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On the Vinogradov bound
in the three primes Goldbach conjecture

by

MiING-CHIT Livu (Hong Kong) and T1aANzZE WANG (Kaifeng)

1. Introduction and the main result. The Three Primes Goldbach
Conjecture (3GC), which was posed in 1742 in a letter of C. Goldbach to
L. Euler, states that every odd integer > 9 is a sum of three odd primes.
Assuming the Generalized Riemann Hypothesis (GRH), G. H. Hardy and
J. E. Littlewood [HL] proved in 1923 the 3GC for all sufficiently large odd in-
tegers. In 1937 I. M. Vinogradov [V] successfully removed the GRH, namely,
he showed that there is a positive integer V' such that for any odd integer
n > V (so the above “sufficiently large” condition is still assumed) one
has

(1.1) n =p1+p2 + D3

where p; are odd primes. The V' can be 33" . Therefore
Vinogradov qualitatively settled the 3GC and it remains to consider the
quantitative part of the 3GC. That is to remove the condition, “sufficiently
large” also from the above Hardy—Littlewood result or equivalently to show
that the V in the Vinogradov result can be 9. Although the 3GC is still
not completely settled, Vinogradov’s qualitative result is no doubt one of
the most remarkable results in the 20th century. Because of the significance
of Vinogradov’s result we call the value of V' the Vinogradov bound. Ob-
viously, to accomplish the quantitative part of the 3GC we should check
all odd integers lying between 9 and V. Plainly, the above numerical value
for V is far from satisfaction and we should lower the value for V' con-
siderably until it falls in the range of the capacity of the latest powerful
computer. Along this direction in 1956 Borozdkin [B] showed that V' can
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be exp(exp(16.038)) (= 10%:008,659.9-.) "The latest known result for V was
obtained by J. R. Chen and T. Z. Wang [CW] in 1989. They showed that
V' can be

exp(exp(11.503)) (= 10%3,000.5... ).

The other direction to investigate the quantitative part of the 3GC is, of
course, to check as many odd integers < V as possible. The latest result in
this direction was obtained in 1998 by Y. Saouter [S] who showed that each
odd integer < 10%° has an expression as in (1.1).

In 1997, under the GRH, J. M. Deshouillers, G. Effinger, H. te Riele
and D. Zinoviev [DERZ| proved that V' can be 9. That is, under the GRH,
the 3GC is now completely settled. These recent numerical developments
stimulate a strong desire to lower the known Vinogradov bound 10%3:000
unconditionally, and to remove the GRH eventually in the quantitative part
of the 3GC. In this paper we can lower the value of V' further without
assuming the GRH. We can prove

THEOREM 1. Every odd integer >V = 3190 (= 101346:3-) 45 q sum of
three odd primes as in (1.1).

The framework of our proof is based on the Hardy—Littlewood Circle
Method. One of the features of the Circle Method is that it leads to asymp-
totic results and so it works well if some parameters are large enough. There-
fore the “sufficiently large” condition is essential and crucial in many steps
of the Circle Method. Our goal in Theorem 1 is to replace the “sufficiently
large” condition by explicit values of the large parameters. So during the
proof there is absolutely no shelter for the “sufficiently large” condition to
prevent from being numerically checked.

Besides using some tricks together with the help of computer to obtain
better numerical constants in many inequalities, we have mainly the follow-
ing three differences from the previous work on the Vinogradov bound.

(i) We shall dissect the interval with unit length into four disjoint sub-
sets M, defined as in (3.4)—(3.7). In order to obtain “smaller values” for
the above mentioned essential parameters we choose suitably shorter inter-
vals than the usual major arcs in the Circle Method. Unlike the traditional
treatments in the Circle Method where our MU M5 was regarded as major
arcs while our M3U My was minor arcs, we refine the method and treat Mo
also as minor arcs. We separate My from M; U My to gain a much more
desirable lower bound for I; (V) (defined as in (3.11)) over our major arcs
M. We split M3 UMy in order to better use our new version (Proposition
6.1) of Vinogradov’s estimate on minor arcs M. With the help of Lemmas
5.1 and 5.2 we can obtain good upper bounds for I;(N) over our new “minor
arcs” Mj, j =2, 3.
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(ii) We use [LW, Theorem 8], a new numerical version of the formula for

Y(t,x) =Y A(n)x(n)

n<t

(for example, see (3.16) below).

(iii) We obtain as in Proposition 6.1 a new numerical version of the
Vinogradov estimate for trigonometric sums over primes which could be
useful in most numerical problems whenever the Circle Method is applied.

The material of this paper is arranged as follows. In Section 2, based on
the results in [LW, Sections 2 and 3], we establish two explicit double sum
estimates in Lemmas 2.1 and 2.2, which play an important role in giving a
lower bound for the integral I;(/N) on the major arcs M;. Section 3 forms
the framework of our proof for Theorem 1. We construct the four subsets
M; as mentioned above in (i). In Section 4, based on the preparations in
Section 2, we give a desirable explicit lower bound for I;(/N) in Lemma
4.3. In Section 5, once again by the results of [LW, Sections 2 and 3|, we
obtain explicit upper bounds for S(«) over the “minor arcs” M, j = 2,3,
in Lemmas 5.1 and 5.2. Finally, in Section 6, by Proposition 6.1 we get an
explicit estimate for the integral I,(N) over the minor arcs My, and then
complete the proof of our Theorem 1.

2. Explicit double sum estimates. Throughout this paper, we use y
and xg to denote a Dirichlet character and a principal character respectively.
We use L(s, x) to denote Dirichlet L-functions. In this section, we give some
explicit upper bound estimates for the double sums ), and ), defined
as in Lemmas 2.1 and 2.2 below respectively. The estimates are based on
the numerical results given in [LW, Sections 2 and 3], and will be used in
Sections 4 and 5. From now on, we always assume ¢ is a positive integer, N
is an integer satisfying N > exp(3100), and put

(21) L:=logN, P:=rL3 P =L T:=L" w:=336P/q.
LEMMA 2.1. For any integer q with 1 < ¢ < P = L3, if N > exp(3100),

then )
Zl =) ) (1-0.0017) N

x (mod q) |y|<w

{0.0194£1 ifB does not exist,

< ~
82-10710L~1  if 3 exists,

where ' indicates that the sum Z\/w@; is over all the zeros o = 3+ iy of

L(s, x) satisfying B > 1/2 and |y| < w excluding the possible Siegel zero [
in [LW, Lemma 2.1] with x = P.
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Proof. In view of

1—0.001°
i<&> <0 forl/2<a<l,
da «
we have
(2.2) Zl <2(1-0.001Y)N"V2N(1/2,q,w)
1—-0.478/¢(P) 1
R S
1/2 1—-0.478/¢(P)

x N(a,q,w)N*"1(log N)(1 — 0.001%)a ! da,

where N(a,q,w) is defined as in [LW, (3.3)]. Here and later on we put
((P) :=log(3.36P). From (2.1) we have w > 3.36 since ¢ < P. Also by [LW,
Theorem 5] we have, for any y > 3.36,

(2.3) N(1/2,x0,y) < (y/m)logy — 0.833y + 9.0101 log y + 56;
and by [LW, Theorem 6] we get, for y > 3.36 and nonprincipal ¥,
(2.4) N(1/2,x,y) < (y/m)logqy — 0.874y + 6.84231log qy + 15.
The combination of (2.3) and (2.4) with y = w gives, for 1/2 < a < 1,
(2.5)  N(o,q,w)
< (3.36P/7) log(3.36 P) — 0.874 - 3.36P
+ {6.8423¢1og(3.36P) + 15¢ -+ 9.0101 log(3.36P/q) }

+ {—(3.36/7)log ¢ + 0.041 - 3.36} P/q — 6.8423 log(3.36.P) + 41.

The expression in the first curly brackets on the right hand side of (2.5) is
clearly increasing with respect to ¢. So for 2 < ¢ < P, (2.5) can be estimated
as

(2.6) < 8.82Plog P.

Again in view of (2.3) one can see easily that (2.6) is also true for ¢ = 1.
Thus the sum of the first term and the first integral on the right hand side
of (2.2) is

(2.7) < (8.82Plog P){z(l —0.0011/2)N~1/2

1-0.478/£(P)
+ | N ogN)(1 - 0.001%)a da}.
1/2
Note that (1 —0.001%)/« is decreasing and 1 —0.478/log(3.36P) > 1 —1/50

since P = L£3 > 31003. Thus the expression in the last curly brackets in
(2.7) is
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49/50
<2(1-0.001"2)N"12 4+ 2(1-0.001"/2) | N°"'log N da
1/2
1 — 0.00149/50 1—0.478/£(P)
% N tlog N da

49/50
< 0.9176N /%0 41,0193 N ~0-478/4F)

Hence (2.7) can be estimated further as, for £ > 3100,

(2.8) <81-10710,71,

Now we consider two cases according as the Siegel zero B exists or not
to estimate the last integral on the right hand side of (2.2).

(i) The 3 exists. Note that we have

(2.9) 3>1—1/(9.6459088011og P) > 1 — 0.11/log(3.36.P).

