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1. Introduction. Given two sets of integers A and B, define as usual
the sumset

A+ B = {a+ b | a ∈ A, b ∈ B}.
It is readily seen that

|A+ B| ≥ |A|+ |B| − 1.(1)

Moreover, equality holds if and only if |A| = 1 or |B| = 1 or A and B are
arithmetic progressions with the same difference, that is, of the form

A = {a+ (j − 1)d | 1 ≤ j ≤ l} and B = {b+ (j − 1)d | 1 ≤ j ≤ l′},
the integers l and l′ being called the length of the arithmetic progressions.
In what follows, we concentrate our efforts on the case B = t.A, where we
denote (to avoid any ambiguity with the t-fold sumset)

t.A = {ta | a ∈ A}.
Freiman [2] (see also [6]) went a step beyond (1) by showing that if A is

a set of integers such that

|A+A| ≤ 3|A| − 4,(2)

then A is a subset of a short arithmetic progression; more precisely there
are integers a and d such that

A ⊂ {a+ (j − 1)d | 1 ≤ j ≤ l},
where the length l of the arithmetic progression is less than |A+A|−|A|+1.
This result is called the 3k− 4 Theorem since the early notation of Freiman
was |A| = k. The original proof is elementary. In [3] Freiman generalized the
3k − 4 Theorem to the sum of distinct sets. In particular, he proved it for
A−A. Recent works [5, 1] on sum-free sets are based on this last result. In
1993, Steinig found another proof (which appeared recently in [14]) of this
generalized result and a short proof of a more general result was proposed
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by Lev and Smeliansky [12] who reduced the result to Kneser’s theorem [11].
The reader is also referred to [13] where all this material is available.

Concerning hypothesis (2), Freiman’s 3k − 4 Theorem is optimal as can
be seen from the following example: take arbitrary integers a and b such
that b ≥ 2a− 1 and consider

A = {0, . . . , a− 1} ∪ {b, . . . , b+ a− 1}.
We have |A| = 2a and |A + A| = 6a − 3 = 3|A| − 3 and A could not be
contained in any arithmetic progression of bounded length (provided b is
large enough); therefore the 3k − 4 Theorem does not apply.

Freiman went a bit further by showing a 3k − 3 Theorem (the 3k − 3
Theorem was originally published in [2]). Namely, he characterized the sets
of integers A satisfying |A+A| = 3|A|−3. He obtained Theorem 1 below (in
the special case t = 1). The proof, which is in the same vein as the original
3k− 4 proof, is not difficult but rather technical. The reader is also referred
to Freiman’s book [4] where both the 3k − 4 and the 3k − 3 Theorems are
presented.

In this paper, we obtain both a new proof and a generalization of the
3k−3 Theorem. Our proof is, in spirit, close to that of Lev and Smeliansky.
The main difference is that Kneser’s theorem is no longer available. Instead,
we use the isoperimetric method. This general approach, originally due to
one of the authors, is based on intersection properties of critical sets. With
this approach, we are able to decompose the proof into elementary, clearly
defined steps. In one sense, our proof allows one to understand more pre-
cisely why things behave as they do. Let us now motivate the isoperimetric
method. This method was introduced by the first author in the context of
combinatorial properties of Cayley diagrams [7]. Then it was observed [8, 9]
that these results were connected with additive number theory. Since then,
the method has proved to be especially suitable for these kinds of problems
and some applications have already been given.

We now come to the result we prove in this article. It is clear that,
for a set A of integers, neither |A| nor |A + B| is changed by a translation
or an integral dilatation. This allows us to consider instead of A itself
(A−min(A))/gcd(A) (the notation gcd(A) is for the greatest common di-
visor of the elements of A). Consequently, in what follows, without loss of
generality, we consider only sets of the form A = {a1, . . . , ak} having the
following properties: 0 = a1 < . . . < ak and gcd(a1, . . . , ak) = 1. Such sets
will be called normal.

Theorem 1. Let A be a set of positive integers such that 0 ∈ A and
gcd(A) = 1. Put M = max(A) and let t be any integer. If |A+t.A| = 3|A|−3
then one of the following happens:
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• |A| ≥ 1 + max(A)/2,
• t = 1 or −1 and A is the union of two arithmetic progressions with

the same common difference,
• t = 1, M is even and A is of the form A = {0,M/2,M, x, x+M/2, 2x}

for some positive integer x < M/2.

It is worth underlining that the case t = −1 in this result could be of
interest in the context of sum-free sets (see [5, 1]).

2. Some prerequisites. We now introduce the vocabulary needed in
this paper. We are given some finite Abelian group G. Let S be a subset of
G such that 0 ∈ S and |S| ≥ 2 and let k be a positive integer. We say that
S is k-separable if there exists a set X0 ⊂ G with |X0| ≥ k and |X0 + S| ≤
|G|−k. Assume now that S is k-separable; then the k-isoperimetric number
is defined as

κk(G,S) = min{|X + S| − |X | where X is such that

|X | ≥ k and |X + S| ≤ |G| − k}.
A set X at which this minimum is attained is called a k-critical set.

