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1. Introduction. For any integer n ≥ 2, we denote by P (n) the greatest
prime factor of n. Győry, Sárközy & Stewart [8] conjectured that if a > b > c
are positive integers, then

P ((ab+ 1)(bc+ 1)(ca+ 1))→∞
as a tends to infinity. Partial results have been obtained by Győry & Sárkö-
zy [7], Stewart & Tijdeman [11] and Bugeaud [3]. Very recently, Corvaja
& Zannier [4] and, independently and simultaneously, Hernández & Luca
[9] applied the Schmidt Subspace Theorem to give a positive answer to
the above-mentioned conjecture. Actually, a stronger result is proved in [4],
namely that the greatest prime factor of (ab + 1)(ac + 1) tends to infinity
as the maximum of the pairwise distinct positive integers a, b and c goes to
infinity.

There are two natural extensions of such a result. First, one can search
for an effective lower bound for P ((ab + 1)(bc + 1)(ca + 1)) in terms of
max{a, b, c}. This has been achieved, under additional assumptions on a, b
and c, in [11] and in [3]. Second, given a finite set A of triples (a, b, c), one
can aim at establishing a lower bound for P (

∏
(ab+1)(bc+1)(ca+1)), where

the product is taken over all the triples in A, in terms of the cardinality of A.
This question has been considered in [7], where some partial results were
obtained, which have motivated the following conjecture. Throughout the
present paper, we denote by |S| the cardinality of a finite set S.

Conjecture (Győry and Sárközy). Let A be a finite set of cardinality
at least two of triples (a, b, c) of pairwise distinct integers. Then there exists
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(a, b, c) in A with

P ((ab+ 1)(bc+ 1)(ca+ 1)) > κ log |A| log log |A|,
where κ is an effectively computable positive absolute constant.

In the present work, we show that the conjecture of Győry & Sárközy
holds true with κ = 10−7, without any additional assumption on the set A.
Our main results are stated in Section 2. Section 4 is devoted to their proofs,
which depend on a quantitative version of the Schmidt Subspace Theorem,
due to Evertse, and recalled in Section 3. Some related questions are dis-
cussed in Section 5.

2. Statements of the main results. For any integer n ≥ 2 we write
ω(n) for the number of distinct prime factors of n. As in [7], we first establish
a lower bound for the number of distinct prime factors of

∏
(ab + 1)(ac +

1)(bc+ 1), where the product is taken over a finite set of triples of distinct
integers.

Theorem 1. For any finite set A of cardinality at least two of triples of
positive integers (a, b, c) with a > b > c, we have

(1) ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)
> 10−6 log |A|.

By the Prime Number Theorem, Theorem 1 enables us to confirm the
conjecture of Győry & Sárközy, even with an explicit value for the con-
stant κ.

Corollary 1. Let A be a finite set of cardinality at least two of triples
of positive integers (a, b, c) with a > b > c. There exists a triple (a, b, c) in A
such that

(2) P ((ab+ 1)(ac+ 1)(bc+ 1)) > 10−7 log |A| log log |A|.
The proof of Theorem 1 requires five steps and is not a mere combination

of the arguments of [4] with an effective version of the Subspace Theorem.
We can summarize the argument as follows. Let (a, b, c) be a triple of positive
integers with a > b > c and set u := ab+1 and v := ac+1. First, we exactly
follow [4] to prove that u and v satisfy linear equations of the type

γ1
u− 1
v − 1

+ γ2
u2 − 1
v − 1

+
∑

0≤j≤2
1≤n≤5

δjnu
jv5−n = 0,

where γ1, γ2 and the δjn’s are rational numbers, not all zero. We apply
Evertse’s quantitative result to bound the number of these equations in
terms of the number of distinct prime factors of uv. We would then like to
prove that each of these equations can be satisfied only by finitely many
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pairs (u, v), but this is by no means obvious since we cannot exclude the
presence of equations like t1 + t2uv + t3(uv)2, for which we have no control
on the size of t1, t2 and t3. Using Evertse’s bound, we have an upper esti-
mate for the number of projective solutions. To see that to each projective
solution corresponds a controlled number of pairs (u, v), we apply the Sub-
space Theorem once again (Step 4 of the proof). We then get an explicit
upper bound for the number of pairs (u, v). However, this is not sufficient
to deduce an upper estimate for the number of triples (a, b, c), since u − 1
and v − 1 can have a very large greatest common divisor which is divisible
by many small primes (see Section 5 of the paper). To conclude, we use the
fact that bc+ 1 is also composed of primes from S. Our argument here rests
on the existence of primitive divisors for Lucas sequences.

Remark 1. Győry & Sárközy [7] have proved that, for any positive real
number ε, the right hand side of (2) cannot be replaced by |A|ε. They
however think that (2) should be close to the truth.

