. Furthermore, each of the above absolute values extends
uniquely to an algebraic closure Kv. If v is Archimedean then Kv is com-
plete, however, in general, Kv is not complete and we write Ωv to denote its
completion. It is well-known that Ωv is algebraically closed for all places v.
Moreover, we may define the Weil height of α ∈ K by

h(α) =
∏
v

max{1, |α|v}
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where the product is taken over all places v of K. By the way we have
normalized our absolute values, this definition does not depend on K, and
therefore we get a well-defined function on Q.

For f ∈ Z[x] with roots α1, . . . , αd we define the Mahler measure of f by

µ(f) =
d∏

k=1

h(αk).

Since h is invariant under Galois conjugation over Q, we note that if f is
irreducible and α is any root of f then µ(f) = h(α)degα.

By Kronecker’s theorem, µ(f) ≥ 1 with equality precisely when f is a
product of cyclotomic polynomials and ±x. Further, in 1933, D. H. Lehmer
[4] asked if there exists a constant c > 1 such that µ(f) ≥ c in all other
cases. It can be computed that

µ(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1) = 1.17 . . . ,

which remains the smallest known Mahler measure greater than 1.
Since Lehmer’s famous 1933 paper, many special cases of his proposed

problem have been solved. In 1971, Smyth [7] showed that if α and α−1 are
not Galois conjugates, then the minimal polynomial of α over Q has Mahler
measure at least µ(x3 − x− 1). In a different direction, Schinzel [6] showed
as a corollary to a more general result that if f ∈ Q[x] has only real roots
then µ(f) ≥ (1 +

√
5)/2.

Recently, Borwein, Dobrowolski and Mossinghoff [1] showed that if f ∈
Z[x] has no cyclotomic factors and has coefficients congruent to 1 modulo
an integer m, then

(1.1) µ(f) ≥ cm(T )(deg f)/(1+deg f).

Here, cm(T ) > 1 is a constant depending on m and an auxiliary polynomial
T ∈ Z[x]. They were able to obtain an explicit lower bound for µ(f) by mak-
ing a choice of auxiliary polynomial T . Moreover, Dubickas and Mossinghoff
[2] generalized the results of [1] so that the polynomial f in (1.1) may be any
factor of a polynomial having coefficients congruent to 1 modulo m. They
also constructed a sequence of auxiliary polynomials that further improved
the explicit bounds given in [1]. Following these methods, the author [5]
constructed a function U(α, T ) and showed that

(1.2) 1 = h(α) · U(α, T )

for all polynomials T over Q with T (α) 6= 0. We now briefly recall this
construction.

Define the local supremum norm of T ∈ Ωv[x] on the unit ball by

(1.3) νv(T ) = sup{|T (z)|v : z ∈ Ωv and |z|v ≤ 1}.
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Consider the vector space Jv of polynomials over Ωv of degree at most N−1.
For α ∈ Ωv and T ∈ Jv define

(1.4) Uv(α, T ) = inf{νv(T − f) : f ∈ Jv and f(α) = 0}.
Lemma 2.1 of [5] states that

(1.5) |T (α)|v = max{1, |α|v}N · Uv(α, T ).

Now assume that α ∈ Q and T ∈ Q[x] with T (α) 6= 0. In this situation, we
may define a global version of Uv(α, T ) by

U(α, T ) =
∏
v

Uv(α, T )

where the product runs over all places v of a number field containing α and
the coefficients of T . According to (1.5), this product is indeed finite and
does not depend on this number field. We may apply the product formula
to |T (α)|v to obtain (1.2).

The advantage of this identity is that we may freely select T in a way
that is convenient without changing the value of U(α, T ). It can then be
used to estimate the Weil height in certain special cases as found in [5].
Our goal for the present paper is to apply this strategy to obtain analogous
results regarding the projective height and, more generally, the height on
subspaces.