Also we may use the numerical results in [LW, Sections 2 and 3] with
3.36P instead of z there since 3.36P > 3.36 - 3100> > 10''. By (2.9)
and the third row in [LW, Table 1], we see that N(o,q,w) = 0 for o >
1 — 0.3221/log(3.36P). Thus in view of the bounds for A in [LW, Tables 4
and 5], we may write the last integral in (2.2) as

1-0.475/6(P)  1-0.47/6(P)  1-0.46/6(P)  1—0.45/£(P)
@) <{ § + § + [ +

1-0.478/6(P)  1-0.475/6(P) 1—0.47/6(P)  1—0.46/£(P)
1-0.42/¢(P) 1-0.39/¢(P) 1-0.36/(P) 1-0.33/£(P)

L D R B
1-0.45/6(P)  1-0.42/£(P) 1-0.39/£(P) 1-0.36/¢(P)
1-0.32/£(P)

+ S }N(a, ¢,w)N*"t(log N)(1 — 0.001%)a ! da.
1-0.33/£(P)

Note that by (2.1) we have 1 — 0.478/loggqw > 0.98 and consequently
(1-0.001%)/a < (1 —0.001%98)/0.98. Thus in view of the bound 7000 - 2 of
[LW, Table 5], the first integral in (2.10) can be estimated as

(2.11) _ 14000(1 — 0.001%%%) (N-04T5/6(P) _ N—0.4T5/1(P))
' - 0.98
<9107 (exp(—58.1339) — exp(—58.5011))L~*

<2.1078c7 L



138 M. C. Liu and T. Z. Wang

Similarly, the bounds for N = N(«, ¢,w) in [LW, Tables 4 and 5] yield

1—-0.47/4(P) 1—0.46/4(P)
| <6-1079c71; | <2.10782° 1
1—0.475/£(P) 1-0.47/¢(P)
1—0.45/4(P) 1—0.42/4(P)
| <2.107182° 1 | <6-10717L 1
(2.12) 1—0.46/4(P) 1—0.45/4(P)
1—-0.39/4(P) 1-0.36/4(P)
| <6-10710.71; | <g8-1071°L1;
1—-0.42/4(P) 1-0.39/4(P)
1-0.33/£(P) 1-0.32/4(P)
| <2.-1071271 | <3.107 1321
1-0.36/£(P) 1-0.33/4(P)

Therefore (2.10), or the last integral in (2.2), satisfies

1
(2.13) | <6-10713L7L
1-0.478/£(P)

(ii) The Siegel zero 3 does not eist; that is to say (see [LW, Lemma
2.1]), there is no zero of the function II(s) defined by [LW, (2.2)] in the
region o > 1—1/(c1log P), |t| < P/q, where ¢; = 9.645908801. However, in
general, it would be possible that IT(s) has complex zeros in the region

(2.14) c>1-1/(c1logP), |t|<w

since w > P/q by (2.1). If there is indeed a zero p; = (1 + iy, of II(s) in
(2.14), then similar to (2.9) we have 81 > 1—1/(c;log P) > 1 —0.11/4(P).
Thus for any zero o = [+ iy # 01, 01 of II(s) with |y| < w we have by [LW,
Table 1] (for the case A; < 0.12 and A2 > 0.3221), 8 < 1 — 0.3221/¢(P);
and for p; itself we have by [LW, Lemma 2.1}, 51 < 1 — 1/(c1logqw) <
1 —1/(c14(P)). So if we use the bound on the right hand side of (2.13), the
last integral in (2.2) can be estimated as

1-1/(c1£(P))
<6-10718L71 4 | 2N*"Y(log N)(1 — 0.001%)a"" da.
1—0.32/£4(P)

In view of 1 —0.32/¢(P) > 1 — 0.32/10g(3.36 - 31003) > 0.987, for £ > 3100
the above is

0.987
(2.15)  <6-10-18L-1 4 2(1 —35571 )<N71/(514(P)) _ N-032/6P))

<0.01938£7 1.



Three primes Goldbach conjecture 139

If the above p; does not exist, then by the bounds in (2.11) and (2.12), the
last integral in (2.2) can be written as
(2.16) <3-10718c71
1-1/(c1 log P)
+ | N(a,q,w)N*(log N)(1 — 0.001%)a " do.
1-0.33/£(P)
In view of 1 — 0.33/£(P) > 1 — 0.33/£(3100) > 0.9869, we have
(1 —0.001%)/a < (1 —0.001°-9%69) /0.9869 < 1.0122.

Hence if we let K7 denote the last integral in (2.16), then we can proceed as
follows. By [LW, Theorem 2 with x = 3.36P] we see that the function II(s)
has at most two zeros
(2.17) o =1-XN/l(P)+iy and 7
with A" < 0.2067 and |y'| < w; and we may use the bounds in [LW, Table
1] where the A plays the role of A;. If the ¢’ in (2.17) exists and satisfies
A < 0.12, then the row with A; < 0.12 and A2 > 0.3221 in [LW, Table 1]
shows that there are only the two zeros ¢’ and @’ of I1(s) in the region Re s >
1-10.3221/¢(P), |Im s| < w. Thus N(a,q,w) < 2 for « > 1 — 0.3221/4(P).
Consequently by [LW, Table 4 with A < 0.33] we get
1-0.3221/£(P)  1—1/(cy log P)
Ky < S + S
1-0.33/£(P)  1-0.3221/4(P)
< 1.0122(2exp(—L/(c11log P)) + 11 exp(—0.3221L/¢(P))
— 13exp(—0.33L/4(P)))

< 1.0122-3100£7(3.3 - 107 + 11 exp(—39.4209) — 13 exp(—40.3879))

<0.0104L7 1.
If the ¢’ in (2.17) exists and satisfies 0.12 < X’ < 0.15, then by the relevant
bounds in [LW, Tables 1 and 4] we get

1-0.2743/6(P)  1-0.12/£(P)
K < | - | < 0.0027L7".
1-0.33/6(P)  1-0.2743/£(P)
If the ¢’ in (2.17) exists and satisfies 0.15 < X' < 0.2067, then by [LW,
Theorem 1] and the relevant bounds in [LW, Table 4] we get
1-0.26213/£(P)  1-0.2067/¢(P)  1-0.15/4(P)
K < | + | - | < 0.0001L".
1-0.33/£(P)  1-0.26213/£(P) 1-0.2067/((P)

If the ¢’ in (2.17) does not exist, then K; can clearly be dominated by the
above bound 0.0001£~!. In summary the case A’ < 0.12 is the worst and
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we always have K; < 0.0104£7%; and consequently for £ > 3100, (2.16)
is < 3-10713L71 +0.0104£71 < 0.0105£7!. This in combination with
(2.15) ensures that the last integral in (2.2) is < 0.01938£7! if the 3 does
not exist. This together with (2.2), (2.8) and (2.13) completes the proof of
Lemma 2.1. =

LEMMA 2.2. For any integer ¢ with 1 < q < P, if N > exp(3100), then

o= 3 S N < 0.01260L 7,

x (mod q) w<|y[<T
where w, P and T are defined as in (2.1).
Proof. We have
!

(218) > =N"V2 3 >t

X (mod q) w<|y|<T, 3>1/2

19/20 1
+{§ 4 ] pvetaeeny) Y e
/2 19/20 X (mod q) w<|y|<T, B>a

For any o with 1/2 < a < 1, we have, in view of [LW, (3.3)],

T
/
(219) > > YT < T N (e, q,T) + [y > N(a, q,9) dy.
x (mod q) w<|v|<T, B2a w

Using the bound in (2.4) with ¢ = P and noting P = £3, T = £, (2.19)
can be estimated as < 51P10g2 L. Hence the sum of the first term and the
first integral on the right hand side of (2.18) is, for N > exp(3100),

19/20
(2.20) <5IN"'2Plog’ L+ 51P(log£)*> | N*"'log Ndo

1/2

< exp(—90)L™ 4.

Now we use the bound given by (2.19) to estimate the last integral on
the right hand side of (2.18). In view of ¢ < P = £3 and T = L', for
19/20 < o < 1 we have, by [LW, Theorem 7],

N(a,q,T) < (17102 4 254231 /(181og £))(18 log £)>7 £5%/20
+ 16541(151og £)°.

Hence the total contribution to (2.18) from the first term on the right hand
side of (2.19) can be estimated as for £ > 3100,

(2.21) < (17102 + 254231/(181og £)) (18 log £)>7 £69/20-15
+16541L7"°(1510g £)°
<1.8-10710c71,
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Now in view of (2.18) and (2.19), the estimation for (2.18) is reduced to the
estimate for

1 T
(2.22) S Netlg S y 2N (e, q,y) dy do
19/20 w
T 1
= Sy_2 S N°"'LN(a, q,y) dady.
w 19/20

If we use [LW, Lemma 2.1] with = there equal to qy, the innermost integral
on the right hand side of (2.22) may be written as

1-1/(c1logqy)  1-0.478/logqy 1-—1/(c1logqy)

(2.23) = | = | + | :

19/20 19/20 1-0.478/1og qy

where c; is defined as in [LW, Lemma 2.1]. Write g; =max(10%¢~!,10% log q).
If y > ¢1 then by [LW, Theorem 7], the first integral on the right hand side
of (2.23) can be estimated as

(logqy)6£ —3, —4\—0.478/1
2.24 < (17102 + 254231/1 oI " (N -478/log qy

+ 16541 (log y) N 0478/ log v,

If y < q; then as the y in (2.22) is > w = 3.36 P¢~! we get 3.36P¢~! < ¢1.
This leads to ¢ > 7-10° on noting P = £3 > 31003. Thus ¢; = 10*loggq,
and it is easy to see that the bound in (2.4) is greater than that in (2.3). So
by (2.4) we get

(2.25)  N(a,q,9) < p(q)((y/7)logqy — 0.874y + 6.8423 log gy + 15).

Now let K5 denote the contribution to (2.22) from the first integral on
the right hand side of (2.23). Then we can estimate K as follows. If w > ¢;
(so y > q1), then we may use (2.24) to get

log PT
(226) Ky<qlL™* | e ¥((17102+ 254231/y)y°L7(L — 4y) ™!
log(3.36P)

y 6—0.478(5—4?;)?!71 + 16541y6[,46_0'478£y71) dy,

on noting ¢ < P and w = 3.36P¢~! by (2.1). The integral in (2.26), as a
function of L, is shown by Mathematica software to take its supremum at
L = 3100 for £ > 3100; and the supremum is < 0.00031. Hence in this case
Ky < 0.00031gL~%. If w < ¢1, we may write the integral SZ in (2.22) as
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[+, . Then by (2.24) and (2.25) we get

log(10*£3 log £3)
(2.27) Ky < 0.00031q£_4 + q£_4 S E4(y/7r _0.874
log(3.36L3)
+ (6.8423/7)10 %ye ™Y + (15/7) - 102 ¥)e 04T8L/Y gy,

By Mathematica, the last integral in (2.27), as a function of £, takes its
supremum at £ = 3100 for £ > 3100 and the supremum is < 0.00197. Thus
by (2.27),

(2.28) K5 < (0.00031 + 0.00197)gL~* = 0.00228¢L*.

