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1. Introduction. Let F (s) = π−s/2Γ (s/2)ζ(s), where as usual, s =
σ + it is a complex variable, and ζ(s) is the Riemann zeta function. Let
ξ(s) = s(s−1)

2 F (s). Then F (s) and ξ(s) are real on the <s = 1/2 line. We
are interested in the zeros of the real or imaginary parts of F (s) or ξ(s)
off the 1/2 line. As will become clear in the proofs, there is essentially no
difference in the behaviour of F (s) or ξ(s) in this situation.

Let nλ(T ) denote the number of zeros of <F (1/2+λ+it) with 0 < t ≤ T .
For convenience, we can also assume that λ > 0 since F (s) = F (1− s). Let
Nλ(T ) be the number of zeros of the zeta function in the region <s ≥ 1/2+λ
and 0 < =s ≤ T . Ki [2] improved a result of Levinson [4] and showed that

nλ(T ) =
T

2π
log

T

2π
− T

2π
+O((Nλ(T ) + 1) log T ).

By an improvement of a result of Selberg by Jutila (see for instance 9.29
of [5]), we have Nλ(T ) � T 1−aλ log T where a is any constant less than 1,
so that the formula above is indeed an asymptotic formula. In the course
of the proof, Ki also noted that the number of zeros of <F (1/2 + λ + it)
in the interval [T, T + 1] is � log T . Similar results hold for the zeros of
=F (1/2 + λ+ it).

The similarities between the results above and basic results on zeros of
the zeta function are striking. However, in [3], Lagarias proves assuming RH
for 0 < λ < 1/2 and unconditionally for λ ≥ 1/2 that the behaviour of
these zeros is quite different from that of the zeros of the zeta function. Ac-
tually, Lagarias proved his results for slightly different functions, in essence
for R(t) = <ξ(1/2 + λ + it) and I(t) = =ξ(1/2 + λ + it). He proved, un-
conditionally for λ > 1/2 and conditionally assuming RH for λ < 1/2, that
the distributions of the spacings between normalized zeros of R(t) or I(t)
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up to height T converge to a limiting distribution with equal spacings of
length 1. This is in sharp contrast to the conjectured GUE distribution of
zeros of F (s) at <s = 1/2. Lagarias also showed that the zeros of I(t) and
R(t) interlace and are simple. That is, for any two consecutive zeros of R(t),
γ1 and γ2, there exists exactly one zero of I(t) in (γ1, γ2) and vice versa.

Lagarias’s perspective was also somewhat different from that of Levinson
in that instead of dealing with the real part or imaginary part of certain
functions, he instead viewed his result in terms of differences of L-functions.
Specifically he examined the entire functions A(s) = 1

2(ξ(s+ λ) + ξ(s− λ))
and B(s) = 1

2i(ξ(s + λ) − ξ(s − λ)), which can be considered as a family
of entire functions depending on λ. By the functional equation and the fact
that ξ(s̄) = ξ(s),

A(1/2 + it) = 1
2(ξ(1/2 + it+ λ) + ξ(1/2 + it− λ))

= 1
2(ξ(1/2 + it+ λ) + ξ(1/2− it+ λ)) = R(t).

Similarly, B(1/2 + it) = I(t). Thus the correspondence between these two
viewpoints is that the functions agree on the critical line.

Our results are unconditional analogues of the results in [3], which de-
pended on RH in certain ranges. We will prove our results for A(s) and B(s)
above, noting that our proofs apply with trivial changes to <F (1/2+λ+ it)
and =F (1/2 + λ+ it) as well. Our method also provides alternative routes
to the results in [3], which we indicate in a later remark. Our first result is

Theorem 1. Let

A(s) =
1
2

(ξ(s+ λ) + ξ(s− λ)) and B(s) =
1
2i

(ξ(s+ λ)− ξ(s− λ)).

Then for λ > 0, the following holds unconditionally :

(i) A(s) and B(s) have almost all of their zeros on the line <s = 1/2,
with an exceptional set of zeros up to height T not on that line of
cardinality � T 1−aλ log2 T for any a < 1.

(ii) Let 0 ≤ γ1 ≤ · · · ≤ γN be the consecutive imaginary parts of the
zeros of A(s) or B(s) and let γ̃i = 2πγi/log(γi + 1) be the normalized
zeros. Similarly define normalized zeros for those zeros with negative
imaginary part. The distribution of the spacings of the normalized
zeros of A(s) and B(s) on the critical line, up to height T , converges
to a limiting distribution with equal spacings of length 1.

