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Additive properties of certain sets

by
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1. Introduction. Let A = {a1, a2, . . .} (a1 < a2 < . . .) be an infi-
nite sequence of positive integers. For n = 1, 2, . . . let R1(A,n) = R1(n),
R2(A,n) = R2(n), R3(A,n) = R3(n) denote the number of solutions of

x+ y = n, x, y ∈ A,
x+ y = n, x < y, x, y ∈ A,
x+ y = n, x ≤ y, x, y ∈ A,

respectively. Furthermore let r(k,A, n) denote the number of solutions of

x1 + . . .+ xk = n, x1, . . . , xk ∈ A,
so that r(2, A, n) = R1(A,n). Finally we use the notation A(n) for the
counting function

A(n) =
∑

a≤n, a∈A
1.

In this paper we construct sets of positive integers for which the functions
Ri(A,n), r(k,A, n) have special properties. First we study the monotonicity
property of r(k,A, n), then we examine how much the function R2(A,n) =
R2(n) determines the corresponding set A. We start from a binary sequence
P = {p0, p1, . . .} ∈ {1,−1}∞ with certain pseudorandom properties; actu-
ally we deal with the Rudin–Shapiro and Thue–Morse sequences. Then we
consider the corresponding pseudorandom set Q = {n | n ∈ N, pn−1 = 1}.
Then by using certain properties of the sequence P we get arithmetic prop-
erties of the set Q.

2. The Rudin–Shapiro set. In [3] P. Erdős, A. Sárközy and V. T. Sós
proved that if r(2, A, n) is increasing for n ≥ n0 then A contains all the
integers from a certain point on, i.e. there exists an integer n1 with

A ∩ {n1, n1 + 1, n1 + 2, . . .} = {n1, n1 + 1, n1 + 2, . . .}.
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(See [1]–[3] for related problems.) Our Theorem 1 states that for k > 4 the
opposite holds: there exists a set of density 1/2 with r(k,A, n) eventually
increasing. Moreover, a constructive proof will be given, in the sense that
the required set A will be given explicitly.

Theorem 1. There exists an A ⊂ N such that r(k,A, n) = r(n) is in-
creasing for every k > 4 and n > n0(k) and the density of A is equal to
1/2.

Proof. We will use the Rudin–Shapiro sequence so we briefly recall its
definition and some of its basic properties. First we define the Rudin–Shapiro
polynomials P2n and Q2n by the following recursion:

P2n(z) =
{
P2n−1(z) + z2n−1

Q2n−1(z) if n > 0,
1 if n = 0

and

Q2n(z) =
{
P2n−1(z)− z2n−1

Q2n−1(z) if n > 0,
1 if n = 0.

The maximum modulus of these polynomials on the unit circle |z| = 1 can
be estimated as

|P2n(z)| ≤
√

2 · 2n/2 and |Q2n(z)| ≤
√

2 · 2n/2 for n = 0, 1, 2, . . . ,

since |P2n(z)|2 + |Q2n(z)|2 = 2n+1.
By the construction of the polynomials

P2n(z) =
2n−1∑

i=0

piz
i

it is easy to see that their coefficients form a coherent sequence {p0, p1, . . .} ∈
{−1, 1}∞, which satisfies the following recursion:

p0 = 1,
p2n = pn for n = 1, 2, . . . ,

p2n+1 = (−1)npn for n = 1, 2, . . .

(see [6, p. 73]). Let us define the corresponding power series

P (z) =
∞∑

i=0

piz
i.

Thus for all m ∈ N we can define the polynomials

Pm(z) =
m−1∑

i=0

piz
i,
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and in this general case a similar (but weaker) estimation holds:

|Pm(z)| ≤ (2 +
√

2)m1/2 for m ∈ N, |z| = 1

(see [5]–[8]). We will extend this inequality to the whole |z| ≤ 1 by the
Maximum Principle.

Let A := {n ∈ N | pn−1 = 1} and let g(A, z) = g(z) =
∑
a∈A z

a denote
its generating function. With these notations

(g(z))k =
∑

n∈N
r(k,A, n)zn.

Hence r(n) − r(n − 1) can be calculated by taking the coefficient of zn in
(1 − z)(g(z))k; the theorem is equivalent to the fact that this coefficient
is nonnegative for all n > n0(k). In order to prove this we are going to
investigate the integral

1�

0

(1− z)(g(z))kz−n dt

for a fixed n, where

z = z(t) = re(t) = r exp(2πit) with r = e−1/(n−k).

Notice that

g(z) =
z

2

(
1

1− z + P (z)
)
,

so

r(n)− r(n− 1) =
1�

0

(1− z)
(
z

2

)k( 1
1− z + P (z)

)k
z−n dt

= 2−k
1�

0

(1− z)
(

1
1− z + Pn(z)

)k
z−(n−k) dt

= 2−k
1�

0

z−(n−k)(1− z)
k∑

j=0

(
k

j

)
1

(1− z)k−j
P jn(z) dt.