For the last integral in (2.23), if we write &« = 1 — A/log qy, then it can be
written as
0.478
S N~ Meeaw N (1 — Xlog qy, q,y) dA.
1/c1

Note that by (2.1) we have qy > qw > 3.36P > 10'!. Thus the bounds for
A in [LW, Tables 3 to 5] can be applied, and we may use [LW, Theorems 1
and 2] with z = qy > 10! > 8- 10°. In view of the bounds for A in [LW,
Tables 4 and 5], we write (2.29) as

lOgN 0.36 0.39 0.42 0.45 0.46 0.47
230) o= { i+ i+ 0+ +]
08y l/cl 0.36 0.39 0.42 0.45 0.46
0.475 0.478
+ 0+ }N*A/logquu—A/logqy,q,y)dx.
0.47 0.475

log N
log qy

(2.29)

If we use the relevant bounds in [LW, Tables 4 and 5] to estimate N (1 —
Alogqy, ¢, y) in (2.30), the total contribution to (2.22) from the last seven
integrals in (2.30) can be estimated as

log PT
(231) <qL™* | LleV(35eTOOL/Y 4 pae 039y
log(3.36P)
+ 93¢ 042NV 4 11060 49E/Y 4 372 040L/Y 1 1004 04TE Y
+ 12332¢0475L/Y _ 140006~ 0478E/Y) dy.
By Mathematica, it can be checked that the last integral in (2.31), as a

function of £, takes its supremum at £ = 3100 if £ > 3100. With £ = 3100,
the integral is < 3.68 - 1072, and then (2.31) is

(2.32) < 3.68-1013qL™,
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Now we turn to the estimate related to the term

log N 0.36

logqy | /SCI

(2.33)

in (2.30), and let K3 denote its contribution to (2.22). Note that by [LW,
Theorem 2] the function I7(s) defined by [LW, (2.2)] has at most two zeros

(2.34) 01 =1-Ai/loggy+iv1 and 7,

with A\; < 0.2067 and |y1| < y. If p; exists and satisfies A\; < 0.12, then by
[LW, Table 1] we know that II(s) has no other zero in the region Res >
1 —0.3221/log qy, |Ims| < y except for g1 and g;. Thus we have N(1 —
Mlogqy,q,y) < 2 for A < 0.3221; and as a result, (2.33) is, by the relevant
bounds in [LW, Table 4],

lOgN 0.3221 0.33
< { [ on—lesavgy g | 13N—Miesa gy
logqy 1/c1 0.3221
0.36
+ | 20N—A/1°gqyd)\}
0.33

— 2N—1/(cl log qy) + 11N—0.3221/10g W 4 7N—0.33/log qy _ QON_O'BG/IOg qy

Hence in this case we have, for £ > 3100,

T
(235) K < Sy—Z(QN—l/(cl log qy) + 11N—0.3221/logqy + 7N—0.33/logqy

w

_ 2ON—0.36/log qy) dy
< 0.0102654¢gL~%.

If the g1 in (2.34) exists and satisfies 0.12 < Ay < 0.15, then N(1 —
Mlogqy, q, y) < 2 for any A < 0.2743; so in view of the relevant bounds in
[LW, Tables 3 and 4] we get, for £ > 3100,

log PT
(236) K; < q£74 S £4€7y(2670'12£/y + 6670.27436/3;
log(3.36P)
4 e 02BL/y | —03L/y | ~031L/y | 9,—032L/y
17 0-33L/y _ 20670.365/@,) dy
< 0.0016gL~*.

If the o1 in (2.34) exists and satisfies 0.15 < Ay, or if it does not exist, then
by [LW, Theorem 1] and the relevant bounds in [LW, Tables 3 and 4], we
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have, for £ > 3100,
log PT
(2.37) Kj < q£_4 S £4e—y(2e—0‘15ﬁ/y 4 9e—0-2067L/y3,—0.26213L /y
log(3.36P)
4+ e 027L/y 4 (—0.28L/y | —03L/y | —031L/y | 9,—032L/y
4+ 7e0-33L/y _ 20670.36£/y) dy
< 0.00006gL 4.

From (2.18), (2.20), (2.21), (2.28), (2.32) and (2.35) to (2.37), the proof of
Lemma 2.2 is complete. m

3. The circle method. From now on we let
(3.1) Q:=NLT.

By Dirichlet’s lemma on rational approximations, each « in [1/Q, 1+ 1/Q)]
may be written as

(32) a=a/g+n withl<a<g<Q,
(a,9) = ged(a, q) = 1, |n| <1/(¢@Q).
Denote by M(a, q) the interval centered at a/q with radius 1/(¢Q). Then
all the M(a,q)’s with 1 < ¢ < P, = £5,1 < a < qand (a, q) = 1 are

mutually disjoint since P; < /2 on noting £ > 3100. Put, for 1 < ¢ < P
p— £37

(3.3) 0(N,q) :=3.36P/(10mgN ),
which is clearly < 1/(¢Q) = L7/(¢N). Let
(34) Mi= ) U [a/a—6(N,q),a/q+5(N,q),
1<g<P 1<a<gq
(a,q):l
(3.5) My:= | |J Mla,q) - My,
1<g¢<P 1<a<gq
(a,q)=1
(36) M3 = U U M(CL, Q)a
P<g<P 1<a<gq
(a,q)=1
(3.7) My=11/Q1+1/Q1 - | M,
1<5<3

As usual, for any real a we let e(a) := 2™ and put

(3.8) S(@):= Y. An)e(an).

0.00IN<n<N
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Set
(3.9) I(N):= > (log p1)(log p2) (log ps).
p1t+p2+ps=N
0.001N<p,;<N,1<;<3
Then
141/Q
(3.10) S S3(a)e(—Na)da = I(N) + Z (log p1)(log p2)(log ps3),
1/Q (p1,p2,p3)

where the sum Z(pl pa.ps) 15 Over all the prime triplets (p1,p2,p3) satisfying

pll1 +pl22 —i—pé?’ = N and 0.001N < p; < N for 1 < j < 3 with at least
one of the positive integers {; > 2 for 1 < j < 3. So the sum in (3.10) is
< 3N3/2£3 For 1 < j <4 put

(3.11) L;(N):= | S*(a)e(~Na) da.
M;
Then by (3.10) we get
(3.12) I(N)> Y Ii(N)—3N33
1<5<4
Now we give a transformation for S(«) defined by (3.8) when « is any
point in M(a,q) with a and ¢ satisfying (3.2) and ¢ < P;. In view of

a =a/q+mnin (3.2), by the orthogonality relation for Dirichlet characters,
one can deduce that

(3.13) s<a>=@ S Gla, )8 x) + (0/log2)C?:
X (mod q)

here and throughout, 6 denotes a complex number with |#| < 1, not neces-
sarily the same at different occurrences, and

(3.14) Gla,x):= >  x(elal/q),
1<i<q, (1, ¢)=1
(3.15) S,x)== > Am)x(n)e(nn).

0.001N<n<N

From (3.15) and [LW, Theorem 8] we get

N N
(3.16)  Sm,x) =600 | emydt— > |t le(nt)dt+ Ry,
0.001N ly|<T 0.001N
5>1/2

where

(3.17) |Ri1| < (1.3818 + 4.3367N |n|)NT L2,
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Substituting (3.16) into (3.13) and in view of G(a, x0) = p(q) we get

N
(3.18)  S(a) = (q S
001N

¢(q)
1 N
- ﬁ Z G CL X Z S tg_le(nt) dt + Rqo,
x (mod q) |v|<T 0.001N
B>1/2
where, by (3.17) and |G(a,X)| < ¢'/?
(3.19) |Ria| < (1.3818 4+ 4.3367N|n|)NT*¢*/2 L2 + £? /log 2.

From now on we specify [ to denote the fized possible Siegel zero in [LW,
Lemma 2.1] with x = P = £3 (> 8-10%), and the corresponding real
primitive character and its modulus are denoted by X and 7 respectively.
Note that 987 <7 < P = £3 and

(3.20) B >1-1/(9.645908801 log P).
Then for the av in (3.2) with 1 < ¢ < P we can write (3.18) further as

(321)  S(a) =MDy - % Gla, Xx0) I (o)

- %) Z G(a,X) Z/ J(o,n) + Rz

X (mod q) ly|<T
= H<a7 q, 7]) + RIQ;

here and from now on, d(q) =1 if 7| g, 6(¢) = 0 otherwise,

N N
(3.22) J(n) = S e(nt)dt and J(p,n) = S tote(nt) dt,
0.001N 0.001N

and the ’ indicates that the sum ZM <7 is over all nontrivial zeros ¢ =

8+ iy # B of L(s,x) with 8 > 1/2. This is the desired transformation for
S(a).

The remainder of this section is devoted to a transformation for I (N)
defined by (3.11). By (3.4) we get

323) LMV)= > Y e(-aNjg) | SP(a/gtm)e(~Nn)dn.
1<q<P (1<a)<q [n|<8(N,q)
a,q)=1

Note that by (3.19), (3.3), ¢ < P and T = L', the Ry» in (3.21) can be
estimated as, if @ € My,

(3.24) |Riz| < 0.48NL710.
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Now if we replace one of S(a/q + 1) on the right hand side of (3.23) by
H(a,q,n)+ Ri2 in (3.21) then there is an error term due to R12; and in view
of (3.24) and (3.8), the total error to (3.23) induced by Ri2 has absolute
value, by [RS1, Theorem 6],

(3.25)  <O048NLT" > A(n)® <0.48-1.001102N°L°
0.001N<n<N

< 0.481N2L79.
By (3.21), (3.23) and (3.25) we get

(326) L(N)= > Y e(-aN/q)

1<g<P 1<a<q
(a,q)=1

x| H(a,qn)(H(a,q,n) + Riz)?e(~Nn) dy + 0.4810N?L .
[n]<8(N,q)

Note that by (3.21),

H<a'7 q, U)(H(C% q, 77) + R12)2
= H(a,q,n)* +2S(a/q +n)*Ri2 — 35(a/q + n)R3, + Rl
Thus (3.26) can be rewritten as
(3.27) I, (N)
Z > e(=aNjq) | H*a,q,n)e(—Nn)dn+ Rus,
(a,q):l
where by (3.24), (3.25), (3.3) and £ > 3100,
(3.28) |Ry3| < 3N?L79,

By (3.27) and the definition of H(a,q,n) in (3.21) we may transform I (V)
as in (3.29) below, which is the desired form for I; (NV):

(3.29) Iy “(q3 3" e(~aN/q)

1<q<P q) lgagq
(a,9)=

X S J(n)3e(—Nn)dn — 32

InI<6(N,q) 1<q<p ¥

x > Y GlaXe(-aN/q) Z’ [ )20, m)e(~Nn) dn

X (mod q) 1<a<q [7|<T |n|<d(N,q)
(a,q)=1
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+3 3 “(qq))g Yoo > ) Glax)G(aX)e(—aN/g)

1<q<P x1 (mod q) xz (mod q) 1<a<q
(a,q)=1

X ZI Z/ S J(n)J(01,m)J (02,n)e(—Nn) dn

71T |7y2|<T |n|<8(N,q)

-y Ly Y Y Y ] Gaxye-aN/g)

