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On finite pseudorandom binary sequences VII:
The measures of pseudorandomness
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and András Sárközy (Budapest)

1. Introduction. In this series we study finite pseudorandom binary
sequences EN = {e1, . . . , eN} ∈ {−1,+1}N . In particular, in Part I [MSá]
we introduced the following measures of pseudorandomness: Write

U(EN , t, a, b) =
t−1∑

j=0

ea+jb

and, for D = (d1, . . . , dk) with non-negative integers 0 ≤ d1 < . . . < dk,

V (EN ,M,D) =
M∑

n=1

en+d1en+d2 . . . en+dk .

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣
t−1∑

j=0

ea+jb

∣∣∣(1.1)

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
a+ (t− 1)b ≤ N , while the correlation measure of order k of EN is defined
as

Ck(EN ) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣
M∑

n=1

en+d1en+d2 . . . en+dk

∣∣∣(1.2)

where the maximum is taken over all D = (d1, . . . , dk) and M such that
M + dk ≤ N .
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In Part I first we discussed several elementary properties of these pseu-
dorandom (briefly: PR) measures. In the second half of Part I and in Parts
II–VI, we tested special sequences for pseudorandomness. This testing was
based on the principle formulated in [CFMRS1] in the following way: “The
sequence EN” is considered as a “good” PR sequence if these measures
W (EN ) and Ck(EN ) (at least for “small” k) are “small”.

In this paper our goal is to return to the analysis of the general proper-
ties of these PR measures. First in Section 2 we will show that the test-
ing principle quoted above is justified and, indeed, for a truly random
EN ∈ {−1,+1}N both PR measuresW (EN ) and Ck(EN ) are “small”. These
results inspire a further question which, although less important from a prac-
tical point of view, seems to be of independent interest: for fixed N, k, what
is the minimum of W (EN ) and Ck(EN )? This problem will be studied in
Section 3. Finally, one might like to know whether it suffices to study cor-
relation of order, say, 2, or correlations of higher order must be studied as
well. This question can be answered by analyzing the connection between
Ck(EN ) and Cl(EN ) for k 6= l; this analysis will be carried out in Section 4.

2. The PR measures for random binary sequences. In this sec-
tion we will estimate W (EN ) and Ck(EN ) for “random” binary sequences
EN ∈ {−1,+1}N , i.e., for choosing each EN ∈ {−1,+1}N with probability
1/2N . We will show that for a random EN both W (EN ) and Ck(EN ) are
around

√
N :

Theorem 1. For all ε > 0 there are numbers N0 = N0(ε) and δ = δ(ε)
such that for N > N0 we have

P (W (EN ) > δN1/2) > 1− ε,(2.1)

P (W (EN ) > 6(N logN)1/2) < ε.(2.2)

Theorem 2. For all k ∈ N, k ≥ 2 and ε > 0 there are numbers N0 =
N0(ε, k) and δ = δ(ε, k) such that for N > N0 we have

P (Ck(EN ) > δN1/2) > 1− ε,(2.3)

P (Ck(EN ) > 5(kN logN)1/2) < ε.(2.4)

Thus with probability > 1− 2ε we have

δN1/2 < W (EN ) < 6(N logN)1/2,(2.5)

δN1/2 < Ck(EN ) < 5(kN logN)1/2.(2.6)

(2.5) could be improved with some effort but we did not force this since it
is good enough for our purpose in this easier form. On the other hand, it
seems to be more difficult to improve on (2.6).
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Proof of Theorem 1. First we will prove (2.1). Since by (1.1),

W (EN ) ≥ |U(EN , N, 1, 1)| =
∣∣∣
N∑

j=1

ej

∣∣∣,

we have

P (W (EN ) > δN1/2) ≥ P
(∣∣∣

N∑

j=1

ej

∣∣∣ > δN1/2
)
,

so that it suffices to prove

P
(∣∣∣

N∑

j=1

ej

∣∣∣ > δN1/2
)
> 1− ε.(2.7)

If
|{j : 1 ≤ j ≤ N, ej = −1}| = h,(2.8)

then
N∑

j=1

ej = |{j : 1 ≤ j ≤ N, ej = +1}| − |{j : 1 ≤ j ≤ N, ej = −1}|

= (N − h)− h = N − 2h.

(2.8) holds with probability 1
2N
(
N
h

)
, so that

P
(∣∣∣

N∑

j=1

ej

∣∣∣ > δN1/2
)

=
∑

h: |N−2h|>δN1/2

1
2N

(
N

h

)
(2.9)

=
1

2N
∑

h: |h−N/2|>(δ/2)N1/2

(
N

h

)
.

It is a well known property of the binomial distribution that for all ε > 0
there is an η = η(ε) > 0 such that

∑

h: |h−N/2|>ηN1/2

(
N

h

)
> (1− ε)2N .(2.10)

If we now choose δ = 2η(ε), then (2.7) follows from (2.9) and (2.10), and
this completes the proof of (2.1).