If a = (a1, . . . , aN ) ∈ ΩN
v , define the local projective height of a by

(1.6) Hv(a) = max{|a1|v, . . . , |aN |v}.
That is, the local projective height is simply the maximum norm on ΩN

v with
respect to | · |v. It is worth noting that some authors define the projective
height using the maximum norm only at the non-Archimedean places while
using the L2 norm on the components of a at the Archimedean places.
However, we are motivated by generalizing the Weil height, so we will find
it more relevant to use the maximum norm at all places in our definition.
Indeed, we note that

H((1, α, . . . , αN )) = h(α)N .

It is clear that Hv(a) = 1 for almost all places v of K, so we may define the
global projective height of a ∈ KN by

H(a) =
∏
v

Hv(a)

where the product is taken over all places v of K. Of course, by the way we
have chosen our absolute values, this definition does not depend on K. Fur-
thermore, the product formula implies that H(a) is well defined on PN−1(Q).
In Section 2, we define U(a, T ) analogously to (1.4) and prove that

(1.7) 1 = H(a)M · U(a, T ).
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Here T is a homogeneous polynomial of degree M in N variables over Q
with T (a) 6= 0. We also give a simple example of this result to demonstrate
how it might be applied.

In a slightly different direction, suppose that W is a subspace of QN

with basis {w1, . . . ,wN}. The height of W is defined to be the height of the
vector w1 ∧ · · · ∧wM in the exterior product

∧M (QN ). That is,

(1.8) H(W ) = H(w1 ∧ · · · ∧wM ).

This definition does not depend on K, and it follows from the product
formula that H(W ) does not depend on our choice of basis. In Section 3,
we define U(W,Ψ) for a surjective linear transformation Ψ : QN → QM and
prove that

(1.9) 1 = H(W ) · U(W,Ψ)

whenever W ∩kerΨ = {0}. This provides an analog of (1.2) using the height
on subspaces.

2. The projective height using auxiliary homogeneous polyno-
mials. We begin by defining the function U(a, T ) given in (1.7). Let Lv
denote the vector space of homogeneous polynomials over Ωv of degree M
in N variables along with the zero polynomial. We define an analog of the
local supremum norm on polynomials by

(2.1) νv(T ) = sup{|T (z)|v : z ∈ ΩM
v , Hv(z) ≤ 1}

and set

(2.2) Uv(a, T ) = inf{νv(T − f) : f ∈ Lv, f(a) = 0}

for T ∈ Lv. This is the local version of U(a, T ) that will appear in our
theorem. Let

Z(a) = {f ∈ Lv : f(a) = 0}.

It is obvious that (2.2) descends to a norm on the one-dimensional quotient
Lv/Z(a), so that the ratio |T (a)|v/Uv(a, T ) does not depend on T . In fact,
we are able to prove something much stronger.

Lemma 2.1. If a ∈ ΩN
v then

(2.3) |T (a)|v = Hv(a)M · Uv(a, T ) for all T ∈ Lv.

Proof. We assume that |an|v = Hv(a) and note that

|T (a)|v = |an|Mv ·
∣∣∣∣T( a

an

)∣∣∣∣
v

≤ Hv(a)M · νv(T )
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for all homogeneous polynomials T of degree M in N variables. Therefore
if f(a) = 0 then

(2.4) |T (a)|v = |T (a)− f(a)|v ≤ Hv(a) · νv(T − f).

Taking the infimum of the right hand side of (2.4) over all f with f(a) = 0
we obtain

(2.5) |T (a)|v ≤ Hv(a) · Uv(a, T ).

We now attempt to establish the opposite inequality. We have

Uv(a, T ) = inf{νv(T − f) : f ∈ Z(a)}
= inf{νv(T (z)− (T (z)− T (a)(zn/an)M )− T (a)f(z)) : f ∈ Z(a)}
= inf{νv(T (a)(zn/an)M − T (a)f(z)) : f ∈ Z(a)}
= |T (a)|v · Uv(a, (zn/an)M ).

It is clear that

Uv(a, (zn/an)M ) ≤ νv((zn/an)M ) = sup{|zn/an|Mv : |zn| ≤ 1} = |an|−Mv
and hence

Uv(a, T ) ≤ |T (a)|v ·Hv(a)−M ,

which completes the proof.