¢(q)? :
1<q<P x1 (mod ) x2 (mod ¢) x3 (modgq) 1<a<q 1<j<3

(a7Q):1
! / !
<> > >V e=Nn) IT J(ejmdn
[7IST |[v2|<T |v3|<T |n|<3(N,q) 1<5<3
38 Y '“() Y Gla, Yxo)e(—aN/q)
1<qg<P Ly 1<a<gq
rlq (a,q)=1
x \ T8, me(=Nn) dn
[n|<d(N,q)

w68 S DS S G, 96l Txo)e(—al/a)

1<q<P q) x (mod q) 1<a<gq
7lq (a,9)=1

« S 1 I I@ )T (e me(—Nn)dy

[YIST In|<6(N.q)
> > >

Y
X1 (mod q) x2 (mod q) 1<a<gq

1<g<P 90((])
qu (ayQ):l

X G((L, YQ)G(C% %XO)e(_aN/Q)

x 35§ Tenm)(eam (B me(—Nn) di

71T |7v2|<T [n|<8(N,q)

+368 Y ” Y G(a,Xx0)*e(—aN/q)

1<q<P ) 1<a<q
Tlq (a,q)=1
x VT IBm)2e(~Nn)dy
[n1<d(N,q)

SE Y —m Y Y GGl ) -/
1<q<P P\ (nod ) 1Zazq
rlg (a,q)=1



Three primes Goldbach conjecture 149

x 3§ Jem) (B e(—Nn)di

|vI<T In|<6(N,q)

~ ]_ .
-E Y ok > Gla,Xx0)’e(—aN/q)
1<9<p P\ 1502
Tlq (a,q)=1

x| J@Bm)Pe(~Nn)dn + Rus
In|<8(N,q)

= Z Ilj(N)+R13,

1<5<10

where E = 1 if the § in (3.20) exists, and E = 0 if it does not exist.

4. A lower bound for I;(N). In this section we shall give an explicit
lower bound for I; (N) defined as in (3.11). To this end, we first present two
auxiliary lemmas.

LEMMA 4.1. For any complex numbers o; with 0 < Rep; <1 for 1 <
Jj <3, we have

00 3 3
S e(—Nn)l_IJ(Qj,n)dn:N2 S l_I(N:L“j)QJ'*1 dzy dzs,
—o0 j=1 Dj=1

where 3 =1 — 21 — 29 and D = {(z1,22) : 0.001 < z; <1 for1 <j <3}

Proof. It can be proved by precisely the same way as in [LT, Lemma
4.7]. =

LEMMA 4.2. Let J(n) and J(g,n) be defined as in (3.22). Then

(4.1) |7 (n)| < min{0.999N, (x|n])~*};
and if o = B+ i,
(42)  [J(en)l
min{(1 — 0.001%)8~tN? (0.001N)?~L(x|n|)~1} ify =0,
< )N if [nl < y1/(107N),

16(0.001)7 "I NPy|=/2 - if |y]/(10mN) < [n] < |7]/(0.0017N),
(4/m)(0.001N) = |~ if In| = |7]/(0.0017N).

Proof. (4.1) and the first inequality in (4.2) are either trivial estimates
or consequences of integration by parts. The other three inequalities in (4.2)
can be proved in exactly the same way as in [LT, Lemma 3.2], with the help
of [T, Lemmas 4.3 and 4.5]. =
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Now we give a lower bound for I;(N). Note that by the definition of D

in Lemma 4.1 we have
0.998  0.999—x, 9
0.997
(4.3) |D| := Sd:rl dxy = S dxy S dxy = 5
D 0.001 0.001

We first estimate I11 (V) defined as in (3.29). Firstly we extend the range of
integration with respect to n in it to (—oo, 00). By (3.3) and (4.1), the total
error caused by this extension has absolute value at most < 7 =3§(N, q) "2 =
773(10mqgN/(3.36P))2. Thus its contribution to I;; (IN) has absolute value
at most

l1(q)] 230107 2
(4.4) < I;P ()2 (10mgN/(3.36P))

<282N2P7% > |u(g)lg*e(q) >
1<q<P

Now for any real = > 3 put v(z) := e loglogx + 2.50637/loglog z where
v = 0.5772... is the Euler constant. Note that v(z) is increasing for z > 27,
and by [RS2, (3.42)], we have, for any integer ¢ > 3,

(4.5) a/¢(q) < v(q).
Again, Mathematica yields

> ul@)le(q) ™ < 1961
1<¢<1000

Thus (4.4) is
< 2.82N?P72(1961 + (P — 1000)v(P)?) < 2.82N?P~ 'y (P)2.

If we put
p(q) ( a )
A(q) == el ——N |,
& (q)° 1§<q q
(a,9)=1
then 11 (IN) can be rewritten as
(4.6) I(N)= 3 Alg) | J)’e(=Nn)dn+ Rus,
1<q<P —00

> ogspd2v(q)* <1.5-107°. Thus by Lemma 4.1 with g; = 1 for 1 <j <3
we may write (4.6) further as

where |R14| < 2.82N2P~1y(P)2. Again, by (4.5) we have 1> sp AlD)] <

(4.7) I1(N) = N?ID| Y A(q) + 1.5- 1029N?|D| + Rua.
q=1
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Note that
YA =][a-e-D][[0+E-17?,
q=1 p|N ptN
[D, p. 149], and that, for odd N,
[Ta-e-1)=]][0-@r-17?) =0.6601
p|N p>3
[HR, p. 128, line —3]. Thus by (4.7) and (4.3) we get
(4.8)  I;1(N)
> (0.6601 - 0.997% — 1.5 - 1079(0.997%/2) — 2.82 - 3100 31(3100%)?) N2
> 0.656145N2.

Now we consider two cases according as the B in (3.20) exists or not to
estimate I1;(N) for 2 < j < 10.

CASE (I): 3 does not eist. Firstly consider the estimate of I15(N). By
Ii2(N) in (3.29) and using the well-known bound for G(a, x) defined as in
(3.14), i.e
(4.9) Glax)| <

for any x (mod ¢q) induced by primitive x* (mod ¢*), we get

1/2
(4.10)  |La(V)| <3 Y |“ ‘q

1<qg<P

> Z'( [ T2 (0 me(~N) di

x (mod q) |v|<T  |n|<8(N,q)

By Hélder’s inequality, the integral in (4.10) has absolute value at most

wy {§ wePa){§ el

[n|<6(N,q) [n|<6(N,q)

By (4.1), the first integral in (4.11) is, if 1/(7N) < §(N, q),

412) < | min{0.999N, (w|n|)~"}? dny

I <5(N.q)

3 -3
< | (0.999N)3 dn + | (wln) 3 dn
In|<1/(xN) 1/(xN)<[n|<6(N.q)

< (2.994006 /7)N?
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Note that this bound clearly holds if 1/(7N) > §(N, q). Substituting this

into (4.11), and then into (4.10), we get
(@)lg'?

(4.13)  [T12(N)| < 3(2.994006/7)* 3N/ 3~ .

S2p ¢l
I 1/3
< S 3 enPal
x (mod q) [v|<T  [n|<8(N,q)
Now we rewrite the last sum over v in (4.13) as
/ / 1/3
(4.14) >+ > W § wenra)
IVISw  w<|yIST  |n|<6(N,q)

For the second sum in (4.14), in view of (3.3) and (2.1), we have |n| <
d(N,q) < |v|/(107N). Thus by the second inequality for J(g,7n) in (4.2),
this sum is

!
(4.15) < 5(3.36/(5m)) /P Lg AN N T NPT
w<|y|<T

Again by the first bound for J(p,7n) in (4.2), the first sum in (4.14) is

/
(4.16) < (3.36/(5m)) /2 Lg VAN " (1 - 0.0017) 87 NP
[v|<w
Substituting (4.15) and (4.16) into (4.14), and then into (4.13) we get
1/2

|Li2(N)] < 3(3.36/(5m))"/3(2.994006 /7)*/*N?L >~ %
E2p ela)?q

x{ S Y a-000f)s N ey S Y NPyt

X (mod q) |v|<w x (mod q) w<|y|<T

Using Lemmas 2.1 and 2.2 to estimate the first and the second double sums
in the last curly brackets respectively we get, for £ > 3100,

(4.17)  |I12(N)| < 3(3.36/(57))*/3(2.994006 /7)%/3 N*?
1/6

X{0-0194 > %+5-0.01265—3 3 M}.

2
1<q<p ¥ 1<q<P ¢(q)

Now we need to estimate the two sums over ¢ in the curly brackets in (4.17).
Applying Mathematica, we get

1/6 1+1/6
(1) Y DI 50540 3 |1(a)lg

< < 69.9802.
s ©(q)? s ©(q)?
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By (4.5) we get

1/6 w0 P
(4.19) 3 q( % <{§+ 1 Ja/ 22
105<q<P Pl 105 1010

By Mathematica, the first integral on the right hand side of (4.19) is <
0.0025. When 2 > 10'°, we have

(4'20) 1/($) S $0.080521;

hence the second integral on the right hand side of (4.19) is
o0
< S x1/6—2+2'0.080521 dr < 2.82. 10—7'
1010

Thus (4.19) is < 0.0025+2.82-10~7, and consequently by the first inequality
in (4.18) we get

u(q)lg"/6 7
(4.21) D S <3.2842+0.0025 +2.82- 1077 < 3.2868.
12p #L0)

Similarly to (4.19), by (4.5) we get
1+1/6 10 P

(4.22) y ol <{ |+ }xl/ﬁfly(xﬁdx.

2 i
105<q<P v(a) 105 1010

By Mathematica, the first integral on the right hand side of (4.22) is < 8794.
The second integral on the right hand side of (4.22) can be estimated as

< v(P)? Sfolo x~%/% dx < 6v(P)%(PY/6 — 10'%/6). This together with (4.22)
and the second inequality in (4.18) ensures that

Z ‘M(Q)’qlﬂm < 8864 + 61/(P)2(P1/6 o 105/3).
L2 ¥
Substituting this and the bounds in (4.21) into (4.17) we get, for £ > 3100,
(4.23)  |I12(N)| < 3(3.36/(57))*/3(2.994006 /7)%/ 3 N*?
x (0.0194 - 3.2868
+5-0.0126L£73(8864 4 61 (P)3(PY% — 10°/3)))
< 0.1108N?2.

For the estimates of I15(N) and I14(NN), we can proceed in exactly the
same way as for I12(N). We have, for £ > 3100,

(4.24) |I13(N)| < 0.0016N2? and |I14(N)| < 0.00002N2.