The first part of the theorem is essentially a result of Ki [2], and we will
sketch a proof of it in the last section. The second part follows easily from
the next theorem, which is our main focus.

Theorem 2. Let R(t) = <ξ(1/2 + λ+ it) and I(t) = =ξ(1/2 + λ+ it).
For any B > 0, there exists E ⊂ [T, 2T ] with measure � T/logB T and
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containing � T/logB T zeros of I(t) and R(t) such that outside of this set ,
the zeros of I(t) and R(t) are simple, interlace and are regularly spaced.

The result above stated for t ∈ [T, 2T ] implies the result for t ∈ [0, T ], by
dyadic summation. This result will be proven in the next section. Through-
out this paper, we shall assume a result that was essentially proven by Ki [2],
namely that the number of zeros in [T, T + 1] of R(t) or I(t) is � log T .
Ki proved this for the imaginary and real parts of F (s), and his proof, which
is a standard application of the argument principle, applies without change
to our case.

The result above is not the strongest possible. The exceptional set as
stated is of size T over any large power of log T , but the power of log T can
be replaced by a small power of T , depending on λ. Note that we expect
it to be very difficult to prove the above result with no exceptional set at
all, since that would imply RH. Our results extend in general to Dirichlet
L-functions.

2. Proof of Theorem 2. For the rest of this note, let σ = 1/2 + λ for
λ > 0, and s = σ + it for t ∈ [T, 2T ]. We start by noting that R(t) has a
zero precisely when arg ξ(s) ≡ π/2 mod π. Similarly I(t) has a zero when
arg ξ(s) ≡ 0 mod π. Now by Stirling’s formula,

log
(
s(s− 1)

2
π−s/2Γ

(
s

2

))
= −s

2
log π +

(
s

2
− 1

2

)
log

s

2
− s

2
+

log 2π
2

+ log
s(s− 1)

2
+O(1/s),

from which we get

arg
(
s(s− 1)

2
π−s/2Γ

(
s

2

))
=
t

2
log

t

2π
− t

2
+O(1).

To understand arg ξ(s), we argue that the above dominates arg ζ(s) outside
of some exceptional set, so we need to examine arg ζ(s). Suppose that t ∈
[T, 2T ] for some large T . By Selberg, we have the standard identity (see e.g.
[5, 14.20])

ζ ′

ζ
(s) = −

∑
n<x2

Λx(n)
ns

+
x2(1−s) − x1−s

(log x)(1− s)2
+

1
log x

∑
q≥1

x−2q−s − x−2(2q+s)

(2q + s)2

+
1

log x

∑
%

x%−s − x2(%−s)

(s− %)2

= −
∑
n<x2

Λx(n)
ns

+
1

log x

∑
%

x%−s − x2(%−s)

(s− %)2
+O

(
x

T 2

)
,
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where

Λx(n) =


Λ(n) for 1 ≤ n ≤ x,

Λ(n)
log(x2/n)

log x
for x ≤ n < x2.

The last sum is over nontrivial zeros of ζ. This sum is only bounded nicely
if we stay away from zeros of ζ. Specifically, for A a parameter to be chosen
later, define E1 = E1(A) to be the union of all rectangles with vertices
σ0 + iγ− i logA T , σ0 + iγ+ i logA T , 1 + iγ+ i logA T , and 1 + iγ− i logA T ,
over all γ ∈ [T, 2T ] such that ζ(β+ iγ) = 0 for some β ≥ σ0. Then µ(E1)�
Nλ/2(T ) logA T � T/logB T , and E1 contains � T/logB T zeros in total,
for any B > 0. Indeed, E1 consists of � Nλ/2(T ) intervals each of which
contains � logA+1 T zeros of R(t) and I(t), so E1 contains � T/logB T
zeros in total, for any B > 0.

Let δ be a constant satisfying 0 < δ < 1; we will discuss choices for δ
later. Set x = log2(1+δ)/λ T . Then we have the following lemma.

Lemma 1. There is a choice of A depending only on δ and λ such that
outside of E1 = E1(A),

(1)
ζ ′

ζ
(s) = −

∑
n<x2

Λx(n)
ns

+O

(
1

logδ T

)
.