If T is a homogeneous polynomial over K of degree M in N variables
and a ∈ KN then Lemma 2.1 implies that νv(a, T ) = 1 for almost all places
v of K. Hence, we may define the global functions

ν(T ) =
∏
v

νv(T ) and U(a, T ) =
∏
v

Uv(a, T ),

which do not depend on K. We now obtain the following projective gener-
alization of (1.2).

Theorem 2.2. If a ∈ QN then

(2.6) 1 = H(a)M · U(a, T )

for all homogeneous polynomials T over Q of degree M in N variables having
T (α) 6= 0.

Proof. Suppose that K is a number field containing the entries of a and
the coefficients of T . Hence, we may view a as an element of ΩN

v and T as
an element of Lv for all places v of K. Thus, Lemma 2.1 implies that

(2.7) |T (a)|v = Hv(a)M · Uv(a, T )

at every place v of K. The result follows by taking the product of (2.7) over
all places of K and applying the product formula to T (a).

We may construct applications of Theorem 2.2 that are similar to those
found in [5]. Suppose, for example, that F is a homogeneous polynomial



246 C. L. Samuels

of degree M in N variables with coefficients in Z. Let X (F ) denote the
subvariety of PN−1(Q) consisting of all points a with F (a) = 0. Suppose
further that T homogeneous of degree M in N variables and m ∈ Z are
such that

T ≡ F mod m.

That is, the coefficients of T are congruent to the coefficients of F modulo m.
If a ∈ X (T ) then Theorem 2.2 implies that

1 = H(a)M · U(a, T ).

Now select a number field K containing the entries of a. If v is non-Archi-
medean then

Uv(a, T ) ≤ νv(T − F ) ≤ |m|v,

so that
U(a, T ) ≤ ν∞(T )

∏
v-∞

|m|v = m−1 · ν∞(T ).

If T has coefficients c1, . . . , cR ∈ Z, define

L1
∞(T ) =

( R∑
r=1

‖cr‖v
)dv/d

and note that by the triangle inequality we have ν∞(T ) ≤ L1
∞(T ). Hence,

we obtain a lower bound on the projective height of a:

(2.8) H(a)degF ≥ m/L1
∞(T )

for all a ∈ X (F ) \ X (T ). Hence, if L1
∞(T ) is small relative to m then we

obtain a uniform lower bound on H(a)degF over all a ∈ X (F ) \ X (T ). In
particular, if T is a monomial having coefficient ±1 then (2.8) becomes

H(a)degF ≥ m,

which is non-trivial for all m ≥ 2.

3. The height on subspaces using auxiliary linear transforma-
tions. We now turn our attention to the height on subspaces and attempt
to construct an analog of Theorem 2.2. Suppose that X is an N -dimensional
vector space over Ωv and fix a basis {e1, . . . , eN} for X. For ease of notation,
we identify X with ΩN

v by writing

x = x1e1 + · · ·+ xNeN = (x1, . . . , xN ).

In this way, we obtain the projective height of x ∈ X by

Hv(x) = max{|x1|v, . . . , |xM |v}.
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Of course, this is a norm on X, and therefore, it yields the natural dual
norm of an element φ ∈ X∗,

νv(φ) = sup{|φ(x)|v : x ∈ X, Hv(x) ≤ 1}.
Now fix an element w ∈ X and let

S∗(w) = {φ ∈ X∗ : φ(w) = 0},
so that S∗(w) is an N − 1-dimensional subspace of X∗. Finally, for ψ ∈ X∗
we set

Uv(w, ψ) = inf{νv(ψ − φ) : φ ∈ S∗(w)}.
We note that this defines a norm on the one-dimensional quotientX∗/S∗(w).
Of course, this implies that the ratio |ψ(w)|v/Uv(w, ψ) depends only on w
and v. Analogously to the results of [5] and of Section 2 we are able to
determine this ratio precisely.

Lemma 3.1. If w ∈ X then

|ψ(w)|v = Hv(w) · Uv(w, ψ) for all ψ ∈ X∗.
Proof. If ψ(w) = 0 then both sides of the desired identity equal 0. Hence,

we assume that ψ(w) 6= 0. Let w = (w1, . . . , wN ) and select an integer n
such that Hv(w) = |wn|v. Of course, wn 6= 0 and Hv(w/wn) = 1, so that we
obtain

|ψ(w)|v = |wn|v · |ψ(w/wn)|v ≤ Hv(w) · νv(ψ)

for all ψ ∈ X∗. Hence, if φ ∈ S∗(w) then

|ψ(w)|v = |(ψ − φ)(w)|v ≤ Hv(w) · νv(ψ − φ).