Recall that we are considering the case that B does not exist, so E= 0, and
hence for 5 < j < 10, we have I;;(N) = 0. Now by (3.29), (3.28), (4.8),
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(4.23) and (4.24) we can conclude that if £ > 3100 and if 3 does not exist,
then

(4.25)  I;(N) > (0.656145 — 0.1108 — 0.0016 — 0.00002) N? — 3N?L£~?

>
> (.5437N2.

CASE (I): 3 does indeed exist; so E = 1. The estimates for Ijo(IN),
I13(N) and I14(N) are very similar to those in Case (I): the only difference
is that we now may use the second inequality for ), in Lemma 2.1 instead
of the first one. So with the constant 0.0194 in the estimates of I15(V),
I13(N) and I14(N) replaced by the constant 8.2 - 1071% we get

[I15(N)| <5-1078N?,  |I13(N)| <2-1078N?,

4.26
(4.26) |114(N)| <2-1078N2.

Now we estimate I15(N). By (3.29) and (4.9), and then using Holder’s
inequality we get

F1/2 2
N R S e LR

2
1<g<P #(9) In|<8(N,q)
Tlg

< F @GP

[n|<(N,q)

Note that by (3.20) and £ > 3100 we have B > 0.9957. Hence by the first
inequality in (4.2), the last integral in (4.27) can be estimated as

(4.28) < | min{(1-0.001%) NG (0.00LN) (x|n) "1} diy
In|<8(N,q)

< 3-1.0302 - 1.0033%7 1 N3-1,
Substituting (4.12) and (4.28) into (4.27) we get, for £ > 3100,

2 A7B+1 (g )|7"1/2

(4.29) |I15(N)| < 2.8959N2N o
(q)?
1<q<P
7lg
Note that p(mn) > ¢(m)e(n). Hence the last sum over ¢ in (4.29) is
. ~1/2 ~1/2
w(q)] - (7|7 (7|7 1(q
s s 3 M - T
1<g<P/7 14 1<q<P/7 v

By Mathematica and (4.20), similarly to (4.18) and (4.21), the last sum over
q in (4.30) is < 2.8265 +0.00031 +4.9- 1072 < 2.82682. Hence by (4.30) and
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[LW, Theorem 3] we may rewrite (4.29) further as, for £ > 3100,
71/2 ~ -
I15(N)| < 2.8959 - 2.82682N2{%N(”/0'4923)/ (72 log? 7">}.
()
By (4.5), the expression in the last curly brackets is
<715 (e¥ loglog T + 2.50637/log log ?")26_3100“/(0'4923F1/2 log )

and so in view of 7 > 987, it is, by Mathematica, < 2.5636 - 10=%. We then
infer that, for £ > 3100,

(4.31)  |L15(N)| < 2.8959 - 2.82682 - 2.5636 - 1075 N? < 2.1-107°N?.

For the estimates of I14(N), I17(IN) and I19(/N), we may use similar
arguments as for I15(N) and I15(N). We have, for £ > 3100,

|Li6(N)| <4-1078N?  |I;7(N)| < 0.00318N?,
|I19(N)| < 0.0001N2.

For I;g(N), by (3.29), (4.9) and Holder’s inequality, and then by (4.12)
and (4.28) we get

(4.32)

115 (V)| < 3(2.99400671)/3(3 - 1.0302 - 1.003327~1)2/3 N3P > M.
SZp ela)

Tlq
This together with (4.5), [LW, Theorem 3] and Mathematica yields
(4.33)  |L1s(N)] < 8.2014N2 {7 y(7)2e 24/ (049237 F1og® 1)y
< 8.2914-0.00013N? < 0.00108N2.

For I 10(N), by (3.29), (4.9) and (4.28), and then using Mathematica,
[LW, Theorem 3] and (4.5), we get

5 1
|11 10(N)| < 3-1.0302 - 1.0033%7 171 P p(7) 2 N3F~1 —
1;]3 ¢(q)?

< 3-1.0302 - 1.00332 - 3.391027 L N 2715 (7) "2 N33
< 3.35804N2{F*1/21/(%’)26*3””(0'4923?1/2 log? ?)}
< 3.35804 - 0.028 N? < 0.09403N?2.
This together with (3.29), (3.28), (4.8), (4.26) and (4.31) to (4.33) ensures

that if £ > 3100 and if § exists then
(4.34) I (N) > (0.656145 —5-107% —2-107% —=2.1078
—21-107° —4-10"% — 0.00318 — 0.00108
—0.0001 — 0.09403)N? — 3N2L~°
> 0.5577N2.
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From (4.25) and (4.34) we can conclude the following

LEMMA 4.3. Let I1(N) be defined as in (3.11). Then for N > exp(3100)
we have
I, (N) > 0.5437TN2.

5. Trigonometric sums over primes (I). In this section we shall give
explicit upper bound estimates for the trigonometric sums S(«) defined by
(3.8) when the ¢ in (3.2) is small. More precisely, we shall bound S(«) when
a is in My and M3, which are defined by (3.5) and (3.6) respectively.

LEMMA 5.1. Let S(a) and My be defined as in (3.8) and (3.5). Then for
a € Moy and L > 3100 we have

|S()] < 0.4012N L.
Proof. By (3.19 ) with 7= £'® (in (2.1)), (3.21) and (4.9) we have
lu()l

(5.1) |S(0)] < %aﬂﬂu@,nn

q
e T
x (mod q) |y|<T
+ (1.3818 + 4.3367N |n|) N L™ 3¢"/? + (log 2) "' £2,
where §(g) = 1 if the B in (3.20) exists with 7| ¢, and 6(¢) = 0 otherwise.
Note that by (3.2), (3.3) and (3.5) we have, for « = a/q+n € Ma,
1<q¢< P and 3.36P/(10mgN) < |n| <1/(¢Q).

From this, (4.1), (4.5), 7 < P and the first inequality in (4.2) we see
that the sum of the first two terms on the right hand side of (5.1) is
< (10N/(3.36P))v(P) + 6(¢q)(10N/(3.36 P1/2))v(P). In view of Q = NL™7
(in (3.1)), the sum of the last two terms on the right hand side of (5.1) is
< 4.3368N LS. Further, write the sum ZT’Y\<T in (5.1) as

/ /
S+ Y o+ Y
[7|Sw  w<|y|<107L7g—1 10mL7q=1<|y|<T

Using (4.2) to estimate |J(g,7n)| and using the bounds ¢*/?p(q)~' < V2
and ¢'?p(q)~! < P%%y(P) for any integer ¢ > 1, we get, by Lemmas 2.1
and 2.2,

(5.2) 1S(ar)] < (10N/(3.36P))v(P) + (10N/(3.36 PY/2))(P)
+4.3368NL ¢ +8.2v2-10710NL™!
+5-0.01260(LY)NL™> + ') )

<0. -1, 1/2 -1
< 0.3452N L~ + ¢ 20(q) ZS,

\_/

/!



Three primes Goldbach conjecture 157

where )

D= D > |7 (0.m)-

x (mod q) w<|y|<107L7g~1

When |y| > 1, it is easy to verify that the third inequality in (4.2) gives the
weakest estimate for |J(p,n)| among the last three estimates in (4.2). So it
can be applied in any case. And thus we can use the third inequality in (4.2)
to obtain

(5:3) >, <16n8{(0001N)2 3T S

X (mod q) w<|y|<107L7g~?1

59/60 1
+( § o+ )(0.001N)a—1(1og0.oo1N)
1/2  59/60

X Z Z/ |y|~1/2 da}.

X (mod q) w<|y|<10mL g™t
>a

Similarly to (2.19), for any o € [1/2,1) we have

10mL7qg™?
!
54 > > 2= | y2dN(a,q.y)
X (mod q) w<|y|<10wL7¢g™ ! w

B2«
< (107r£7q_1)_1/2N(a, q,10nL7g™1)
1 10mL7q™ 1
+t5 Vv N(ay)dy.

w

If we use the bound in (2.4) with ¢ = P (so w = 3.36 in (2.1)), (2.4) can be
estimated further as < 2(10/7)Y/2L32¢=95¢(q) log(107L'?). Thus the sum
of the first term and the first integral on the right hand side of (5.3) is

59/60
(5.5) < {(0.0011\[)—1/2 + | (0.001N)*"10g(0.001N) da}
1/2
x 2(10/m) /2354705 p(q) log(107L10)

< 0.000065q %5 p(q) L.
Note that by [LW, Theorem 7] we have, for 59/60 < a < 1,
N(a, q,10mL7q™ ") < (254231 /log(107L7) + 17102)

X (107 L7410 10g8 (107 L7) + 16541 log® (107L7).

By this inequality and the bound 7000 - 2 in [LW, Table 5], the contribution
to the last integral on the right hand side of (5.3) from the first term on the
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right hand side of (5.4) is

(56) S (].077[:7)_1/2+1/15q1/2_1/60(0.001N)_0'478/10g(10ﬂ—£7)

x (254231 /1og(107LT) + 17102) log® (107 LT)

+16541(107L7) /241 /2(0.001.N) ~0-478/108(107LT) 1,66 (107 £7)

n 14000(107r)71/2£73.5q0.5(0_001N)70.10367089/10g(107rﬁ7)’
where 0.10367089 comes from 1/¢; (in [LW, Lemma 2.1]). On noting
g V%0 (q)" < 4.4772 and qp(q)~! < v(P) for any 1 < g < P, (5.6)
is

< (0.02198 + 0.00046 + 4.5 - 10" )NL™ < 0.022445N L.