Proof. Let σ0 = 1/2 + λ/2. Outside of E1,
∑

% (x%−s − x2(%−s))/(s− %)2

is small. As usual, write % = β + iγ. We split the sum over β ≥ σ0 and
β < σ0. The sum over β ≥ σ0 is

� x2(1−σ)

logA−1 T
.

Here we bounded the numerator by x2(1−σ), noted that |s− %| ≥ logA T for
β ≥ σ0 and s /∈ E1, and used the bound of log T on the number of zeros %
of ζ satisfying =% ∈ [T, T + 1].

Similarly, the sum over β < σ0 is

� x−λ/2 log T � 1
logδ T

,

by the definition of x. Since x is a power of log T , we may pick A sufficiently
large such that the first bound is � 1

logδ T
. Specifically, we set A = (1 −

2λ)2(1 + δ)/λ+ 1 + δ. The result then follows.

To grasp the size of the sum over primes appearing in (1), we will refer
to Corollary 9.5 in [1] which states

Lemma 2. Let A(s) =
∑

n≤N a(n)/ns be a Dirichlet polynomial. Let
T ≥ 1 and let sr = σ + itr (r = 1, . . . , R) be points with T < t1 < · · · < tR
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< 2T and tr+1 − tr ≥ 1. Then
R∑
r=1

|A(sr)|2k � (T +Nk) log(2Nk)
(∑
n≤N

dk(n)|a(n)|2n−2σ
)k
,

where dk(m) denotes the number of factorizations of m as a product of k
numbers, and the implied constant is absolute.

We apply this lemma to A(s) =
∑

n<x2 Λx(n)/ns, so that N = x2 =
log4(1+δ)/λ T � log8/λ T . In our case, σ = 1/2 + λ so

∑
n dk(n)|a(n)|2n−2σ

converges. Hence
R∑
r=1

|A(sr)|2k �k,λ T log T

for any k satisfying Nk � T . Since N is a power of log T , we may pick k to
be as large a constant as we like. Now suppose that A(sr) � log1−δ T for
each 1 ≤ r ≤ R. Then R� T/logB T for any fixed B > 0. Here, for a given
B, the choice of k will depend only on B and δ. Now let

E2 = {t ∈ [T, 2T ] : |A(σ + it)| > log1−δ T}.

From the discussion above, E2 has at most � T/logB T points that are
separated from each other by at least 1, and thus has � T/logB−1 T zeros
of R(t) or I(t). Clearly, the measure of E2 is � T/logB T .

Let E = E1 ∪E2 be our exceptional set. Then in intervals outside of E,

(2)
d

dt
arg ξ(σ + it) =

1
2

log
t

2π
+O(log1−δ T ),

where the main term comes from logarithmic differentiation of the gamma
factor and the error term from ζ′

ζ (s). Specifically, the main term arises from

= ds
dt

d

ds
(log(π−s/2) + logΓ (s/2) + s(s− 1)/2)

= =i
(
−1

2
log π +

1
2

log
s

2
+O(1/s)

)
=

1
2

log
t

2
+O(1).

Thus, the argument is a strictly increasing function of t for large T and so
the zeros of R(t) and I(t) are simple and strictly interlace.

It remains to examine the normalized spacings. By integrating (2), we
find that for any ∆� 1/log T ,

(3) arg ξ(s+ i∆)− arg ξ(s) =
∆

2
log

t

2π
+O(log−δ T ).
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In particular, if γ1 < γ2 were consecutive zeros of R(t) in [T, 2T ], we claim
that

γ2 − γ1 =
2π

log γ1
2π

+O

(
1

log1+δ T

)
.

Indeed, by the monotonicity of arg ξ(σ + it),

arg ξ(σ + iγ2)− arg ξ(σ + iγ1) = π.

The claim then follows from (3). Consequently, the normalized spacing is
1 +O(1/logδ T ). Let ψ be the unique zero of I(t) in (γ1, γ2). Then similarly

ψ − γ1 =
π

log γ1
2π

+O

(
1

log1+δ T

)
so that ψ is actually in the middle of (γ1, γ2). Of course, the same holds
with the roles of R(t) and I(t) reversed. Note that the results above all hold
for any δ ∈ (0, 1).