Taking the integral of the first summand we get

I0 =
1�

0

1
(1− z)k−1 z

−(n−k) dt =
(
n− 2
k − 2

)
.

Now we estimate the remainder. Fix 1 ≤ j ≤ k − 1 and ε. With the
notation ‖x‖ = min({x}, 1− {x}), in the interval

J1 =
{
t

∣∣∣∣ 0 < t < 1, ‖t‖ ≤ 1√
n
· 1
nε

}
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we have

|I1,j | =
∣∣∣∣

�

J1

(
1

1− z

)k−j−1(
k

j

)
P jn(z)z−(n−k) dt

∣∣∣∣

≤
(
k

j

) �

J1

∣∣∣∣
1

1− z

∣∣∣∣
k−j−1

e(2 +
√

2)jnj/2 dt

=
(
k

j

)
e(2 +

√
2)jnj/2

�

J1

∣∣∣∣
1

1− z

∣∣∣∣
k−j−1

dt

≤
(
k

j

)
e(2 +

√
2)jnj/2nk−j−1e

1√
n
· 1
nε

=
(
k

j

)
e2(2 +

√
2)jnk−j/2−3/2−ε

where in the first inequality we applied our estimate of the Rudin–Shapiro
polynomial on the |z| = r = e−1/(n−k) circle, while in the second one we
used

1− e−x = x− x2

2!
+
x3

3!
− . . . = x

(
1− x

2!
+
x2

3!
− . . .

)
,

thus

1
|1− z| ≤

1∣∣1− |z|
∣∣ =

1
1− e−1/(n−k)

< (n− k)
(

1 +
1

2(n− k)− 1

)
,

and so
∣∣∣∣

1
1− z

∣∣∣∣
k−j−1

≤ (n− k)k−j−1
(

1 +
1

2(n− k)− 1

)k−j−1

<
e

2
nk−j−1,

for large enough n. In the interval

J2 =
{
t

∣∣∣∣ 0 < t < 1, ‖t‖ ≥ 1√
n
· 1
nε

}
,

since

sinx = x− x3

3!
+
x5

5!
− . . . > x− x3

6
= x

(
1− x2

6

)
>

5
6
x for 0 < x < 1,

we have ∣∣∣∣
1

1− z

∣∣∣∣ =
∣∣∣∣

1
1− z(t)

∣∣∣∣ ≤
∣∣∣∣

1
1− z

(
1

n1/2+ε

)
∣∣∣∣ ≤

∣∣∣∣
1

r · sin
(

2π
n1/2+ε

)
∣∣∣∣

≤
∣∣∣∣

1
e−1/(n−k) · 5

6 · 1
n1/2+ε

∣∣∣∣,
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thus ∣∣∣∣
1

1− z

∣∣∣∣
k−j−1

< e

(
6
5

)k
n(1/2+ε)(k−j−1)

in J2 for large n. Using the above and the Rudin–Shapiro estimate we get

|I2,j | =
∣∣∣∣

�

J2

(
1

1− z

)k−j−1(
k

j

)
P jn(z)z−(n−k) dt

∣∣∣∣

≤
(
k

j

) �

J2

∣∣∣∣
1

1− z

∣∣∣∣
k−j−1

e(2 +
√

2)jnj/2 dt

<

(
k

j

)
(2 +

√
2)jnj/2e2

(
6
5

)k
n(1/2+ε)(k−j−1)

=
(
k

j

)
(2 +

√
2)je2

(
6
5

)k
n(k−1)/2+ε(k−j−1).

If we set

ε =
1
2
· k − 3
k − 1

we can easily verify that the order of the remainder terms I1,j and I2,j are

|I1,j | = O(nk−2−j/2+1/(k−1)) and |I2,j | = O(nk−2−j/2+j/(k−1)),

both smaller than the order of the main term I0 =
(
n−2
k−2

)
.

Finally for j = k we can apply the Rudin–Shapiro estimate on the whole
circle r = e−1/(n−k) to get

|Ik| =
∣∣∣

1�

0

(1− z)P kn (z)z−(n−k) dt
∣∣∣ ≤ 2e(2 +

√
2)knk/2.

Since the number of the remainder terms is 2k − 1, their sum
k−1∑

j=1

|I1,j |+
k−1∑

j=1

|I2,j |+ |Ik| = O(nk−2−1/2+1/(k−1))

still does not exceed the main term, which means that r(n) − r(n − 1) is
positive for n > n0(k). Notice that all of our computations—except the last
one—are valid for the case k = 4, and turn out to be false when k = 3.