This together with (5.2) to (5.5) yields

(5.7)  |S(a)| < (0.3452 + 16 - 0.000065 + 0.022445)N.L !
10w L1
+8Ng (gt |y

w
1

X S (0.001N)*"!(log 0.001N)N (e, q, y) dex dy.
59/60
By [LW, Lemma 2.1], the innermost integral on the right hand side of (5.7)

can be rewritten as

1-1/(c1 log qy) 1-0.478/logqy 1—1/(c1 log qy)

(5.8) | = | + |

59/60 59/60 1-0.478/log qy

We first consider the contribution to (5.7) from the first integral on the right
hand side of (5.8). Write

107L7q 1t 1-0.478/log qy
My:= |y | (0.001N)*~!(log 0.001N) N (e, g, y) dev dy.
w 59/60

We consider two cases according as w > max(10°¢~!,10*logq) or not. If
w > max(10°¢~1, 10 log q) (sois y), then by [LW, Theorem 7], the innermost
integral in M is

254231 log 0.001N
< 33643 | (1 6
- (10gqy " >(quy) log(0.001Ng—3y—4)

> (0'001Nq—3y—4)—0.478/10g qy;

thus by (2.1) and since qp(q) ™ < v(P) for 1 < ¢ < P,
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(5.9)  8¢"2p(q)" "M
S £1{8e4-0.478y(£3)£

log(107L7) 6
y°(L + log 0.001)
254231 33643
<) v+ ) =1y 7 1050001
log(3.36.£3)

% e—y/270.478(ﬁ+10g 0.001)/y dy}

By Mathematica, the expression in the last curly brackets, as a function of
L, is shown to be decreasing, and with £ = 3100, it can be estimated as

(5.10) < 0.032281.
If w < max(10°¢—1,10* log q), we rewrite M; as

max(105q_1,104 log q) 10mL7q !
(5.11) M, = | + |
w max(105¢—1,10% log q)

If we use the bound in (2.4) with ¢ = P to estimate N(«,q,y), the first
integral on the right hand side of (5.11) is, by noting 1 < ¢ < P,

10*Plog P
(5.12) <q (g™t | LTy log Py — 0.8T4y "1/
3.36P
+6.8423y /2 Plog Py + 15y~ %/2 P)e 0478108 0-001N)/logy gy

As P = £3 and £ = log N, by Mathematica, the last integral takes its
supremum at £ = 3100 if £ > 3100; and for £ = 3100, it is < 7.6 - 1075, So
(5.12) is

(5.13) < 7.6-107%¢ 1 2p(q) L7

For the second integral on the right hand side of (5.11), we do have y >
max(10°¢—1, 10% log ¢). So we can use [LW, Theorem 7] to estimate N («, ¢, )
completely as in the above case where w > max(105¢—!,10*log ). Then
we replace the lower integral bound max(10°¢~!,10*logq) in the second
integral on the right hand side of (5.11) by w since in this case w <
max(10°¢~1,10*log q). In this way, we see that the second integral on the
right hand side of (5.11) can be bounded exactly by the bound for M; im-
plied by (5.9). Thus by (5.9) and (5.10), this integral is

< (0.032281/8)q 2 p(q) L.
Now by (5.11) and (5.13) we get
8¢ %p(q) " My < (0.032281+8-7.6-107%) 7L,



160 M. C. Liu and T. Z. Wang

This in combination with (5.7) and (5.8) ensures that
(5.14)  |S(a)| < (0.3687 4 0.032281 + 8- 7.6 - 10" )NL™ + M,
< 0.4011NL™Y + Mo,

where
10mL7q !
My :=8Nq'?p(g)™t |y
1—1/(c1 log qy)
X | (0.001N)*"1(log 0.001N)N (v, q, ) dex dy.
1-0.478/log qy

1-1/(c1 log qy)
1-0.478/log qy

Now we rewrite the innermost integral §
1-0.2067/log qy 1—1/(c1 log qy)
(5.15) | + |
1-0.478/log gy~ 1—0.2067/log qy
By (2.1), (4.5) and the bound 7000 - 2 in [LW, Table 5], the contribution to
M, from the first integral in (5.15) is
log(107L7)
(5.16) < 112000NE_1{1/(£3)[, | exp(—0.5y)
log(3.36L3)
( ( 0.2067(L + log 0.001))
X | exp | —

Y

< 0.478(£+log0.001))> }
—exp | — dy

Yy
<21-107°NL™L

By [LW, Theorem 2], the contribution to M from the last integral in (5.15)

1S

107nL7g™ !
(5.17) <2:-8Ng'Pp(q)t |y
1-1/(c1 log qy)
X | (0.001N)* " (log 0.001N) dev dy
1—-0.2067/log qy
<24-107°NLL
From (5.14), (5.16) and (5.17) we get
1S(a)] < (04011 +2.1-107° +2.4-107°)NL ™ < 0.4012N L~

The proof of Lemma 5.1 is complete. m
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LEMMA 5.2. Let S(«) and Mg be defined as in (3.8) and (3.6). Then for
a € M3 and L > 3100 we have

|S(a)] < 0.5033N L.
Proof. Note that for a € M3 we have
(5.18) a=a/qg+n, L2<q<L° |n<1/(qQ)=L(gN)"".
By (3.18), (3.19) with T'= £ (in (2.1)), (4.5) and (4.9) we have

1/2
(5.19)  [S(a)] < (6.8-1077+9-10")NL™ + i Z Z |J(0,n)|.
P4\ o) pi=T
p=1/2
In view of || < L7/(gN) in (5.18), by (4.2) we have |J(o,7)| < 5NP|y|~!
for |y| > 10mL7g~t. For 107 < |y| < 107L7¢g~ !, the next-to-last inequality
in (4.2) gives the worst estimate for J(p,n) among the last three estimates
n (4.2). So for this case, we can use the next-to-last inequality in (4.2) to
obtain |J(o,n)| < 16(0.001)?~1N#|~|~1/2. Also, we have the bound |J (o, )|
< (1-0.001%)37INP for |y| < 10*r. Thus (5.19) can be rewritten as

(5.20) |S(a)] < (6.8-1077+9-10"3)NL ™!
q1/2 )
> > (1-0.001%)87 NP

#l4) x (modq) |y|<10%n
B>1/2

16¢'/2 B=1ArB(1—1/2
@ > > (0.001)°~1N7||
x (mod q) 10*7n<|y|<10mL g™

B>1/2

5q1/2 8 1-1
e >, Nh
x (mod q) 107L ¢~ 1< |H|<T

B>1/2

= (6.8-1077+9-107B)NL! + 24 + 25 + ZG .

Now we estimate »_,,> - and ) 4. We first estimate ) _,. By [LW, Lemma
2.1 with z = 10*7q] we know that for any zero ¢ = 3 + iy with |y| < 10*x
of any L(s,x) with x (mod g), there exists 8 < 1 — 1/(c; log 10*7q) except
for at most one possible real zero 51 corresponding to a real character i
(mod77). Thus in view of 1/2 < 31 < 1, £3 < ¢ < £° and (4.5),

3 12,001 — Biyg—1 B '
(5.21) LS4 e(g) (1 0.00;[ )8y NP4 E .
-1
< 0.11585NL™ + E R

_l’_
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where the / in 3 indicates that the 3; is excluded and

" 1/2, -1 oL By 41 A1
24 =q"%p(q)”'N > > (1-0001%)8 NI
x (mod q) |y|<10*n

#>1/2
Similarly to (2.2) we have
(5.22) Z; < 2(1—0.001")¢"2Np(q) " N"Y2N(1/2, ¢, 107)

12 59/60 1—0.478/log(10*mq) 1—0.2067/log(10%*mq)  1—1/(c1 log(10*mq))
q
- w(Q){ ) + ) " ) " )

1/2 59/60 1—-0.478/log(104mq)  1—0.2067/log(1047q)

x N(a,q,10*7r) N (log N)(1 — 0.001%)a"* da.

Note that the bound in (2.4) is always greater than that in (2.3) if y = 10*7
and £3 < ¢ < £5. So for any a € [1/2,1), by (2.4) we have N(«,q,10%7) <
©(q)(10006.8423 log g + 76180). Thus the sum of the first two terms on the
right hand side of (5.22) is

(5.23) < 2(1 — 0.001/2)N¢'/2(10006.8423 log ¢ + 76180)
59/60
X (N—1/2 + | e logNda>
1/2

< 0.00365N L1,

For the second integral on the right hand side of (5.22), we note that by
[LW, Theorem 7],

N(a,q,10*7) < N(a, q,10* logq)
254231
log(10%qlog q)
x (¢°10" log* )! =%/ 1og®(10"q log ¢);
thus its contribution to the right hand side of (5.22) is
< 1.8771Nq~*®u(q)(log q)*/*®

y 254231 117102 10g6(104q10g q)670.478£/10g(1047rq)
log(10%¢log q)

+1.0159 - 16541 N g~ ?u(q) 1og®(10* log q) exp<—

< 16541 1log®(10* log q) + ( + 17102>

0.478L
log(10%mq) )
For g € [£3,L°], let ¢ = £L* with 3 <z < 6. Then this is

< Nﬁl{(1.8771£19’”/201/(0")(:3 log £)/1 (254231 /1og(10*£* log £%)

+ 17102) log® (10 £% log L)
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0.478L
1.0159 - 165411 /25(£7) log® (10*z log £ ] b
+ v(L£")log”(10%z log £)) exp log (1017 L7)

By Mathematica, the “Plot 3D procedure”, the expression in the last curly
brackets, as a function of £ and z, has upper bound 0.24981 for £ > 3100
and 3 < x < 6. So the above is

(5.24) < 0.24981NL™ L.

For the third integral on the right hand side of (5.22), we may use the bound
7000 - 2 in [LW, Table 5] to estimate N(a,q,10%7). So its contribution to
the right hand side of (5.22) is

60(1 — 0.001%9/60)

< 14000 - =5 Nq*1/2V(q)N*0.2067/10g(1047rq).
If we let ¢ = £* with 3 < x <6, this is
_ 59/60 .
(5.25) < N£—1{14000 S - oo cl—w/%m)e—ﬁii—m}

< 0.00003N L1,

for £ > 3100 by Mathematica. By [LW, Theorem 2], the contribution to the
right hand side of (5.22) from the last integral in it is, if ¢ = £,

0. 10367089L
log (1047 L*)

2(1 — 0.00159/60)
59/60
< 0.00003NL71L,

(5.26) < Nc—l{ L£i2/2y(L7) exp(

for £ > 3100 and 3 < x < 6. From (5.21) to (5.26) we can summarize that,
for £ > 3100 and £3 < g < LS,

(5.27) 24 < (0.11585 4 0.00365 + 0.24981 + 0.00003 + 0.00003) N £~
< 0.36938N L.

Now we estimate the ) . in (5.20). Similarly to (5.3) and (5.4) we have

(5.28) 25 < M{(O_Ommm Z Z ’7’71/2

v(9) X (mod q) 1047 <|y|<107L7q~1
59/60 1
+< |+ | )(0.001N)a*1(1og0.001N)
1/2  59/60

<> > hTdal,

x (mod q) 10*7<|v|<107L g™t
B>«
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and for o € [1/2,1),

(5200 >, > [y 71/

X (mod q) 10*n<|y|<10mL g™

Fa
10nL7q™ 1t
1
< (107L7q" )T V2N (o, g 107L7g ) + 5 |y N(as g ) dy.
1047

By (2.4), (5.29) can be estimated further as < 5p(q)q~/2£3° log(10mL").
Hence the first term and the first integral in the curly brackets in (5.28)
contribute to the right hand side of (5.28) at most

(5.30) < 16-5NL35(log(107LT))
59/60

x((0.001N)—1/2+ | (0.001N)“_110g0.001Nda>
1/2

< 0.0011NL™1.
From (5.28) to (5.30), it can be derived that

(5.31) 25 < 0.0011NL?