Remark 2. By adapting arguments of Győry, Sárközy & Stewart [8], it
is likely that one can prove the existence of finite sets A of triples (a, b, c)
with a > b > c such that P ((ab + 1)(ac + 1)) ≤ κ(log |A|)10 for any triple
(a, b, c) in A and an absolute constant κ.

Remark 3. Other related quantitative questions are considered in Sec-
tion 5. In particular, we show that the right hand side of (1) cannot be
replaced by |A|1/2+ε for some ε > 0.

Throughout this paper, we use c1, c2, . . . for effectively computable pos-
itive constants which are absolute. We also use the Vinogradov symbols �
and � as well as the Landau symbols O and o with their regular meaning.

3. Auxiliary results. We start by recalling a particular instance of a
quantitative version of the Schmidt Subspace Theorem due to Evertse [6].

Let MQ be all the places of Q. For x ∈ Q and w ∈MQ we put |x|w := |x|
if w = ∞ and |x|w := p−ordp(x) if w corresponds to the prime number p.
When x = 0, we set ordp(x) :=∞ and |x|w := 0. Then

(3)
∏

w∈MQ
|x|w = 1 for all x ∈ Q∗.

Let N ≥ 1 be a positive integer and define the height of x := (x1, . . . , xN )
∈ QN as follows. For w ∈MQ write

(4) |x|w :=





( N∑

i=1

x2
i

)1/2
if w =∞,

max{|x1|w, . . . , |xN |w} otherwise.
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Set
H(x) :=

∏

w∈MQ
|x|w.

For a linear form L(x) :=
∑N
i=1 aixi with a := (a1, . . . , aN ) ∈ QN , we write

H(L) := H(a). We now letN ≥ 1 be a positive integer, S be a finite subset of
MQ of cardinality s containing the infinite place, and for every w ∈ S we let
L1w, . . . , LNw be N linearly independent linear forms in N indeterminates
with coefficients in Q satisfying

(5) H(Liw) ≤ H for i = 1, . . . , N and w ∈ S.
Theorem E1. Let 0 < δ < 1 and consider the inequality

(6)
∏

w∈S

N∏

i=1

|Liw(x)|w
|x|w

<
(∏

w∈S
|det(L1w, . . . , LNw)|w

)
H(x)−n−δ.

(i) There exist proper linear subspaces T1, . . . , Tt1 of QN with

(7) t1 ≤ (260N2
δ−7N )s

such that every solution x ∈ QN \ {0} of (6) satisfying H(x) ≥ H
belongs to T1 ∪ · · · ∪ Tt1 .

(ii) There exist proper linear subspaces T ′1, . . . , T
′
t2 of QN with

(8) t2 ≤ (150N4δ−1)Ns+1(2 + log log 2H)

such that every solution x ∈ QN \ {0} of (6) satisfying H(x) < H
belongs to T ′1 ∪ · · · ∪ T ′t2 .

We shall apply Theorem E1 to a certain finite subset S ofMQ, and certain
systems of linear forms Liw with i = 1, . . . , N and w ∈ S. Moreover, in our
case, the points x for which (6) will hold will be in (Z∗)N . In particular,
|x|w ≤ 1 will hold for all w ∈MQ \ {∞}, as well as the inequalities

(9) 1 ≤ H(x) ≤
∏

w∈S
|x|w ≤ N max{|xi| | i = 1, . . . , N}.

Finally, our linear forms will have integer coefficients and will satisfy

(10) det(L1w, . . . , LNw) = ±1 for all w ∈ S.
With these conditions, the following statement is a straightforward con-

sequence of Theorem E1 above.

Corollary E1. Assume that (10) is satisfied , that 0 < δ < 1, and
consider the inequality

(11)
∏

w∈S

N∏

i=1

|Liw(x)|w < N−δ(max{|xi| | i = 1, . . . , N})−δ.
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Then there exist proper linear subspaces T1, . . . , Tt1 of QN with

(12) t1 ≤ (260N2
δ−7N )s

such that every solution x ∈ ZN \ {0} of (11) satisfying H(x) ≥ H belongs
to T1 ∪ · · · ∪ Tt1 .

Recall that an S-unit x is a non-zero rational number such that |x|w = 1
for all w 6∈ S. We shall also need the following version of a theorem of
Evertse [5] on S-unit equations.

Theorem E2. Let a1, . . . , aN be non-zero rational numbers. Then the
equation

(13)
N∑

i=1

aiui = 1

in S-unit unknowns ui for i = 1, . . . , N and such that
∑
i∈I aiui 6= 0 for

each non-empty subset I ⊆ {1, . . . , N} has at most (235N2)N
3s solutions.

We are now ready to proceed with the proofs of our results.

4. The proofs

Proof of Theorem 1. We may certainly assume that |A| > e106
, for oth-

erwise (1) is satisfied. Let

(14) s := ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)
.