Now we prove (2.2). Write L = 6(N logN)1/2. By (1.1) we have

P (W (EN ) > L) = P (max
a,b,t
|U(EN , t, a, b)| > L)(2.11)

≤
∑

a,b,t

P (|U(EN , t, a, b)| > L)
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where both the maximum and the summation are taken over all a, b, t ∈ N
such that

1 ≤ a ≤ a+ (t− 1)b ≤ N.(2.12)

It follows that

a, b, t ∈ {1, . . . , N}.(2.13)

By (2.11) and (2.13) we have

P (W (EN ) > L) ≤ N3 max
a,b,t

P (|U(EN , t, a, b)| > L)

where again the maximum is taken over all a, b, t satisfying (2.12). Thus in
order to prove (2.2), it suffices to show that for all a, b, t satisfying (2.12),

P (|U(EN , t, a, b)| > L) = P
(∣∣∣

t−1∑

j=0

ea+jb

∣∣∣ > L
)
< ε/N3.(2.14)

If t ≤ L then the probability in (2.14) is trivially 0 so that we may assume
that

t > L = 6(N logN)1/2.(2.15)

Write

M = 6(t log t)1/2,(2.16)

|{j : 0 ≤ j ≤ t− 1, ea+jb = −1}| = h.(2.17)

Then
t−1∑

j=0

ea+jb = |{j : 0 ≤ j ≤ t− 1, ea+jb = +1}|

− |{j : 0 ≤ j ≤ t− 1, ej = −1}|
= (t− h)− h = t− 2h.

(2.17) holds with probability 1
2t
(
t
h

)
so that

P
(∣∣∣

t−1∑

j=0

ea+jb

∣∣∣ > M
)

=
∑

h: |t−2h|>M

1
2t

(
t

h

)
=

1
2t

∑

h: |h−t/2|>M/2

(
t

h

)
.(2.18)

An easy computation shows that if t→∞ and k ≤ t2/3, then
(

t

[t/2]− k

)
=
(

t

[t/2]

)
exp
(
−2k2

t
+O

(
k3

t2

))
.

If we also use the fact that
(
t
i

)
is increasing in i for 0 ≤ i ≤ t/2, it follows

easily that for N large enough (so that t is also large by (2.15)),
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∑

h: |h−t/2|>M/2

(
t

h

)
=

∑

h: |h−t/2|>3(t log t)1/2

(
t

h

)
(2.19)

<

(
t

[t/2]

)
t exp

(
−2(3(t log t)1/2)2 1

t
+ o(1)

)

=
(

t

[t/2]

)
t exp(−18 log t+ o(1)) <

2t

t16 .

Since M ≤ L, it follows from (2.15), (2.18) and (2.19) that

P
(∣∣∣

t−1∑

j=0

ea+jb

∣∣∣ > L
)
≤ P

(∣∣∣
t−1∑

j=0

ea+jb

∣∣∣ > M
)

<
1
2t
· 2t

t16 =
1
t16 <

1
L16 = o

(
1
N8

)
<

ε

N3 ,

which proves (2.14) and this completes the proof of (2.2).

Proof of Theorem 2. First we prove (2.3). Since by (1.2), for N > 2k,

Ck(EN ) ≥ |V (EN , [N/2]− k, (0, 1, . . . , k − 2, [N/2]))|

=
∣∣∣

[N/2]−k∑

n=1

enen+1 . . . en+k−2en+[N/2]

∣∣∣,

we have

P (Ck(EN ) > δN1/2) ≥ P
(∣∣∣

[N/2]−k∑

n=1

enen+1 . . . en+k−2en+[N/2]

∣∣∣ > δN1/2
)

so that it suffices to prove

P
(∣∣∣

[N/2]−k∑

n=1

enen+1 . . . en+k−2en+[N/2]

∣∣∣ > δN1/2
)
> 1− ε.(2.20)

For any fixed (k−1)-tuple u = (en, en+1, . . . , en+k−2), write fn = enen+1 . . .
. . . en+k−2, and define gn by

en+[N/2] = fngn

(so that gn ∈ {−1,+1}). Then the sum in (2.20) can be rewritten as

[N/2]−k∑

n=1

enen+1 . . . en+k−2en+[N/2] =
[N/2]−k∑

n=1

gn.

Since en+[N/2] assumes the values −1 and +1, independently of e1, e2, . . .
. . . , e[N/2], with probability 1/2, so clearly does gn. Thus (2.20) can be writ-



102 J. Cassaigne et al.

ten in the equivalent form

P
(∣∣∣

[N/2]−k∑

n=1

gn

∣∣∣ > δN1/2
)
> 1− ε

where g1, . . . , g[N/2]−k are independent and assume the values −1 and +1
with probability 1/2. Writing again

|{n : 1 ≤ n ≤ [N/2]− k, en = −1}| = h,

we deduce in the same way as in the proof of (2.1) that

[N/2]−k∑

n=1

gn = [N/2]− k − 2h

and

P
(∣∣∣

[N/2]−k∑

n=1

gn

∣∣∣ > δN1/2
)

=
∑

h: |[N/2]−k−2h|>δN1/2

1
2[N/2]−k

(
[N/2]− k

h

)

=
∑

h: |(1/2)([N/2]−k)−h|>(δ/2)N1/2

1
2[N/2]−k

(
[N/2]− k

h

)
.

For fixed k, small enough δ = δ(ε) and N > N0(ε, k), this is, indeed, > 1−ε.
Since this lower bound is uniform for any choice of e1, e2, . . . , e[N/2], (2.20)
also holds and this completes the proof of (2.3).

Now we prove (2.4). This will be an easy consequence of an upper bound
for the sum

SN,k(l) =
∑

EN∈{−1,+1}N

∑

M

∑

D

(V (EN ,M,D))2l

where the inner sums are taken over all M ∈ N, D = (d1, . . . , dk) with
0 ≤ d1 < . . . < dk, M + dk ≤ N , and l will be fixed later in terms of k and
N . The sum above can be rewritten as

SN,k(l) =
∑

M

∑

D

Z(M,D)(2.21)

where

Z(M,D) =
∑

En∈{−1,+1}N
(V (EN ,M,D))2l

=
∑

En∈{−1,+1}N

( M∑

n=1

en+d1en+d2 . . . en+dk

)2l
.
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If M ≤ N1/4 then clearly

Z(M,D) =
∑

En∈{−1,+1}N
(V (EN ,M,D))2l(2.22)

≤
∑

En∈{−1,+1}N
M2l = 2NM2l.