16N¢'/?
©(q)

1
x| (0.001N)*~" (10 0.001N) N (ar, ¢, 107 L7q ") dax

(107_[_£7q—1)—1/2

59/60
7 -1
SN 1/2 10mL" q -
" sO(qQ) ) v
1047

1
x| (0.000N)*~"(10g 0.001N) N (, g, y) dex dy.
59/60

Note that the integral Ség /6o CALL be separated into

1—0.478/log(107L7) 1
J + J
59/60 1—0.478/log(107L7)

and that 10mL7¢~! > 10%*logq since £3 < ¢ < L£8. Thus similarly to the
treatment for (5.6) if we use [LW, Theorem 7] and the bound 14000 to
estimate N(a, ¢, 10rL7q1), the second term on the right hand side of (5.31)
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is
(5.32) < (0.02198 + 0.00046 + 5.26 - 10" 6)NL ™! < 0.02245N L.

Now we estimate the last term on the right hand side of (5.31). Using
(5.8), this term is

8Nq'/? ol ~3/2
0 ) v
1047
1-0.478/log qy
X S (0.001N)*!(log 0.00LN)N(cv, q,y) do dy
59/60

(5.33)

10rL7g™ 1t

8Nq1/2 S
SO(Q) 1047
1-1/(c1 log qy)
X S (0.001N)*!(log 0.001N)N (e, q, %) dor dy
1-0.478/log qy
=: M3 + M4.

y*3/2

The estimate for M, is very similar to that for My defined as in (5.14); the
difference is that the v(£3) in (5.16) and (5.17) should be replaced by v/(L)
since the upper bound for ¢ is now £°. So by the bounds in (5.16) and (5.17)
we get

31009
(5.34) M, < (21-107°+24-10°)NL™? U )

" 2 < 0.00006NLE.
v(31003) —

7. —1
For the estimation of Mj, we first decompose the integral SIOWE e

1047
10*1 10mL g™t . . .
8104:“ + Sloflogqq , and denote their contributions to M3 by M3z, and Mz

respectively. Using [LW, Theorem 7] to bound N(a,q,10%logq) and then
Mathematica, we get

as

_0.478(L41og 0.001)

(5'35) My §N£71 321&2{6 16(104@71/2”(&:)6 Tog(102 L% log £T)
£>3100
254231
1016/60 p1-92/20 17102
- ( log(10' L7 log £7)
x (zlog 5)1/15 log®(10* L log L7)

+16541L7%/2 10g%(10% log .cw)) }

< 0.07227TNL T
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For the estimation of M3s, similarly to (5.9) and (5.10), since £3 < ¢ < L5,
and then using Mathematica, we have

(5.36) My < N£1{8e4'0'4781/(£6)£

log(107L")
X | (254231 /y + 33643)
log (104 L3 log £3)
y6 ([, + log 0.001) _ y _ 0.478(L+1l0og0.001)
e 2 Y dy
L — 4y + 1log 0.001
< 0.03775NL

(5.34)—(5.36) show that (5.33) is < (0.07227+0.03775+0.00006) N L~ 1. This
together with (5.32) and (5.31) ensures that

(5.37) ZS < (0.0011 4 0.02245 + 0.07227 4 0.03775 + 0.00006) N L+
< 0.1337TNL7

Finally we estimate the ) s in (5.20). We have

(5.38) ZG < M{N_l/Q Z Z y| L

v(q) X (mod q) 107L7q=1<|4|<T
59/60 1

+(F o+ 1 )Netegn) 2 > hiTdaj.

/2 59/60 X (mod q) 10xL7¢ < |y|<T
Bza

For any o € [1/2,1) we have

(5.39) > > !

X (mod q) 107L ¢ < |H|<T
B>a

T
<T7'N(a,q.T)+ | 9y N(a,q.y)dy.
10w L7qg—1

We can use (2.4) to write (5.39) further as < 101¢(q)log® £ on noting £3 <
g < £8 £ > 3100. Thus similarly to (5.30) the first term and the first
integral in the curly brackets in (5.38) contribute to (5.38) at most

59/60
<5. 101Nq1/2(10gﬁ)2<N_1/2 + | Netiog Nda) < 0.00012N L,
1/2
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This together with (5.38) and (5.39) ensures that

5NgY/2 ¢
(5.40) > <0.00012NL~! + (q)T [ N*'(log N)N(a,q,T) da
YL 59760
5Nq1/2 T _ ‘ o
) oy | NTlog N)N (o, q,y) dady.

10mL7g—1 59/60

In view of £3 < ¢ < £% and T = L', by [LW, Theorem 7], for a € [59/60, 1)
we have

N(a,q,T) < (33643 + 254231/ (211og £))(21 log £)° L8/,

Thus the second term on the right hand side of (5.40) is

(5.41) < BNT'q*%p(q) "1 (33643 4 254231 /(21 1log £))(21 log £)°£78/60
<7-1073NL7h

To estimate the last term on the right hand side of (5.40), by (5.8) we first
1

write the integral 859/60 as
1-0.478/log qy  1—0.10367089/log qy
(5.42) | + | :
59/60 1-0.478/log qy

and let M5 and Mg denote the contributions to (5.40) from the first and the
second integrals in (5.42) respectively. Then by (5.40) and (5.41) we get

(5.43) >, < (00001247107 )NL™ + My + Mg,
For Mg, we can use the bound 7000-2 in [LW, Table 5] to estimate N(«, q,y);
so by Mathematica,
log(£?")
(5.44) Mg < N£‘1{70000£4y(£6) [ ervro0semosocsy dy}
log(10mL7)
<6-107°NL™L

For Ms, in view of y > 107L7¢~! > 10*log ¢, we can use [LW, Theorem 7]
to get N(a,q,y) < (33643 + 254231/log qy)(¢*y*)'/%° (log qy)®. Thus

M; < NE—I{5£1+6(1/2+1/20—1/15)V(ﬁﬁ)

21log L
< | (33643+254231/y)yﬁe*14y/15*°-478£/ydy}.
log(107L7)

By Mathematica, the expression in the last curly brackets, as a function of £,
is shown to take supremum at £ = 3100; and the supremum is < 0.00007.
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Thus we have M5 < 0.00007NL~!. This together with (5.43) and (5.44)

gives
ZG < (0.00012 4 7 - 10721 4 0.00007 + 6 - 10~?)NL™! < 0.0002N L.

This together with (5.20), (5.27) and (5.37) completes the proof of Lemma
5.2. m

6. Trigonometric sums over primes (II) and the proof of The-
orem 1. In this section we first prove the following Proposition 6.1, which
gives an explicit estimate for the S(«) defined by (3.8) for any real o. We
shall apply Proposition 6.1 to treat the integral over M, defined as in (3.7)
and then eventually complete the proof of Theorem 1. We remark that
Proposition 6.1 is independent of the previous sections.

PROPOSITION 6.1. Let a be a real number of the form
(6.1) a=alq+0/¢® withq>1, (a,q) =1, || <1,

and S(«) be defined as in (3.8) with 0.001 there replaced by any fixed real
number c satisfying 0 < ¢ < 1. Then for N > 3,

(6.2) [S(a)| < 0.28N¢ ""log? N + 4N 8 log"* N + 0.09N""¢** log®® N.

By (3.6) of [RS2], we have |S(a)| < >, -y A(n) < 1.25506N; thus (6.2)
holds if 1.25506N < 4N%8log'* N, which enables us to assume that N >
6.36 - 10*2. This together with [RS1, p. 265, (5.1) and (5.3)], implies |S(«)|
< 1.001102(N 4 N°®) 4+ 3N/3 < 1.0012N. Thus Proposition 6.1 holds if
q < (0.28/1.0012)%log* N. Hence we may assume without loss of generality
that ¢ > (0.28/1.0012)%1log* N. Also from 1.0012N < 0.09N°%¢%>log®® N
we get ¢ > (1.0012/0.09)2N log™® N; and from 1.0012N < 4N%8log'* N
we get N < (4/1.0012)°log” N. Thus from now on we can assume that

(6.3) (0.28/1.0012)%*log* N < ¢ < (1.0012/0.09)*N log™° N
and

(6.4) N > (4/1.0012)° log” N.

Note that by Mathematica, (6.4) and (6.3) imply

(6.5) N >exp(30.95) and ¢ > exp(11).

Now we put

(6.6) U:=N*?log™/* N, V:=N*"log"®N.
Then the Vaughan identity (see, for example, [D, p. 138]) gives
(6.7) S(a) = Si(a) + So(a) + Ss(a) + Sa()
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where for 1 < j <4,

(6.8) Sile)=">_  Aj(n)e(an),
cN<n<N
with
Ai(n) = { OA(n) ﬁz § g: Az(n) = mt;<vu(t) log m,
As(n) = — > A)p(t),  Aa(n) = D ult) D Alr).
(rt)|n, r<U,t<V mt=n,t>V rlm,r>U

We now estimate S;(c) for 1 < j < 4 in the following Lemmas 6.2 and
6.5 to 6.7, and then complete the proof of Proposition 6.1.

LEMMA 6.2. Let Si(«) be defined as in (6.8). Then
151 ()| < 1.02N?/%log™*/° N.
Proof. Note that U > exp(30.95 - 2/5)30.95"%/% > exp(9.634) by (6.5)
and (6.6). The lemma follows from
[S1()| < ) A(n) <1.001102(U + U"®) 4 3U"/%. u
n<U

For the proof of Lemmas 6.5 to 6.7 below, we need the following auxiliary
Lemmas 6.3 and 6.4.