Recall that an arithmetic progression in G is a set of the form

{a+ (j − 1)d | 1 ≤ j ≤ l}
for some a, d ∈ G.

We begin with an easy well known consequence of Kneser’s theorem.

Lemma 1 (folklore). Let B be a generating proper subset of a finite
Abelian group G such that 0 ∈ B. Then for every non-empty subset C of
G we have

|B + C| ≥ min(|G|, |B|/2 + |C|).
Proof. Suppose |B + C| < |G|. By Kneser’s theorem there is a subgroup

K such that
|B + C| ≥ |B +K|+ |C +K| − |K|.(3)

Since K cannot be G (otherwise B + C = G) and B is a generating set, B
is not included in K and thus |B + K| ≥ 2|K|. Thus |B|/2 ≤ |B + K|/2 ≤
|B +K| − |K|. Since |C +K| ≥ |C|, the conclusion follows from (3).

The next result, implicit in [9, 10], will be a key lemma in what follows.

Lemma 2 (cf. [9, 10]). Let S be a 2-separable generating subset of some
finite Abelian group G such that 0 ∈ S. Assume that κ2(S) ≤ |S| − 1. Then
there are 3 possible cases:

• |S| > |G|/2,
• S is an arithmetic progression,
• there is a 2-critical subset which is a subgroup.
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This follows immediately from Proposition 6.5 of [10] since the almost-
period in case (iii) is a 2-critical subgroup.

We also need the following lemma.

Lemma 3. Let A be a normal set of integers with largest element M .
Let B be a set of integers included in a set of M + 1 consecutive integers.
Denote with a bar reduction modulo M . Then

|A+ B| ≥ 2|B| − 1 + |(A+ B) \ B|+ c,

where c counts the number of elements in (A+B)\B that are the projection
of two different elements from A+ B.

Proof. A + B contains B and M + B and their intersection reduces to
at most one element. This gives the term 2|B| − 1. Next A + B contains
elements that, when reduced modulo M , do not belong to B (these elements
are consequently neither in B nor in M +B). The number of these elements
is ≥ |(A+ B) \ B|+ c.

3. The proof. We consider a normal set A such that |A|<1+max(A)/2.
Write M = max(A). We may consider only the case t ∈ {−1, 1} since
otherwise (t = 0 is trivially not possible) consider the partition of A as
A = A0 ∪ . . .∪At−1 where Aj = A∩ (j+ t.Z). Since 0 ∈ A and A is normal
we get respectively A0 6= ∅ and Ai 6= ∅ for some 1 ≤ i ≤ t − 1. Then, by
(1), |A+ t.A| ≥∑Aj 6=∅ |Aj + t.A| ≥∑Aj 6=∅(|Aj|+ |A| − 1) ≥ 3|A| − 2. So
assume

t ∈ {−1, 1}
and, since there is no ambiguity in these cases, write simply tA instead of
t.A.

We reduce the problem modulo M and obtain a modular set A. First,
the case where A is an arithmetic progression modulo M is considered; then
the generic case is treated. Modular results are then lifted back to natural
integers to get the result.

By the assumption of Theorem 1 and Lemma 3, we have

|A+ tA| ≤ 2|A| − 1.(4)

We first prove the theorem under the additional assumption that A is
an arithmetic progression modulo M . Let d be its difference that we may
assume to satisfy 1 ≤ d < M/2 (the case d = M/2 leads to a trivial situation
that can be handled directly since in this case |A| ≤ 3).

If d = 1, it is readily seen that A is the union of two arithmetic pro-
gressions and the theorem is proved. Thus, from now on we suppose that
d 6= 1.

Perform the Euclidean division M = qd − r with 0 ≤ r ≤ d − 1. Since
gcd(M,d) = gcd(r, d), we have gcd(r, d) | gcd(A) = 1 (A is a normal set)
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and consequently
gcd(r, d) = 1.(5)

A partition of A is thus obtained by writing

Ai = {a ∈ A | a ≡ ir mod d}.
Now, since A is a modular arithmetic progression, we can write it as

A = {αj = α1 + (j − 1)d | 1 ≤ j ≤ |A|}. We underline the fact that the αj
are of the form al but there is no reason why j = l; in other words, the order
induced by the modular arithmetic progression is a priori different from
that of A itself. Two consecutive elements bs and bs+1 of A (in the order
induced by the arithmetic progression) correspond, when lifted back to A,
to bs and bs+1 such that bs+1− bs ≡ d mod M and the only possibilities are
bs+1−bs = d or d−M . Hence bs+1−bs ≡ 0 or r mod d. Since 0 ∈ A, we infer
that there exist two non-negative integers s and t such that the non-void
Ai’s correspond exactly to the values of i in the interval −v ≤ i ≤ w.