Assume now that
N1/4 < M ≤ N.(2.23)

Write en+d1en+d2 . . . en+dk = xn. Then by the multinomial theorem we have

Z(M,D) =
∑

EN∈{−1,+1}N

2l∑

t=1

∑

1≤i1<...<it≤M

∑

j1+...+jt=2l
1≤j1,...,jt

(2l)!
j1! . . . jt!

xj1i1 . . . x
jt
it
.

Observe that each xi ∈ {−1,+1}, and thus the value of xji depends only on
the parity of j: xji = 1 if j is even and xji = xi if j is odd. Let Z1 denote the
contribution of those terms for which at least one of j1, . . . , jt is odd and let
Z2 denote the contribution of the terms such that each of j1, . . . , jt is even,
so that

Z(M,D) = Z1 + Z2.(2.24)

All the terms in Z1 can be replaced by a term of the form a constant
times xs1 . . . xsu where u ≤ 2l, 1 ≤ s1 < . . . < su ≤ M . Thus Z1 can be
rewritten in the form

Z1 =
∑

u≤2l

∑

1≤s1<...<su≤M
a(s1, . . . , su)

∑

EN∈{−1,+1}N
xs1 . . . xsu(2.25)

(where the coefficients a(s1, . . . , su) are non-negative integers independent
of EN ). Replace xsi again by esi+d1esi+d2 . . . esi+dk for each of i = 1, . . . , u;
then each term xs1 . . . xsu becomes of the form

xs1 . . . xsu = es1+d1e
q2
v2
eq3v3

. . . eqzvz

where s1 + d1 < v2 < . . . < vz and qi ∈ N for i = 2, 3, . . . , z. Then the
innermost sum in (2.25) is

∑

(e1,...,es1+d1−1,es1+d1+1,...,eN )∈{−1,+1}N−1

eq2v2
. . . eqzvz

∑

es1+d1∈{−1,+1}
es1+d1 .

Here the inner sum is 0 so that the innermost sum in (2.25) is always 0 and
thus

Z1 = 0.(2.26)

In Z2 we may replace each ji by 2ri, and then we may use the fact that
the inner sums are independent of EN :
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Z2 =
∑

EN∈{−1,+1}N

2l∑

t=1

∑

1≤i1<...<it≤M

∑

r1+...+rt=l
1≤r1,...,rt

(2l)!
(2r1)! . . . (2rt)!

= 2N
2l∑

t=1

∑

1≤i1<...<it≤M

∑

r1+...+rt=l
1≤r1,...,rt

(2l)!
(2r1)! . . . (2rt)!

.

To compute this sum observe that, by a similar argument,

F (y1, . . . , yM ) :=
∑

{f1,...,fM}∈{−1,+1}M
(f1y1 + . . .+ fMyM )2l

= 2M
2l∑

t=1

∑

1≤i1<...<it≤M

∑

r1+...+rt=l
1≤r1,...,rt

(2l)!
(2r1)! . . . (2rt)!

y2r1
i1

. . . y2rt
it
.

Substituting y1 = . . . = yM = 1, we obtain F (1, . . . , 1) = 2M−NZ2. On the
other hand, F (1, . . . , 1) is easy to compute: if

|{fi : 1 ≤ i ≤M, fi = −1}| = h,(2.27)

then
f1 + . . .+ fM = M − 2h,

and there are
(
M
h

)
M -tuples satisfying (2.27). Thus

2M−NZ2 = F (1, . . . , 1) =
M∑

h=0

(
M

h

)
(M − 2h)2l = 2

[M/2]∑

h=0

(
M

h

)
(M − 2h)2l.

Now we fix the value of l: let

l = [2k logN ].(2.28)

Write

Ah =
(
M

h

)
(M − 2h)2l so that 2M−NZ2 = 2

[M/2]∑

h=0

Ah.

A little computation shows that for h < M/2 we have

Ah+1

Ah
=
M − h
h+ 1

(
1− 2

M − 2h

)2l

and clearly this is decreasing on the interval 0 < h ≤M/2−1. Thus writing
H = M/2−

√
lM , by (2.23) and (2.28), for h ≤ H we have

Ah+1

Ah
≥ M −H

H + 1

(
1− 2

M − 2H

)2l

=
M/2 +

√
lM

M/2−
√
lM + 1

(
1− 1√

lM

)2l
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= (1 + (1 + o(1))4
√
l/M)(1− (1 + o(1))2

√
l/M)

= (1 + (1 + o(1))2
√
l/M) > 1.

It follows that writingH0 = [M/2−
√
lM+1], we have A0 < A1 < . . . < AH0 ,

whence

2M−NZ2 = 2
[M/2]∑

h=0

Ah = 2
( H0∑

h=0

Ah +
[M/2]∑

h=H0+1

Ah

)
(2.29)

< 2
( H0∑

h=0

AH0 +
[M/2]∑

h=H0+1

(
M

h

)
(M − 2h)2l

)

< 2
(

2H0AH0 + (M − 2H0)2l
M∑

h=0

(
M

h

))

< 2
(
M

(
M

H0

)
(M − 2H0)2l + (M − 2H0)2l2M

)

< 2M+1(M + 1)
(
M − 2

(
M

2
−
√
lM

))2l

< 2M+2M(4lM)l for N1/4 < M ≤ N .