LEMMA 6.3. Suppose X > 0 is a real number and Y, Z are integers
satisfying Y > 1. Let « be as in (6.1) and use ||x| to denote the fractional
part of a real number x. Then

Z+Y 1
> min (X, g ) < (V/al + DGX + gloga)
n=7Z+1

Proof. This is [WC, Lemma 2|. m

LEMMA 6.4. Under the notations of Lemma 6.3, if X > 1 and q > 15
then

Y 1
Z min (— —> < 5¢ + 1.5qlog g+ X logq+5Y ¢ tlog X.

n’ 2|an||
n<X

Proof. This is [WC, Lemma 3|. m

LEMMA 6.5. Let Sa(«) be defined as in (6.8) and a be given as in (6.1).
We have

S5 ()] < 0.0282N¢~1/21og? N + 0.0001N*/5 log'* N
+ 0.0006 N'/2¢*/?10g%5 N.
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Proof. By partial summation we have

155()] < (log N) 3 min <E L >

t 72|t
t<V

By Lemma 6.4 and (6.6), this is
(6.9) < (5¢+1.5qlogq+ N?°(log N)/logq

+5Ng log(N?®log'/® N))log N.
Note that by the second inequality in (6.3) and N > exp(30.95) in (6.5) we
have log ¢ < log N — 12.34. Thus 5q + 1.5¢log g < 0.0006N'/2¢'/2 log1'5 N.
By the first inequalities in (6.3) and (6.5) we get 5N¢~ ! log(N2/5 log!/® N) <
0.0282N¢~'/2log N, and N?/°(log N)/5 log ¢ < 0.0001N*/5 log®* N. These
together with (6.9) complete the proof of Lemma 6.5. =

LEMMA 6.6. Let S3(«) be defined as in (6.8) and a be given as in (6.1).
Then

S5()] < 0.0131Ng~ /2 1og? N4+0.8N*/®log'* N40.0005N/2¢*/?10g*® N.
Proof. Using 3_,,, A(r) =logm < log(UV) and Lemma 6.4 we get

|S3()| < (5q + 1.5qlog g+ UV logq + 5Ngq ' log(UV)) log(UV).
By (6.6) and by ¢ > exp(1l) in (6.5) we have (5¢ + 1.5¢logq)log(UV)
< 0.0005N1/2¢1/210g*® N, 5Nq 'log*(UV) < 0.0131N¢ '/?1log® N, and
UV (log q)log(UV) < 0.8N*/51og'* N. Then the proof of Lemma 6.6 is com-
plete. m

LEMMA 6.7. Let Sy(a) be defined as in (6.8) and o be given as in (6.1).
Then
1S4()] < 0.2264Nq~ /2 1og? N + 2.787TN*/5log'* N
+0.0785N/2¢1/210g%® N.
Proof. Let
log(N/(UV
J— |:Og(1/(2 ))_1_1:|’ Uy = Z A(r),
(610) 08 rlm,r>U
M; = 27 for1<j<J

Then by (6.8) and Cauchy’s inequality we have

1/2 2\ 1/2
E ‘ E ame(amt)‘) .
j=1  M;<t<2M; M;<t<2M; cN/t<m<N/t

m>U
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The expression in the last brackets in (6.11) is
< > ar Y min(M;+05,2atm - D).
U<m<N/M;  U<I<N/M;
If we use Lemma 6.3 to estimate the last sum over [, the above is
N/M;]—[U
(6.12) < ([M] + 1> (5(M; +0.5) + qlogq) Z a,.
q U<m<N/M;

Denote by W the sum over m in (6.12). In view of the definition of a,, we
have

W = Z A(r)A(s) #{U <m < N/M; : r,s|m}.

r,s>U
Now if (r,s) = 1 then rs|m, whence
U? <rs<m< N/M; <N/V.

This is a contradiction, so that r, s must have a common factor. It follows
that
W = Z log? p#{U < m < N/M; : pm2(&F) | m},
pe.pf >U
so that
(6.13) W < NM;* > p~ (e f) 1og% p
U<pe,pf <N/M;

= NM].*l{ Z p tlog®p+ Z p “log®p
U<p<N/M; U<pe<N/M;,e>2
+2 Z p! log2p}
U<pe<pf<N/M;

= NM; ' (Wy + Wa + 2Ws).
Clearly

Wy = > > p~log’p

2<e<(log N/M;)/log2 U'/e<p<(N/M;)!/e

(log N/M;)? Z e ? Z p°.

2<e<(log N/Mj)/log 2 Ul/e<p

IN

The last sum over p is, in view of e > 2,

< OSO x*ed21§e OSO x*edeLU(lfe)/e.

e—1
Ul/e n<x Ul/e



172 M. C. Liu and T. Z. Wang

This yields, on noting U = N2/5 10g74/5 N,V = N?/5 logl/5 N, and N >
exp(30.95),

1
14 < (log N/M;)? —— _yU=e/e
(6 ) WQ—(Og / J) Z 6(6—1)U
2<e<(log N/Mj)/log2
< U Y2(log N/M;)? < 2.5876.

For W3 we have

W; = > > > p ' log’p

2< f<(log N/M;)/log 2 1<e<f U1/€<p<(N/M~)1/5

< (log N/M;)? > Z > v

2§f§(logN/Mj)/log2 1<e<f Ul/e<p
The last sum over p is, in view of f > 2,
—r_ FgNT < “F e — 4 pa-pye
Zn Sde_fSwdx f—lU ,
n>Ul/e Ul/e n<z Ul/e
so that, in view of f — 1 > e,
1
(6.15)  Ws < (log N/M;)? > T >yt
2< f<(log N/M;)/log 2 1= )1§6<f

1
< U~ '(log N/M;)? > — < 0.0681.
2<f<(log N/Mj)/log 2

To estimate W7 we use Stieltjes integral. Then one has by integral by parts

(6.16) W1 = (log N/M;) Z p tlogp — (logU) Zpillogp

p<N/M; p<U
N/M; 1
- S —Zpillogpdx.
U z p<z

Note that the above N/M; > x > U > 15000. Then Theorem 6 and (2.11)
of [RS2] yield, for any = € [U, N/Mj;],

logax —1.385 < Zpil logp < logax — 1.28.

p<z

This together with (6.16) produces

1
(6.17) Wi 5(1og (N/M;) —log® U) + 0.105log N/M;.
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Now substituting (6.14), (6.15) and (6.17) into (6.13) we get
1 -
W< oNM; Y(log® N/M; —log? U + 2 -0.105log N/M;
+2-2.5876 + 4 -0.0681)
< 0.5203(1 — ((log U)/(log N/V)))*)NM; " log® N/V.
Note that
2 4 4loglog N
logU  ZlogN —gloglogN  2— =Ny

logN/V — 2logN — lloglogN 3 — 10{1{%}\[1\’

v
Wl

So the above gives
2
2 _ _
W < 0.5203 <1 - <§> )NMj "log® N/V = 0.5203(5/9)NM: " log® N/V.

This enables us to estimate (6.12) further as
N/M; -U+1
/J—+ + 1)

(6.18) < 0.5203(5/9)NM; < .

N 2
x (5BM; + 2.5+ qlogq) <log —>

%
5N N 5M. 5M;U
< 0.5203(5/9)(— +5M; + —Iqu+qlogq+{ i 2
M; q
25N 2.5U 2.5 N N\
+ +25————"Ulog q—l———HO q})—(lo —).
Mjq q 891 )2 \ BV

In view of N > exp(30.95), M; >V and U > exp(9.634), the expression in
the above curly brackets is < 0. Thus (6.18) is

5N N N N
6.19 < 0.5203(5/9)| — +5M; + —1 1 log— | .
(019) < 052035/9) (%453, + - toga-+ aloga ) - (1ox

Again in view of M; >V > 30.95'/5 exp(30.95-2/5) > exp(13.066), we have

(6.20) doow®l= > wd ). 1<06111M;.
M;<t<2M; dQSQMj M;<t<2M,;
d2|t

Substituting (6.19) and (6.20) into (6.11) we get
(6.21)  [Ss(e)]

N
< 1/0.6111 - 0.5203(5/9) N''/2 <log V)

J
x> ((BNg1)'? + (5M;)'/? + (NM; " log q)'/? + (qlog q)'/?).
j=1
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J 1/2 J —1/2
By (6.10) we have 327, M}/* < (2 + V2)(N/U)V2, and Y, M; /% <
(2 +/2)V~1/2, Thus (6.21) can be estimated further as

(6.22) < +/5-0.6111-0.5203(5/9) Nqg~ /2
X (1+ (log(N/(UV)))/log2) log(NV 1)
+ (24 V2)4/5-0.6111 - 0.5203(5/9) NU /2 log(NV 1)
+ (24 V2)/0.6111 - 0.5203(5/9) NV ~2(log ¢)'/? log(NV 1)
+1/0.6111 - 0.5203(5/9) N*/2¢'/2(1og q)'/?
x (1 + (log(N/(UV)))/log2) log(NV_l).
If we make use of (6.6) and N > exp(30.95) in (6.5), the four terms in
(6.22) can be estimated as < 0.2264Nq~'/?1log? N, < 1.926N*/®log** N,

< 0.861N*/5 logl'4 N, and < 0.0785N1/2¢1/210g?® N respectively. Then the
proof of Lemma 6.7 is complete. m

Proof of Proposition 6.1. Now (6.2) follows from (6.7) and Lemmas 6.2
and 6.5 to 6.7.

Proof of Theorem 1. For any « given as in (3.2), by Proposition 6.1,
|S(a)] < 0.28Nq~Y2L2 + ANY/5S LY 4 0.09NY2¢1 /2L, Thus if a € My,
which is defined by (3.7), then in view of L5 = P, < ¢ < NL™7 we get, for
£ > 3100,

1S(@)| < max{0.28N P /22 + AN*/5 14 4 0.09N/2 P/ 2 025,
0.28N(NL™)7V2L2 L aNY5 £V 4 0.09NV2(NLTT)V2 225
<0.3NL7
In combination with Lemmas 5.1 and 5.2, this yields |S(a)| < 0.5033N L1
for o € My U M3 UMy and £ > 3100. Thus

1
|I(N) + I3(N) + Lu(N)| < 0.5033NL ™" | |S(a)|* dow < 0.5033N > " log p.
0 p<N

By [RS1, Theorem 6, (5.1)], the last sum over p is < 1.001102N. Thus the
above is < 0.5033 - 1.001102N? < 0.51N2. This together with (3.12) and
Lemma 4.3 gives, for £ > 3100,

I(N) > (0.5437 — 0.51)N? — 3N 5% > 0.03N2.
In view of (3.9) the proof of Theorem 1 is complete.

Acknowledgements. The authors would like to express their thanks
to the referee for his valuable comments on the improvement of Lemma 6.7.
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Errata to [LW]:

e Page 278, line —2: Replace 4 and 364 by 2 and 182 respectively.
e Page 284, lines —15 and —7: Replace Lemma 3.6 by Lemma 3.2.
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