Remark. Our method of proof also provides a direct alternative to the
proof of results in [3]. Indeed, if we assume RH, then Titchmarsh [5, 14.5.1]
gives

ζ ′

ζ
(s)� log1−2λ T for 0 < λ < 1/2,

so if we take δ = 2λ, we would have no exceptional set. For λ > 1/2, things
are even simpler as we have unconditionally ζ′

ζ (s)� 1. Finally, for λ = 1/2,
an unconditional result is still possible by using the fact that

ζ ′

ζ
(s)� log T

log log T
for T ≥ 2,

from [5, 5.17.4]. Here the error terms with 1/logδ T would be replaced with
1/log log T .

3. An analogue of Ki’s result. Here we will provide a sketch of the
proof of Theorem 1(i), leaving out those details which are readily available
in [2]. Let

G(z) := ξ(1/2 + iz)

and

H(z) := G(z − iλ) +G(z + iλ), J(z) := G(z − iλ)−G(z + iλ).

By the definition of G and by the functional equation for ξ, the two functions
above correspond to the real and imaginary parts of ξ(1/2 + λ + it) when
z = t is real.

The main idea of the proof is to show that there is some small exceptional
set, outside which H(z) and J(z) have only real zeros, and so outside of a
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small exceptional set, A(s) and B(s) only have zeros on the 1/2 line. The
key to showing this will be to show that G(z − iλ) and G(z + iλ) have
different sizes when z is not real. The exceptional set will essentially consist
of neighbourhoods around the zeros of ζ(s) for <s ≥ 1/2 +λ. To be precise,
let {si}∞i=1 denote those zeros of ζ with real part ≥ 1/2+λ and =si ≤ =si+1

for all i. Let

R(κ) = {z : |<z| ≥ |=s1| and |<z −=s∗k| > κ, s∗k = sk or sk ∀k}.

The exceptional set will be the complement of R(κ). Our unconditional
analogue of Theorem B of [2] is

Lemma 3. There is some κ > 0 such that all the zeros z with |z| > κ of
H(z) or J(z) in R(κ) are real.

From now on, we will restrict the discussion to H(z), the situation with
J(z) being the same. The points which are not in R(κ) are all within a
constant distance of a zero of ζ(s) with <s ≥ 1/2 + λ. The number of
such zeros is � T 1−aλ log T for any a < 1. The number of zeros of H(z)
for T ≤ <z ≤ T + C is � log T for any constant C. As we mentioned in
the introduction, the proof of this proceeds along standard lines using the
argument principle, and we refer the reader to the proof of Proposition 2.2
of [2] for more details. Thus, the number of zeros of H(z) outside of R(κ)
is � T 1−aλ log2 T , uniformly in λ.

The proof of Lemma 3 is the same as the proof of Theorem B in [2]. We
provide a sketch below, referring the reader to details which are available in
[2] whenever possible.

Proof of Lemma 3. Set z = x − iy ∈ R(κ) with x > 1 and y > 0. By
equations (3.6) and (3.7) in [2], for some constants H0, H1, σ1 > 0, explicitly
described in [2],

log
∣∣∣∣G(z̄ − iλ)
G(z − iλ)

∣∣∣∣ ≤ 4y
(
H0

log(κ+ x)
κ2

+H0

∑
n≥1

log x
(κ+ n)2

− λH1 log x
1 + σ2

1

)

= 4y(log x)
(
H0

(
1
κ

+
1
κ2

)
− λH1

1 + σ2
1

)
(1 + o(1))

=: 4y(log x)δ(1 + o(1))

where we have set

δ = H0(1/κ+ 1/κ2)− λH1/(1 + σ2
1).

We then pick κ such that δ > 0 and so∣∣∣∣G(z̄ − iλ)
G(z − iλ)

∣∣∣∣ ≤ e−4y log xδ.
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Now we have that

|H(z)| = G(z − iλ) +G(z + iλ)

≥ |G(z − iλ)|
(

1− G(z + iλ)
G(z − iλ)

)
= |G(z − iλ)|

(
1− G(z̄ − iλ)

G(z − iλ)

)
> 0

for z ∈ R(κ), and for |z| ≥ κ. Thus H(z) 6= 0 for z ∈ R(κ) with |z| ≥ κ and
y > 0. Since H(z) = H(z̄) and H(−z) = H(z), the same result holds true
for y < 0, from which we deduce that all zeros of H(z) with z ∈ R(κ) and
|z| ≥ κ must be real.
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