It follows from (2.21), (2.22), (2.24), (2.26) and (2.29) that

SN,k(l) =
∑

D

( ∑

M≤N1/4

Z(M,D) +
∑

N1/4<M≤N
Z(M,D)

)
(2.30)

<
∑

D

( ∑

M≤N1/4

2NM2l +
∑

N1/4<M≤N
2N+2(4l)lN l+1

)

<
∑

D

( ∑

M≤N1/4

2NN l/2 +N l+22N+2(4l)l
)

< 2N
∑

D

(N l/2+1/4 + 4N l+2(4l)l)

< 5 · 2NN l+2(4l)l
∑

D

1.

Each di in D = (d1, . . . , dk) satisfies di ∈ {0, 1, . . . , N − 1} thus it can be
chosen in at most N ways so that

∑

D

1 ≤ Nk.(2.31)

It follows from (2.30) and (2.31) that

SN,k(l) < 5 · 2NNk+l+2(4l)l.(2.32)
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On the other hand, writing X = 5(kN logN)1/2, we clearly have

SN,k(l) =
∑

EN∈{−1,+1}N

∑

M

∑

D

(V (EN ,M,D))2l(2.33)

≥
∑

EN∈{−1,+1}N
(max
M,D
|V (EN ,M,D)|)2l

=
∑

EN∈{−1,+1}N
(Ck(EN ))2l

≥ X2l|{EN : EN ∈ {−1,+1}N , Ck(EN ) > X}|.
It follows from (2.28), (2.32) and (2.33) that

P (Ck(EN ) > X) =
1

2N
|{EN : EN ∈ {−1,+1}N , Ck(N) > X}|

≤ 5Nk+l+2(4l)lX−2l

= 5Nk+l+2(4l)l(25kN logN)−l < 5Nk+23−l

= 15Nk+23−l−1 < 15N2k3−2k logN

= 15N2k(1−log 3) < 15N1−log 3

and this is < ε if N is large enough in terms of ε (since 1− log 3 < 0), which
completes the proof of (2.4).

3. The minimum of the PR measures. Write

m(N) = min
EN∈{−1,+1}N

W (EN ), Mk(N) = min
EN∈{−1,+1}N

Ck(EN ).

The estimate of m(N) is a classical problem. In 1964 Roth [Ro] proved
that m(N) > c1N

1/4 for some positive absolute constant c1. From the op-
posite side Erdős, Spencer, Sárközy and Beck estimated m(N), and finally
in 1996 Matoušek and Spencer [MSp] showed that m(N) < c2N

1/4 so that
now the order of magnitude of m(N) is known.

On the other hand, as far as we know Mk(N) has not been studied yet,
not even M2(N) has been estimated. We will prove

Theorem 3. (i) For k,N ∈ N, 2 ≤ k ≤ N we have

Mk(N) < 27kN1/2 logN.(3.1)

(ii) For k ∈ N, k ≥ 2 there is a number N0(k) such that if N ∈ N,
N > N0, then also

Mk(N) ≤ 5(kN logN)1/2.(3.2)

On the other hand, we have only a very weak lower bound for Mk(N)
and only in the case when k is even:
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Theorem 4. If k,N ∈ N, k is even, 2 ≤ k ≤ N , then

Mk(N) ≥
[

1
log 2

(logN − log k)
]
.(3.3)

Note that if k is odd then there is no lower bound of type (3.3). More
exactly we haveMk(N) = 1 for allN ∈ N and odd k with 1 < k ≤ N . Indeed,
Mk(N) ≥ 1 is trivial. To see that also Mk(N) ≤ 1, consider the sequence
EN = {e1, . . . , eN} ∈ {−1,+1}N defined by en = (−1)n for n = 1, . . . , N .
Then for all n and D = (d1, . . . , dk) we have

en+1+d1 . . . en+1+dk = (−en+d1) . . . (−en+dk)

= (−1)ken+d1 . . . en+dk = −en+d1 . . . en+dk

whence, for all M , D,

|V (EN ,M,D)| =
∣∣∣
M∑

n=1

en+d1 . . . en+dk

∣∣∣ =
{

0 if M is even,
1 if M is odd,

so that
Ck(EN ) = max

M,D
|V (EN ,M,D)| = 1 for k odd,

which proves Mk(N) ≤ 1.
We remark that it is easy to see that in this example if k is even, then

Ck(EN ) is large:

Ck(EN ) = |V (EN , N − k + 1, (0, 1, . . . , k − 1))|

=
∣∣∣
N−k+1∑

n=1

(−1)n+(n+1)+...+(n−k+1)
∣∣∣

= |± (N − k + 1)| = N − k + 1 for k even.

The contrast between the sizes of C2(EN ) and C3(EN ) in the example
above inspires the following problem that we have not been able to settle:

Problem 1. For N →∞, are there sequences EN such that C2(EN ) =
O(
√
N) and C3(EN ) = O(1) simultaneously?

We think that the upper bounds in Theorem 3 are much closer to the
truth than the lower bound in Theorem 4 but, unfortunately, we have not
been able to tighten the gap. In particular, we have not been able to settle
the following problem:

Problem 2. Is it true that there is a c > 0 such that as N →∞,

M2(N)� N c?(3.4)

We think that the answer is affirmative. We will return to this problem
at the end of the proof of Theorem 4.
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Proof of Theorem 3. (i) Let p denote the smallest prime with p > N so
that, by Chebyshev’s theorem,

N < p ≤ 2N.(3.5)

Define EN = {e1, . . . , eN} ∈ {−1,+1}N by

en =
(
n

p

)
for n = 1, . . . , N,

where
(
n
p

)
denotes the Legendre symbol. By Theorem 1, formula (3.1) in

Part I [MSá] for this sequence EN we have

Ck(EN ) ≤ 9kp1/2 log p

whence, by (3.5),

Ck(EN ) ≤ 9k(2N)1/2 log(2N) < 27kN1/2 logN

which proves (3.1).
(ii) It follows from (2.4) in Theorem 2 (with, say, ε = 1/2) that for

N > N0(k) there is at least one EN ∈ {−1,+1}N with

Ck(EN ) ≤ 5(kN logN)1/2,

which proves (3.2).