Using the fact that the Rudin–Shapiro sequence is well distributed in
arithmetic progressions (see [5]), it can be easily shown that A is of density
1/2, which completes our proof.

Remark 1. Combining our method with a theorem of G. Halász on
random polynomials (which extensively uses Fourier technique, see [4]) one
can prove the existence of many such sets, but due to the probabilistic
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methods applied, it does not yield any further construction. We point out
that all these examples are of density 1/2.

3. The Thue–Morse set. A. Sárközy asked whether there exist two
sets A and B of positive integers with infinite symmetric difference, i.e.

|(A ∪B) \ (A ∩B)| =∞,
and having

Ri(A,n) = Ri(B,n), n > n0,

for i = 1, 2, 3. The answer is different for the cases i = 1 and i = 2. The
case i = 3 is much more complicated, but our conjecture is that the answer
is no. For i = 1, the answer is no. Assume that there exist such sets A and
B, with R1(A,n) = R1(B,n) for n > n0. Since their symmetric difference is
infinite, there exists a for which, say, a ∈ A, a 6∈ B, a > n0. Then R1(A, 2a)
is odd while R1(B, 2a) is even. For i = 2 the answer is yes as the following
theorem shows.

Theorem 2. The set N of positive integers can be partitioned into two
subsets A and B such that R2(A,n) = R2(B,n) for all n ∈ N.

Proof. Let us consider the Thue–Morse sequence M = {m0,m1, . . .}
which is defined in the following way. For n ∈ N let S(n) denote the sum of
digits of its dyadic representation and let

mn = (−1)S(n).

It will be more convenient to use the shifted sequence T = {t1, t2, . . .} with
tn = mn−1, which satisfies the following recursion:

t1 = 1, t2n−1 = tn, t2n = −tn for all n ∈ N.
Now we will construct the corresponding pseudorandom sets. Let

A = {n ∈ N | tn = 1} and B = {n ∈ N | tn = −1}.
We have to show that for these sets R2(A,n) = R2(B,n). We use induction
on n. The theorem holds for n ≤ 5. Suppose that we have proved it for all
positive integers less than n+ 1 and let

n+ 1 = 2k + l + 1, where 0 ≤ l ≤ 2k − 1.

First consider the decompositions n + 1 = i + (n + 1 − i) with 1 ≤ i ≤ l.
Hence

S(2k + i− 1) = S(i− 1) + 1 and S(n− i) = S(l − i) + 1,

that is, m2k+i−1 6= mi−1 and mn−i 6= ml−i, so t2k+i 6= ti and tn+1−i 6=
tl+1−i, thus if i and n + 1 − i are both in A then 2k + i and l + 1 − i are
both in B and vice versa (we call such a decomposition monochromatic).
So we can get a bijection between those monochromatic decompositions of
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n + 1 from A and B in which one of the summands is between 1 and l,
by matching the monochromatic decomposition containing i with the one
containing l + 1 − i. Indeed this is one-to-one correspondence, because if
l + 1− i = i and i = (l + 1)/2 ∈ A then n+ 1− i = 2k + i ∈ B, so there is
no such monochromatic decomposition.

Now consider those decompositions where the summands are between
l + 1 and 2k. We will use the following lemma.

Lemma 1. Fix k ∈ N. Then exactly one of the following two alternatives
holds for all 0 ≤ l ≤ 2k − 1:

(i) |{x | x+ y = n+ 1, x, y ∈ A, l + 1 ≤ x < y ≤ 2k}|
= |{x | x+ y = 2k + 1− l, x, y ∈ A, x < y}|

and

|{x | x+ y = n+ 1, x, y ∈ B, l + 1 ≤ x < y ≤ 2k}|
= |{x | x+ y = 2k + 1− l, x, y ∈ B, x < y}|;

(ii) |{x | x+ y = n+ 1, x, y ∈ A, l + 1 ≤ x < y ≤ 2k}|
= |{x | x+ y = 2k + 1− l, x, y ∈ B, x < y}|

and

|{x | x+ y = n+ 1, x, y ∈ B, l + 1 ≤ x < y ≤ 2k}|
= |{x | x+ y = 2k + 1− l, x, y ∈ A, x < y}|.

Proof. Let 0 ≤ l ≤ 2k−1. Then S(2k−1− l) = k−S(l), so the modulo 2
congruence relation between S(2k−1−l) and S(l) does not depend on l. This
means that the Thue–Morse sequence M = {m0,m1, . . .} has the following
property: if k is even then

{m2k−1,m2k−2, . . . ,m0} = {m0,m1, . . . ,m2k−1}
and if k is odd then

{m2k−1,m2k−2, . . . ,m0} = {−(m0),−(m1), . . . ,−(m2k−1)}.
So if k is even, x, y ∈ A, l + 1 ≤ x < y ≤ 2k and mx−1 = my−1 = 1 then
m2k−1−x+1 = m2k−1−y+1 = 1, so

y′ = 2k − x+ 1 > 2k − y + 1 = x′

are both in A. Furthermore, if x+ y = n+ 1 then

2k−x+1+2k−y+1 = 2k+1 +2−(x+y) = 2k+1 +2−(2k+l+1) = 2k−l+1.