Taking the infimum of the right hand side over all φ ∈ S∗(w) we obtain

(3.1) |ψ(w)|v ≤ Hv(w) · Uv(w, ψ).

We now attempt to prove the opposite inequality. We define the map
J : X∗ → X by

J(φ) = (φ(e1), . . . , φ(eN ))

and note that J is a vector space isomorphism having the property that
φ(w) = J(φ) · w where “·” represents the inner product. We now define
appropriate bases for X∗ and S∗(w). Let cn = (0, . . . , 0, w−1

n , 0, . . . , 0)T and
note that cn · w = 1. For each index k 6= n, we define ck in the following
way. If wk 6= 0 then we let ck be the vector having w−1

k as the kth entry,
−w−1

n as the nth entry, and zero in all other entries. If wk = 0 then we
let ck be the vector having 1 as the kth entry and 0 elsewhere. Hence,
{J−1(c1), . . . , J−1(cN )} forms a basis for X∗ and

{J−1(c1), . . . , J−1(cn−1), J−1(cn+1), . . . , J−1(cN )}
forms a basis for S∗(w).
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Now write ψ = ψ1J
−1(c1) + · · ·+ψNJ

−1(cN ) and note that ψ(w) = ψn.
Therefore,

Uv(w, ψ) = inf{νv(ψ − φ) : φ ∈ S∗(w)}
= inf{νv(ψ1J

−1(c1) + · · ·+ ψNJ
−1(cN )− φ) : φ ∈ S∗(w)}

= inf{νv(ψnJ−1(cn)− ψnφ) : φ∈ S∗(w)}= |ψn|v · Uv(w, J−1(cn))

= |ψ(w)|v · Uv(w, J−1(cn)).

Next, we observe that

Uv(w, J−1(cn)) ≤ νv(J−1(cn)) = sup{|cn · z|v : Hv(z) ≤ 1}
= |wn|−1

v = Hv(w)−1.

We have found that
Uv(w, ψ) ≤ |ψ(w)|v ·Hv(w)−1

and the result follows from (3.1).

In order to generalize Lemma 3.1 to include the height on subspaces
rather than simply the projective height, we must now consider the Mth
exterior power

∧M (ΩN
v ). We define the index set

IM = {I ⊂ {1, . . . , N} : |I| = M}.
If {e1, . . . , eN} is the standard basis for ΩN

v , we obtain a natural basis

(3.2)
{∧
i∈I

ei : I ∈ I
}

for
∧M (ΩN

v ) over Ωv. The height of an element x ∈
∧M (ΩN

v ) is computed
using the basis (3.2). For φ belonging to the dual (

∧M (ΩN
v ))∗, the norm

of φ is given by

νv(φ) = sup{|φ(x)|v : x ∈
∧M (ΩN

v ), Hv(x) ≤ 1}.
If w ∈

∧M (ΩN
v ) then

Uv(w, ψ) = inf{νv(ψ − φ) : φ ∈ (
∧M (ΩN

v ))∗, φ(w) = 0}.
We also obtain the following lemma showing that a surjective linear trans-
formation Ψ : ΩN

v → ΩM
v may be viewed as a map on

∧M (ΩN
v ).

Lemma 3.2. Suppose that Ψ : ΩN
v → ΩM

v is a surjective linear transfor-
mation. Then there exists a unique linear transformation

∧M (Ψ) :
∧M (ΩN

v )
→ Ωv such that

∧M (Ψ)(w1 ∧ · · · ∧wM ) = det


Ψ(x1)

...
Ψ(xM )


for all w1, . . . ,wM ∈ ΩN

v .
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Proof. Let MM×M (Ωv) denote the vector space of M × M matrices
with entries in Ωv. We note that Ψ induces a unique M -multilinear map
Ψ ′ : (ΩN

v )M →MM×M (Ωv) given by

Ψ ′(w1, . . . ,wM ) =


Ψ(x1)

...
Ψ(xM )

 .