Proof of Theorem 4. First we remark that (3.3) is always true for k ≥
N/2 so that we can now suppose

k ≤ N/2.(3.6)

Write

Q =
[

1
log 2

(logN − log k)
]

so that Q ≥ 1 by (3.6). Let EN = {e1, . . . , eN} ∈ {−1,+1}N and consider
the N −Q+ 1 Q-tuples

v1 = (e1, . . . , eQ), v2 = (e2, . . . , eQ+1), . . . , vN−Q+1 = (eN−Q+1, . . . , eN ).

We will show that there are subscripts

(1 ≤) i1 < . . . < ik (≤ N −Q+ 1)(3.7)

with
vi1 = . . . = vik .(3.8)

The number of distinct Q-tuples in {−1,+1}Q is 2Q. Thus if the number of
the vectors vi is greater than (k − 1)2Q, then by the pigeon-hole principle
there is at least one Q-tuple occurring at least k times, so that it suffices to
show that

N −Q+ 1 > (k − 1)2Q.(3.9)
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By Q ≥ 1 and the definition of Q we have

(k − 1)2Q +Q− 1 < (k − 1)2Q + 2Q − 1 < k · 2Q
= k exp(Q log 2) ≤ k exp(logN − log k) = N,

whence (3.9) follows so that indeed there are i1, . . . , ik satisfying (3.7) and
(3.8).

Now write dj = ij−1 for j = 1, . . . , k and D = (d1, . . . , dk), and consider
the sum

V (EN , Q,D) =
Q∑

n=1

en+d1en+d2 . . . en+dk .

By (3.8) and the definition of the vectors v1, . . . ,vN−Q+1, for n = 1, . . . , Q
we have

en+d1en+d2 . . . en+dk = ei1+(n−1)ei2+(n−1) . . . eik+(n−1) = (ei1+(n−1))
k.

But ei1+(n−1) ∈ {−1,+1} and k is even and thus this equals 1. It follows
that

V (EN , Q,D) =
Q∑

n=1

1 = Q

so that, by (1.2),
Ck(EN ) ≥ |V (EN , Q,D)| = Q

for all EN ∈ {−1,+1}N , which proves (3.3).

*

We have made a considerable effort to settle Problem 2 above. Even re-
lated computer calculations have been carried out. We computed M2(83) =
10 (see also Table 1). However, to gather computer evidence of any value one
has to consider much greater values of N , which again seems very difficult.

Of course, it is possible that a simple argument has been overlooked by
us and by those who also approached the problem (we asked several people).
However, there are certain signs which seem to indicate that, perhaps, the
problem is really difficult. E.g., in the case k = 2 one might like to improve
on the argument used in the proof of Theorem 4 in the following way: again
consider the Q-tuples v1, . . . ,vN−Q+1 defined there but now take Q much
greater, say, Q ∼ N c′ for some c′ > 0. A similar argument shows that it
would suffice to find i < j such that the scalar product of the vectors vi,vj
is “large”. This is the same as finding two of the given vectors so that the
angle between them is “significantly less” than π/2. However, this approach
fails since “many” vectors can be given with the property that the angle
between any two of them is “large”; see [EF] for further details.
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Table 1

N M2(N)

2 ≤ N ≤ 3 1
4 ≤ N ≤ 6 2
7 ≤ N ≤ 11 3

12 ≤ N ≤ 17 4
18 ≤ N ≤ 26 5
27 ≤ N ≤ 39 6
40 ≤ N ≤ 44 7
45 ≤ N ≤ 55 8
56 ≤ N ≤ 68 9
69 ≤ N ≤ 83 10
84 ≤ N ≤ 93 10 or 11
94 ≤ N ≤ 106 between 10 and 12

107 ≤ N ≤ 121 between 10 and 13
122 ≤ N ≤ 134 between 10 and 14

Another warning sign is that Problem 1 is related to the classical and
very difficult problem on the maximal absolute value of polynomials with
−1 and +1 coefficients on the unit circle (see, e.g., [Kah, pp. 75–78]). Indeed,
the study of the fourth mean of such a polynomial leads to sums of the type
occurring in the definition of C2(EN ).

Our results above inspire a further problem:

Problem 3. What is the connection between M2(N) and M4(N)? Is it
true that for N > N0 we have M4(N) > M2(N)? Perhaps, even M4(N) −
M2(N)→∞ as N →∞.

4. Comparison of correlations of different orders. First we will
show that if k ∈ N, l ∈ N, k | l, N →∞ and Cl(EN ) is “small”, more exactly,
Cl(EN ) = o(N), then Ck(EN ) is also small:

Theorem 5. For k, l,N ∈ N, k | l, EN ∈ {−1,+1}N we have

Ck(EN ) ≤ N
(

(l!)k/l

k!

(
Cl(EN )
N

)k/l
+
(
l2

N

)k/l)
.