We need to find an upper bound of |A| in terms of s. We shall split our
argument into several steps.

Step 1. The first system of forms. In this part of the argument, we
follow the method from [4].

We write S for the set of places consisting of the infinite place and the
valuations corresponding to the primes p dividing (ab + 1)(ac + 1)(bc + 1)
for some triple (a, b, c) ∈ A. We assume that a > b > c. Clearly, S contains
s+ 1 elements. We write u := ab+ 1, v := ac+ 1, and put

y1 :=
u− 1
v − 1

=
b

c
, y2 :=

u2 − 1
v − 1

=
(u+ 1)b

c
.

Thus, u > v ≥ 4 are positive integers which are S-units, and y1 and y2 are
rational numbers with denominator at most c. Write

1
v − 1

=
1

v(1− v−1)
=
∑

n≥1

v−n =
5∑

n=1

v−n +
∑

n≥6

v−n.
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Thus, ∣∣∣∣
1

v − 1
−

5∑

n=1

v−n
∣∣∣∣ =

∑

n≥6

v−n =
1

v5(v − 1)
< 2v−6.

On multiplying the above estimate by uj − 1 for j = 1, 2, we obtain
∣∣∣yj +

5∑

n=1

v−n −
5∑

n=1

ujv−n
∣∣∣ < 2ujv−6, j = 1, 2,

which is equivalent to

(15)
∣∣∣v5yj +

5∑

n=1

v5−n −
5∑

n=1

ujv5−n
∣∣∣ < 2ujv−1, j = 1, 2.

We let σ1, . . . , σ15 denote the integers ujv5−n for j = 0, 1, 2 and n = 1, . . . , 5
in some order. We may then rewrite (15) as

(16)
∣∣∣v5yj +

15∑

i=1

αjiσi

∣∣∣ < 2ujv−1, j = 1, 2,

where αji ∈ {0,±1}. We now let Ljw be the linear forms in the 17 variables
Y1, Y2,X1, . . . ,X15, where j = 1, . . . , 17 and w ∈ S, defined as follows:

Lj∞ = Yj +
15∑

i=1

αjiXi, Ljw = Yj for w 6=∞, j = 1, 2,

and Ljw = Xj−2 for all j = 3, . . . , 17 and w ∈ S. It is easy to see that (5)
is satisfied with H = 1, and that (10) holds for our N = 17, S, Liw with
i = 1, . . . , 17 and w ∈ S. We also define

x = (x1, . . . , x17) = (cv5y1, cv
5y2, cσ1, . . . , cσ15) ∈ (Z∗)17.

It is clear that the components of x are non-zero integers. Inequalities (16)
yield

(17) |Ljw(x)|∞ < 2cujv−1, j = 1, 2.

The argument from [4] now shows that
∏

w∈S\{∞}
|Ljw(x)|w ≤ v−5 for j = 1, 2,(18)

∏

w∈S
|Ljw(x)|w ≤ c for j = 3, . . . , 17.(19)

Multiplying all the above inequalities (17)–(19), we get

(20)
17∏

i=1

∏

w∈S
|Liw(x)|w ≤ 4c17u3v−12.
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Since u = ab+1 < a2 and v = ac+1 > ac, we have c17u3v−12 < c5a−6 < a−1,
while max{|xi| | i = 1, . . . , 17} < cu2v5 < a15, and so (20) implies that

(21)
17∏

i=1

∏

w∈S
|Liw(x)|w < 4(max{|xi| | i = 1, . . . , 17})−1/15.

Note that only the fact that a > max{b, c} was used in the above argument,
but not the fact that u > v.

Step 2. Quantitative estimates and non-degenerate Newton polygons.
Let A1 be the set of (a, b, c) in A such that

max{|xi| | i = 1, . . . , 17} ≤ 415·16 · 1715 < e400.

For such triples, since a < u < max{|xi| | i = 1, . . . , 17}, we get a < e400,
and therefore

|A1| < e1200.

We write B1 for the set of pairs (u, v) obtained from triples (a, b, c) ∈ A1,
and therefore |B1| < e1200.

From now on, we work only with (a, b, c) ∈ A \ A1. In this case,

max{|xi| | i = 1, . . . , 17} > 415·16 · 1715,

which implies

4(max{|xi| | i = 1, . . . , 17})−1/15<17−1/16(max{|xi| | i = 1, . . . , 17})−1/16.

From (21), we get

(22)
17∏

i=1

∏

w∈S
|Liw(x)|w < 17−1/16(max{|xi| | i = 1, . . . , 17})−1/16,

and since H = 1 and H(x) ≥ 1, we can apply Corollary E1 with N = 17 and
δ = (16)−1 to conclude that there exist proper linear subspaces T1, . . . , Tt1
of Q17 with

(23) t1 < (260·172 · 167·17)s+1 < exp(12400(s+ 1))

such that all the solutions of (22) lie in T1 ∪ · · · ∪ Tt1 .
Let T be one of the subspaces Tl for l = 1, . . . , t1, and assume that x ∈ T .