If v = w = 0, then A = A0 and 1 < d | gcd(A), which is impossible.
Thus v or w is positive. Without loss of generality we assume w ≥ 1. We
write |Ai| = γ(i) and

Ai = {bi,1 < . . . < bi,γ(i)}.
Now, we observe that

γ(0), γ(1), . . . , γ(w − 1) ≥ 2.(6)

Indeed, this is clearly true for γ(0) (because 0 and M belong to A). As
observed above, two consecutive elements in A are such that (we return to
the preceding notation) bs+1− bs = d or d−M . But the second case implies
that bs+1 < bs−M/2 and cannot happen twice consecutively (else we would
have a negative element in A). Thus the case bs+1 − bs = d ≡ 0 mod d
happens at least every other time. This proves (6).

We now prove that there are two elements in A+ tA that have the same
value modulo M . Indeed, suppose that this is proved; then by Lemma 3, we
get

|A+ tA| ≥ 2|A| − 1 + |(A+ tA) \ A|+ 1 = 3|A| − 2,

which cannot happen by hypothesis. The last equality is due to the fact that
|(A+ tA) \ A| = |A| − 1 = |A| − 2, a conclusion following directly from the
fact that A is an arithmetic progression with difference d and gcd(M,d) = 1.

Let us now prove our assertion that there are two elements in A + tA
that have the same value modulo M . If γ(t) = 1, we have

bw−1,γ(w−1) = bw−1,γ(w−1)−1 + d, bw,1 = bw−1,γ(w−1) + d−M.

Therefore bw,1 + bw−1,γ(w−1)−1 and 2bw−1,γ(w−1) are different modulo d (and
thus different in Z) but coincide moduloM . This proves our assertion ifw=1.
If t = −1, just consider bw,1 − bw−1,γ(w−1) and bw−1,γ(w−1) − bw−1,γ(w−1)−1.
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In the case γ(w) = 2, we get the same result with the two values bw,γ(w)+
bw−1,γ(w−1) and bw,γ(w) + bw,1.

We are done with the case when A is an arithmetic progression. Assume
now that A is not an arithmetic progression (modulo M). It is readily seen
from the properties of |A| that A is a 2-separable subset of Z/MZ and that

κ2(A) ≤ |A| − 1.(7)

By Lemma 2, since |A| ≤M/2 and A is not an arithmetic progression, there
is a 2-critical subset that is a subgroup (of Z/MZ), say H, which is eZ/MZ
for some e |M ; in particular

|H| ≥ 2.(8)

This implies that
|A+H| − |A| ≤ |H| − 1,(9)

which can be paraphrased by saying that A is almost a union of cosets
modulo H (more precisely the total number of “holes” in this union is at
most |H| − 1).

Define a partition of A depending on the value of the elements modulo e.
That is, write

A = A0 ∪ A1 ∪ . . . ∪ Au
with u ≥ 1 (since gcd(A) = 1) and each Ai being exactly the intersection of
A with an arithmetic progression with difference e. Moreover define A0 =
A∩eZ. We can also find elements (ai)1≤i≤u inA such that Ai = A∩(ai+eZ).
Notice that

|A+H| = (u+ 1)|H|.
We may now suppose, without loss of generality, that

|A1|, . . . , |Au−1| ≥ |Au|.(10)

Such a partition will be called an H-tiling. With the convention (10), we
readily see that for any (i, j) except possibly if (i, j) = (u, u) or (0, 0),

|Ai|+ |Aj | ≥ |H|+ 1,(11)

since (9) is equivalent to

u|H|+ 2 ≤
u∑

i=0

|Ai|.

If we look at what happens in G = (Z/MZ)/H (which is just Z/eZ) and
denote the reduced set with a double bar, we see that

|A| = u+ 1.
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Another way to write A is (A + H)/H. Using this allows us to prove the
following Cauchy–Davenport-type result:

|A+ tA| =
∣∣∣∣
A+H

H
+ t
A+H

H

∣∣∣∣ =
|A+ tA+H|

|H|(12)

≥
⌈

min(κ2(A) + |tA+H|,M − 1)
|H|

⌉

= min
(

2|A+H| − |H|
|H| ,

M

|H|

)

= 2|A| − 1 = 2u+ 1,

where we have used the facts that |A+H| ≥ 2, M is a multiple of |H| ≥ 2
(so that (M − 1)/|H| cannot be integral), 2|A+H| < M + 2|H| (and thus
2|A+H| ≤M + |H|) and (7).