Next we will show that in the assertion of the first paragraph of this
section the condition k | l is necessary and, indeed, for any fixed k and for
N → ∞ there is an EN ∈ {−1,+1}N such that Cl(EN ) is small when k - l,
whereas Ck(EN ) is large (� N):

Theorem 6. If k,N ∈ N, and k ≤ N , then there is a sequence EN ∈
{−1,+1}N such that if l ∈ N, l ≤ N/2, then

Cl(EN ) > (N − l)/k − 54k2N1/2 logN if k | l,(4.1)

Cl(EN ) < 27k2lN1/2 logN if k - l.(4.2)
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Proof of Theorem 5. By (1.2), it suffices to prove that for all M and
D = (d1, . . . , dk) (with 0 ≤ d1 < . . . < dk, M + dk ≤ N) we have

|V (EN ,M,D)| ≤
(

(l!)k/l

k!

(
Cl(EN )
N

)k/l
+
(
l2

N

)k/l)
.(4.3)

Write l/k = t so that t ∈ N because k | l. Then clearly,

V (EN ,M,D)t =
( M∑

n1=1

en1+d1 . . . en1+dk

)
. . .
( M∑

nt=1

ent+d1 . . . ent+dk

)
(4.4)

=
M∑

n1=1

. . .

M∑

nt=1

en1+d1 . . . en1+dk . . . ent+d1 . . . ent+dk

= S1 + S2,

where S1 denotes the contribution of those terms en1+d1 . . . ent+dk where
there are two equal subscripts:

ni + du = nj + dv,(4.5)

while in S2 all the subscripts are distinct.
First we estimate S1. In (4.5), u and v can be chosen in at most k ways,

i, j in t ways, nj (for fixed j) in M ways, and u, v, nj determine ni uniquely.
Each of the t− 2 remaining nh’s can be chosen in at most M ways, so that
S1 has at most k2t2M ·M t−2 = l2M t−1 terms and thus

|S1| ≤ l2M t−1.(4.6)

Now we estimate S2. Consider each of the terms en1+d1 . . . ent+dk in S2,
and rearrange the order of the factors eni+du so that the subscripts should
be increasing:

en1+d1 . . . ent+dk = ei1 . . . eil , i1 < . . . < il.

Now we t-colour these factors ei1 , . . . , eil : if the subscript of eiu is of the
form iu = nj + dv, then we colour eiu by the jth colour. Then to each term
ei1 . . . eil we may assign the sequence of the colours following each other in
the order used to colour ei1 , . . . , eil . In this way we get colour patterns of
length l where each of the t colours occurs k times, so that the number of
these colour patterns is l!/(k!)t.

Now fix any of the colour patterns, and consider each of the terms
ei1 . . . eil with this fixed colour pattern. We define an equivalence relation
among these terms: we say that

ei1 . . . eil ∼ ej1 . . . ejl if j1 − i1 = . . . = jl − il.
Clearly, this is indeed an equivalence relation. Now fix a colour pattern and
an equivalence class, and collect all the terms from this class. Let eh1 . . . ehl
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(h1 < . . . < hl) be the term for which the first subscript is minimal; it is
easy to see that h1 = 1 + d1. Write

hi − 1 = fi for i = 1, . . . , l,

and let Q denote the number of terms in the given equivalence class. Then
it is easy to see that the terms in this equivalence class are en+f1 . . . en+fl
with n = 1, . . . , Q so that, by (1.2), the absolute value of the sum of the
terms in this class is

∣∣∣
Q∑

n=1

en+f1 . . . en+fl

∣∣∣ = |V (EN , Q, (f1, . . . , fl))| ≤ Cl(EN ).

It remains to estimate the number of equivalence classes. An equivalence
class is uniquely determined by the colour pattern, which can be chosen in
l!/(k!)t ways, and by the subscripts of the t ehi’s where these colours first
appear. The first of these subscripts, h1 = 1 + d1, is fixed, while each of the
other t− 1 subscripts can be chosen in at most M ways. Thus the number
of equivalence classes is ≤ (l!/(k!)t)M t−1, and thus the total sum is

|S2| ≤
l!

(k!)t
M t−1Cl(EN ).(4.7)

It follows from (4.4), (4.6) and (4.7) that

|V (EN ,M,D)| ≤ |S1 + S2|1/t ≤ (|S1|+ |S2|)1/t

≤
(
l2M t−1 +

l!
(k!)t

M t−1Cl(EN )
)1/t

≤
(
l2N t−1 +

l!
(k!)t

N t−1Cl(EN )
)1/t

= N

(
l2

N
+

l!
(k!)t

· Cl(EN )
N

)1/t

≤ N
((

l2

N

)1/t

+
(l!)1/t

k!

(
Cl(EN )
N

)1/t)

which proves (4.3) and this completes the proof of Theorem 5.

Proof of Theorem 6. We will construct a sequence EN ∈ {−1,+1}N
with the desired properties. The construction will be based on the following
result which was the crucial tool also in [MSá]:

Lemma 1. Suppose p is a prime number , Fp denotes the field of residue
classes modulo p, Fp denotes the algebraic closure of Fp, f(x) ∈ Fp[x] is
a polynomial of degree d which is not of the form f(x) = b(g(x))2 with
b ∈ Fp, g(x) ∈ Fp[x] (in other words, if we factorize f in Fp: f(x) =
b(x− x1)d1 . . . (x− xs)ds , where xi 6= xj for i 6= j, then there is at least one
odd exponent di), X,Y are real numbers with 0 < Y ≤ p,

(
n
p

)
denotes the

Legendre symbol for p -n and we write
(
n
p

)
= 0 for p |n. Then

∣∣∣∣
∑

X<n≤X+Y

(
f(n)
p

)∣∣∣∣ < 9dp1/2 log p.
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Proof. This is Corollary 1 in [MSá] and, indeed, we derived it from
A. Weil’s theorem [We].