Therefore if k is even then the decompositions

x+ y = n+ 1 with x, y ∈ A, l + 1 ≤ x < y ≤ 2k
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correspond uniquely to the decompositions

x′ + y′ = 2k − l + 1 with x′, y′ ∈ A, x′ < y′.

Similarly we can make a one-to-one correspondence between the decompo-
sitions

x+ y = n+ 1 with x, y ∈ B, l + 1 ≤ x < y ≤ 2k

and
x′ + y′ = 2k − l + 1 with x′, y′ ∈ B, x′ < y′.

When k is odd then a similar argument shows that the decompositions

x+ y = n+ 1 with x, y ∈ A, l + 1 ≤ x < y ≤ 2k,

correspond to

x′ + y′ = 2k − l + 1 with x′, y′ ∈ B, x′ < y′

and vice versa. This proves the lemma.

For 1 ≤ l ≤ 2k − 1 we can combine the induction hypothesis

|{x | x+ y = 2k + 1− l, x, y ∈ A, x < y}|
= |{x | x+ y = 2k + 1− l, x, y ∈ B, x < y}|

with the lemma to obtain

|{x | x+ y = n+ 1, x, y ∈ A, l + 1 ≤ x < y ≤ 2k}|
= |{x | x+ y = n+ 1, x, y ∈ B, l + 1 ≤ x < y ≤ 2k}|.

For l = 0 we can apply the idea of the proof of the lemma to see that
either 2k + 1 does not have any monochromatic decomposition or it has
exactly 2k−2 decompositions from A and B. Finally for l = 2k − 1 the only
corresponding sum is 2k + 2k = 2k+1, which is not allowed.

Now we can summarize our results. We have already showed that

|{x | x+ y = n+ 1, x, y ∈ A, 1 ≤ min(x, y) ≤ l}|
= |{x | x+ y = n+ 1, x, y ∈ B, 1 ≤ min(x, y) ≤ l}|

and

|{x | x+ y = n+ 1, x, y ∈ A, l + 1 ≤ x < y ≤ 2k}|
= |{x | x+ y = n+ 1, x, y ∈ B, l + 1 ≤ x < y ≤ 2k}|,

so R2(A,n+ 1) = R2(B,n+ 1), which was to be proved.

4. Unsolved problems. We present some related open problems here.

Problem 1. Let k = 3, 4. Is there any set A ⊂ N such that N \A is infi-
nite and r(k,A, n) eventually increasing? Some computational experiments
show that for k = 4 our example seems to be strictly increasing from the
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beginning, but in the case k = 3 it is definitely not. According to these com-
puter based results we conjecture that for k = 3 the answer is no (similarly
to the case k = 2) and for k = 4 the answer is yes (as it is for k > 4).

Problem 2. Let k ≥ 3. Is there any set A ⊂ N with r(k,A, n) eventually
increasing and satisfying

lim
n→∞

A(n)
n

= α with α 6= 1
2

?

Problem 3. Is there any pair of sets of positive integers A and B with

|(A ∪B) \ (A ∩B)| =∞
and

R3(A,n) = R3(B,n), n > n0?

Problem 4. For two sets A and B we can consider the L2 distance of
Ri(A,n) and Ri(B,n) for each i = 1, 2, 3. If we choose two sets having large
gaps between their elements we can have

lim sup
n→∞

1
n

n∑

j=1

|Ri(A, j)−Ri(B, j)|2 = 0,

so it is natural to normalize with the counting function of their union and
study

di(A,B) = lim sup
n→∞

1
(A ∪B)(n)

n∑

j=1

|Ri(A, j)−Ri(B, j)|2.

For the Thue–Morse sets A and B by Theorem 2 we have

d2(A,B) = 0 and d1(A,B) = d3(A,B) = 1/2.

Our conjecture is that for all sets A and B and for i = 1, 3,

lim inf
n→∞

1
(A ∪B)(n)

n∑

j=1

|Ri(A, j)−Ri(B, j)|2 ≥
1
2
.

Problem 5. Do there exist two sets A and B with

|(A ∪B) \ (A ∩B)| =∞
and

r(k,A, n) = r(k,B, n), n > n0?

The similar question can be asked for the other two cases

r2(k,A, n) =
∑

x1+...+xk=n
x1<...<xk

1
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and
r3(k,A, n) =

∑

x1+...+xk=n
x1≤...≤xk

1.
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