Furthermore, it is well-known (see, for example, [3, p. 437]) that the deter-
minant map det :MM×M (Ωv)→ Ωv defines an M -multilinear map on the
rows of the elements inMM×M (Ωv). Hence, we conclude that the composi-
tion det◦Ψ ′ is an M -multilinear map from (ΩN

v )M to Ωv. Moreover, if there
exist i 6= j with wi = wj then

det ◦ Ψ ′(w1, . . . ,wM ) = 0.

It follows that det ◦ Ψ ′ is, in fact, an alternating M -multilinear map.
By the universal property for alternatingM -tensors, there exists a unique

linear transformation T :
∧M (ΩN

v )→ Ωv such that

T ◦ ι = det ◦ Ψ ′

where ι : (ΩN
v )M →

∧M (ΩN
v ) is given by

ι(w1, . . . ,wM ) = w1 ∧ · · · ∧wM .

Therefore, we conlude that

T (w1 ∧ · · · ∧wM ) = T (ι(w1, . . . ,wM )) = det(Ψ ′(w1, . . . ,wM ))

= det


Ψ(x1)

...
Ψ(xM )

 .

By taking
∧M (Ψ) = T we complete the proof.

We now assume that W is an M -dimensional subspace of QN and Ψ :
QN → QM is a surjective linear transformation. Select a basis {w1, . . . ,wM}
for W and assume that K is a number field containing the entries of each
basis element wm as well as the entries of Ψ . We note that the height of W
is given by

H(W ) =
∏
v

Hv(w1 ∧ · · · ∧wM )

where the product is taken over all places v of K. As we noted in our intro-
duction, the product formula implies that this definition does not depend
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on the choice of basis for W . By Lemma 3.2 we may define

(3.3) U(W,Ψ) =
∏
v

Uv(w1 ∧ · · · ∧wM ,
∧M (Ψ)).

Lemma 3.1 shows that this product is indeed finite and, because of the way
we have normalized our absolute values, it does not depend on K. As in the
height on subspaces, the product formula implies that (3.3) is independent
of the basis for W as well. We may now state and prove our main result.

Theorem 3.3. If W is an M -dimensional subspace of QN then

1 = H(W ) · U(W,Ψ)

for all surjective linear transformations Ψ : QN → QM with W∩kerΨ = {0}.
Proof. Let {w1, . . . ,wM} be a basis for W and let K be a number field

containing the entries of each basis element wm and the entries of Ψ . Hence,
wm ∈ ΩN

v and Ψ : ΩN
v → ΩM

v for all places v of K. Therefore, Lemma 3.1
implies that

(3.4) |
∧M (Ψ)(w1 ∧ · · · ∧wM )|v

= Hv(w1 ∧ · · · ∧wM ) · Uv(w1 ∧ · · · ∧wM ,
∧M (Ψ)).

By Lemma 3.2 we have

∧M (Ψ)(w1 ∧ · · · ∧wM ) = det


Ψ(w1)

...
Ψ(wM )

 .

Since W ∩ kerΨ = {0} we know that the rows in the above matrix are
linearly independent, so that its determinant is non-zero. Hence, the left
hand side of (3.4) is non-zero and we may apply the product formula. The
desired identity follows immediately.

It is natural to consider the special case of Theorem 3.3 in which W is a
one-dimensional subspace spanned by an element w ∈ QN . For ψ ∈ (QN )∗

we define
U(w, ψ) =

∏
v

Uv(w, ψ)

and obtain the following corollary.

Corollary 3.4. If w ∈ QN then

1 = H(w) · U(w, ψ)

for all ψ ∈ (QN )∗ with ψ(w) 6= 0.

Proof. If W is the one-dimensional subspace spanned by w then it is
easy to see that H(W ) = H(w). Furthermore, ψ : QN → Q is a linear
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transformation and U(W,ψ) = U(w, ψ). Theorem 3.3 yields

1 = H(W ) · U(W,ψ)

and the result follows immediately.
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