Now let p denote the smallest prime with p > N so that, by Chebyshev’s
theorem,

N < p ≤ 2N,(4.8)

and define EN = {e1, . . . , eN} ∈ {−1,+1}N by

en =





(
n

p

)
for k -n,

(
(n− 1)(n− 2) . . . (n− k + 1)

p

)
for k |n.

(4.9)

First we prove (4.1). Assume that k | l. Then

Cl(EN ) = max
M,D
|V (EN ,M,D)| ≥ |V (EN , N − l + 1, (0, 1, . . . , l − 1))|(4.10)

=
∣∣∣
N−l+1∑

n=1

enen+1 . . . en+l−1

∣∣∣ =
∣∣∣
k∑

r=1

S(r)
∣∣∣

where S(r) is defined by

S(r) =
∑

1≤n≤N−l+1
n≡r (mod k)

enen+1 . . . en+l+1.

Consider first the case r = 1:

S(1) =
∑

1≤n≤N−l+1
n≡1 (mod k)

enen+1 . . . en+l+1

=
∑

1≤n≤N−l+1
n≡1 (mod k)

∏

n+k−1≤m≤n+l−1
k|m

em−k+1em−k+2 . . . em.

For k |m, 1 ≤ m ≤ N < p we have

(4.11) em−k+1em−k+2 . . . em

=
(
m− k + 1

p

)(
m− k + 2

p

)
. . .

(
m− 1
p

)

×
(

(m− 1)(m− 2) . . . (m− k + 1)
p

)

=
(

(m− 1)2(m− 2)2 . . . (m− k + 1)2

p

)
= +1 for k |m
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so that

S(1) =
∑

1≤n≤N−l+1
n≡1 (mod k)

1 =
[
N − l
k

]
+ 1 >

N − l
k

.(4.12)

Consider now the case 2 ≤ r ≤ k. Write each n with 1 ≤ n ≤ N − l + 1,
n ≡ r (modk) in the form n = uk + r so that S(r) can be rewritten as

S(r) =
∑

0≤u≤(N−l+1−r)/k
euk+reuk+r+1 . . . euk+r+l−1.

By (4.11), the product of the ei’s with (u+1)k < i ≤ (u+ l/k)k in the term
euk+reuk+r+1 . . . euk+r+l−1 is 1 so that these ei’s can be dropped. By using
the definition of en we get

S(r) =
∑

0≤u≤(N−l+1−r)/k
euk+r . . . e(u+1)keuk+l+1 . . . euk+r+l−1

=
∑

0≤u≤(N−l+1−r)/k

(
uk + r

p

)
. . .

(
((u+ 1)k − k + 1) . . . ((u+ 1)k − 1)

p

)

×
(
uk + l + 1

p

)
. . .

(
uk + r + l − 1

p

)
.

Using the multiplicativity of the Legendre symbol, and then dropping the
square factors in the “numerator” of the Legendre symbol, we can rewrite
the last sum as

S(r) =
∑

0≤u≤(N−l+1−r)/k

(
(uk + 1) . . . (uk + r − 1)(uk + l + 1) . . . (uk + l + r − 1)

p

)
.

Since k ≤ N < p, there is an integer k with

kk ≡ 1 (mod p).(4.13)

Then multiplying the sum above by
(
k 2r−2

p

)
= 1 we get

S(r) =
∑

0≤u≤(N−l+1−r)/k

(
f(u)
p

)

where

f(u) = (u+ k)(u+ 2k) . . . (u+ (r − 1)k)(u+ (l+ 1)k) . . . (u+ (l+ r − 1)k).

As l+r−1 < l+k ≤ 2l ≤ N < p, here all the zeros −k,−2k, . . . ,−(l+r−1)k
are distinct modulo p, thus the polynomial f satisfies the conditions in
Lemma 1 so that the lemma can be applied to estimate this sum S(r).
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The degree of f(u) is d = 2(r − 1) < 2k so that by Lemma 1 and (4.8),

|S(r)| < 9 · 2kp1/2 log p(4.14)

≤ 18k(2N)1/2 log 2N < 54kN1/2 logN for 2 ≤ r ≤ k.

It follows from (4.10), (4.12) and (4.14) that

Cl(EN ) ≥ S(1)−
k∑

r=2

|S(r)| > N − l
k
− 54k2N1/2 logN,

which completes the proof of (4.1).
(4.2) can be proved similarly. Assume that k - l. By (1.2) it suffices to

prove that for all M ∈ N, D = (d1, . . . , dl) with 0 ≤ d1 < . . . < dl, M + dl ≤
N we have

|V (EN ,M,D)| =
∣∣∣
M∑

n=1

en+d1en+d2 . . . en+dl

∣∣∣ < 27k2lN1/2 logN.(4.15)

As in the proof of (4.1), we write

V (EN ,M,D) =
k∑

r=1

S(r)(4.16)

where
S(r) =

∑

1≤n≤M
n≡r (mod k)

en+d1en+d2 . . . en+dl.

Again we substitute n = uk + r so that

S(r) =
∑

0≤u≤(M−r)/k
euk+r+d1euk+r+d2 . . . euk+r+dl(4.17)

where, by (4.9),

euk+r+di =
(
uk + r + di

p

)
for k - (r + di)(4.18)

and

(4.19) euk+r+di

=
(

(uk + r + di − 1)(uk + r + di − 2) . . . (uk + r + di − k + 1)
p

)

for k | (r + di).