Reasoning modulo e shows immediately that the sets A0 + tA0,A0 +
tA1, . . . ,A0 + tAu have no common element and are subsets of A+ tA. By
(12), we know that there are at least u other elements in A+ tA, say

Aα1 + tAβ1 ,Aα2 + tAβ2 , . . . ,Aαu + tAβu .
Notice immediately that no αi can be zero. Synthesizing, we have obtained
2u + 1 couples (Ai, tAj) which have, two by two, no common element in
their sum. Thus we obtain the following lower bound:

3|A| − 3 = |A+ tA| ≥
u∑

i=0

|A0 + tAi|+
u∑

i=1

|Aαi + tAβi |(13)

≥ |A0 + tA0|+
u−1∑

i=1

|tAi ∪ ({M}+ tAi)|+ |A0 + tAu|

+
u∑

i=1

(|Aαi |+ |Aβi | − 1)

≥ (2|A0| − 1) + 2
u−1∑

i=1

|Ai|+ (|A0|+ |Au| − 1)

+
u−1∑

i=1

|H|+ (2|Au| − 1)

≥ 2|A|+ (|A0|+ (u− 1)|H|+ |Au|)− 3

≥ 3|A| − 3,

where we have used (1) and the relation (11) in the last inequality to minorize
|Aαi + tAβi | except in one case (the possible case where αi = βi = u for
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some i, say i = u). Therefore, in the preceding series of minorizations, all
the inequalities are in fact equalities; in particular, by the last majorization,
we see that |Ai| = |H| for any 1 ≤ i ≤ u− 1. In what follows, when we refer
to (13), we mean one of the equalities in the series.

From our preceding series of equalities (13), we get |A0 + tA1| = |A0|+
|tA1| − 1 and thus A0 and tA1 (thus also A1 itself) are arithmetic progres-
sions with the same difference. If u = 1, the conclusion follows immediately
from A = A0 ∪ A1.

Assume now that u ≥ 2. From the fact that A0 and A1 are both arith-
metic progressions with the same difference e and that 0,M ∈ A0, it follows
that A0 = {0, e, 2e, . . . ,M} and

|A0| = |H|+ 1.

Then from (13) we get |Aα1 |+ |Aβ1 | − 1 = |H|, which leads readily to

|Au| = 1.

Now we know, by the fact that (13) is an equality, that

A+ tA =
u⋃

i=0

(A0 + tAi)
u⋃

i=1

(Aαi + tAβi).(14)

Moreover, each sum Ai+ tAj appearing in this union corresponds to exactly
one residue modulo e. In particular, these sets are disjoint. Now, take two
non-negative integers i, j < u. Since Ai + tAj ⊂ A + tA and this set cor-
responds to exactly one value modulo e, it is included in one of the 2u + 1
sets appearing on the right-hand side of (14). But |Ai + tAj | ≥ 2|H| − 1
and on the other hand, by (13) again, |Aαi + tAβi | ≤ |H| < 2|H| − 1 for
any 1 ≤ i ≤ u; therefore, each Ai + tAj is contained in some A0 + tAk
(0 ≤ k ≤ u). If we define D = A \ Au ⊂ Z/MZ, this can be expressed by
the following formula:

D + tD ⊂ D ∪ (Au +H).

Let us show that
D + tD = D ∪ (Au +H).(15)

Assuming the contrary and observing that D ⊂ D+tD, we have D+tD = D,
which would imply that D is a subgroup, Z/vZ say. But in this case we would
directly observe that A is the union of an arithmetic progression (starting
from 0 up to M with difference v) and a set of cardinality 1 (namely Au).
This is not possible; assertion (15) holds.

We may also assume that |H| = 2 because, in any other case, with i, j
as above, |Ai + tAj| ≥ 2|H| − 1 > |H| + 1 ≥ |A0 + tAu| contrary to (15).
From now on, |H| = 2, that is,

H = {0,M/2}.
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Notice that D generates G by (15) because D+ tD contains a generating
set (otherwise D would give a gcd > 1 for the elements of A contrary to
the fact that A is normal). Thus, we are in a position to apply Lemma 1 in
Z/MZ with B = D. We obtain

3
2
u|H| ≤ |D + tD| ≤ |D|+ |Au +H| = (u+ 1)|H|,

which gives u ≤ 2 and thus u = 2. Synthesizing, we finally conclude that A
is of the form

A = A0 ∪ A1 ∪ A2,

with
A0 = {0,M/2,M}, A1 = {x, x+M/2}, A2 = {y},

where x and y are some integers (the respective classes modulo M/2 rep-
resented in A). If t = 1, then A1 + A1 = A0 + A2 and thus 2x = y, which
gives

A = {0,M/2,M, x, x+M/2, 2x},
which is the third possible conclusion of the theorem. If t = −1, it is easily
checked that there is no solution, which concludes the proof.
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Astérisque 258 (1999), 129–140.
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