Using again the multiplicativity of the Legendre symbol, we can write the
general term in the sum (4.17) as a single Legendre symbol whose “numer-
ator” is a polynomial in u which is the product of linear polynomials of the
form uk+az where, clearly, 1 ≤ az < p so that for distinct values of az these
linear polynomials are also distinct modulo p. Clearly, each of these linear
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polynomials occurs at most twice, and uk+ az occurs twice if and only if it
occurs in Legendre symbols of both forms (4.18) and (4.19), i.e., there are
i, j, h with 1 ≤ i, j ≤ l,

r + di = az, k - (r + di)(4.20)

and
r + dj − h = az, k | (r + dj), 1 ≤ h ≤ k − 1.(4.21)

Whenever this is the case, i.e., the factor uk + az occurs twice, we drop
the factor (uk + az)2 in the “numerator” of the Legendre symbol in ques-
tion. Doing this with all the factors occurring twice, we finally arrive at a
representation of the form

euk+r+d1euk+r+d2 . . . euk+r+dl =
(
g(u)
p

)
(4.22)

where either
g(u) = 1(4.23)

or g(u) is a product of linear polynomials of the form uk + bi distinct mod-
ulo p:

g(u) = (uk + b1)(uk + b2) . . . (uk + by)(4.24)

where
bi 6≡ bj (modp) for 1 ≤ i < j ≤ y.(4.25)

Note that the degree of g(u) is at most the sum of the degrees of the poly-
nomials in the “numerators” of the Legendre symbols corresponding to the
numbers euk+r+di in the sense (4.18) and (4.19). Since the degree of each
of these polynomials is at most k, and i may assume l distinct values, the
degree of g(u) is

deg g(u) ≤ kl.(4.26)

Now we show that it follows from the assumption k - l that case (4.23)
cannot occur. We argue by contradiction: assume that (4.23) holds, i.e., each
uk+ az mentioned above occurs twice so that each az can be represented in
both forms (4.20) and (4.21). Fix a quadruple i, j, h and z satisfying (4.20)
and (4.21). Then for all h′ with 1 ≤ h′ ≤ k − 1, write az′ = r + dj − h′. For
each of these numbers az′ the factor uk+az′ appears in the Legendre symbol
corresponding to euk+r+dj in sense (4.19). Since by our indirect assumption
each uk + az′ occurs twice, each of the az′ must also have a representation
in the form (4.20) so that each of the numbers dj − h′ is a di, i.e., each of

euk+r+dj−1, euk+r+dj−2, . . . , euk+r+dj−k+1(4.27)

occurs in the product in (4.22). Thus dropping all these factors uk + az,
uk + az′ (the latter corresponding to the fixed az) means to eliminate the
contribution (= 1) of the k e’s in (4.27).
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If not all the factors uk + az have been dropped yet, then we may re-
peat this procedure again by dropping k − 1 distinct factors uk + az each
occurring twice, and corresponding to the contribution of k further factors
euk+r+di in (4.22). Repeating this procedure again and again, finally by our
assumption (4.23) we drop all the factors uk + az. In each step we consider
the contribution of k further factors euk+r+di in (4.22) so that the total num-
ber l of these factors must be an integer multiple of k. But this contradicts
our assumption k - l and this contradiction proves that (4.23) cannot hold
so that g(u) must be of the form (4.24).

By (4.17) and (4.22), S(r) can be rewritten as

S(r) =
∑

0≤u≤(M−r)/k

(
g(u)
p

)

where g(u) is of the form (4.24). Defining k again by (4.13), we may write
this sum as

S(r) =
(
ky

p

) ∑

0≤u≤(M−r)/k

(
f(u)
p

)
(4.28)

with
f(u) = (u+ b1k)(u+ b2k) . . . (u+ byk)(4.29)

where
bik 6≡ bjk (modp) for 1 ≤ i < j ≤ y(4.30)

by (4.25), and
deg f(u) = y = deg g(u) ≤ kl(4.31)

by (4.26). By (4.29) and (4.30), we may apply Lemma 1 to estimate the sum
in (4.28). By (4.8) and (4.31) we get

|S(r)| =
∣∣∣∣

∑

0≤u≤(M−r)/k

(
f(u)
p

)∣∣∣∣ < 9klp1/2 log p(4.32)

≤ 9kl(2N)1/2 log(2N) < 27klN1/2 logN for r = 1, . . . , k.

(4.15) follows from (4.16) and (4.32), and this completes the proof of
Theorem 6.

5. Remarks to earlier papers of ours. Finally, we would like to
make two remarks concerning our earlier papers [CFMRS1] and [CFMRS2].
In these two papers we studied the pseudorandom properties of the Liouville
function λ(n) = (−1)Ω(n) (where Ω(n) denotes the number of prime factors
of n counted with multiplicity). Write LN = {λ(1), . . . , λ(N)}. In particular,
in [CFMRS1] we showed that assuming the generalized Riemann hypothesis,
we have

W (LN ) < N5/6+ε.(5.1)
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It has been pointed out to us by Dr. Louis Goubin (Bull. PTS) that if one
replaces the second half of our Lemma 1 there by a reference to a more
recent result of Baker and Harman [BH], the exponent 5/6 in (5.1) can be
improved to 3/4. We would like to thank Dr. Goubin for this comment.

Secondly, in [CFMRS2] we studied the behaviour of the Liouville function
over polynomials and, in particular, over quadratic polynomials. We have
learned recently that I. Kátai [Kát] had also studied the λ function over
quadratic polynomials but his results are different from ours.
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Kecskeméti u. 10-12
H-1053 Budapest, Hungary
E-mail: sarkozy@cs.elte.hu

Received on 20.10.2000
and in revised form on 18.9.2001 (3912)