We then have an equation of the type

γ1y1 + γ2y2 +
∑

0≤j≤2
1≤n≤5

δjnu
jv5−n = 0,

where γ1, γ2 and δjn are rational numbers for j = 0, 1, 2 and n = 1, . . . , 5,
not all zero. This leads to

(24) PT (u, v) = 0,
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where

PT (X,Y ) :=
∑

(i,j)

η(i,j)X
iY j(25)

= γ1(X − 1) + γ2(X2 − 1) + (Y − 1)
( ∑

0≤j≤2
1≤n≤5

δjnX
j Y 5−n

)

∈ Q[X,Y ].

The fact that PT (X,Y ) is a non-zero polynomial has been justified in [4].
Note that the vertices of the Newton polygon of PT (X,Y ) (i.e., the pairs
of non-negative integers (i, j) such that the monomial X iY j appears in
PT (X,Y )) are contained in {0 ≤ i ≤ 2, 0 ≤ j ≤ 5}, which consists of
precisely 18 lattice points.

Each of equations (24) is an S-unit equation whose indeterminates are
M(i,j) := uivj , where (i, j) is a vertex of the Newton polygon of PT . For
each of these solutions, equation (24) may be non-degenerate or not. If it is
degenerate, then there exists a non-empty proper subset D of the vertices
of the Newton polygon of PT such that PT,D(u, v) = 0 is a non-degenerate
S-unit equation, where

PT,D :=
∑

(i,j)∈D
η(i,j)X

iY j .

Note that D can be chosen in at most 218 ways once T is known. Omitting
the dependence on the variable subset D, it follows that up to multiplying
the upper bound on t1 shown at (23) by 218 < exp(13), we may assume
that each of equations (24) is non-degenerate. Assume now that the Newton
polygon of PT has exactly m ≤ 18 monomials (note that m ≥ 2), and let
them be Mµ := XiµY jµ for µ = 1, . . . ,m. By Theorem E2, there exist
solutions (u(λ), v(λ)) with λ in a finite set ΛT of cardinality at most

|ΛT | ≤ (235(m− 1)2)(m−1)3(s+1) ≤ (235 · 172)173(s+1)(26)

< exp(150000(s+ 1)),

and such that for any other solution (u, v) of (24) whose components
are S-units there exists an S-unit ζ and λ ∈ ΛT such that Mµ(u, v) =
Mµ(u(λ), v(λ))ζ for all µ = 1, . . . ,m. Eliminating ζ and taking logarithms,
these last equations are seen to imply that

(27) (iµ − i1) log u− (jµ − j1) log v = (iµ − i1) log u(λ) − (jµ − j1) log v(λ)

for µ = 2, . . . ,m.

Since all the data in (27) are fixed except for (u, v), it follows that the only
solution of (27) is (u, v) = (u(λ), v(λ)), except for the case when the Newton
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polygon of PT is degenerate, i.e., when all the points (iµ, jµ) for µ = 1, . . . ,m
are collinear.

Let A2 be the set of (a, b, c) ∈ A \ A1 with a > b > c such that the
corresponding pair (u, v) is a non-degenerate solution of an equation of the
type PT (u, v) = 0, where the Newton polygon of PT is non-degenerate, and
let B2 be the set of pairs (u, v) which arise from (a, b, c) ∈ A2. The above
argument together with estimates (23) and (26) shows that

|B2| ≤ 218t1 max{|ΛT | | T = T1, . . . , Tt1}(28)

< exp(13 + 12400(s+ 1) + 150000(s+ 1)) < exp(170000(s+ 1)).

From now on, we shall assume that (a, b, c) ∈ A \ (A1 ∪ A2), and therefore
that the Newton polygon of PT is degenerate. Let (i1, j1) and (i2, j2) be two
distinct vertices of that polygon, and write i0 := i2 − i1 and j0 := j2 − j1.
Note that (i0, j0) 6= (0, 0). Then any solution (u, v) of PT (u, v) = 0 satisfies
ui0vj0 = Kλ, where Kλ is a rational number belonging to a finite set of
cardinality |ΛT |. Note that |i0| ≤ 2 and |j0| ≤ 5.

Step 3. Exploiting the symmetry. As pointed out in Step 1, u > v
is not used in the argument leading to (20). Thus, interchanging u and v
everywhere in the first two steps, we conclude that there exists a subset
A3 ∈ A \ A1 such that if we write B3 for the set of all pairs (u, v) arising
from triples (a, b, c) ∈ A3, then

|B3| ≤ 218t′1 max{|Λ′T ′ | | T ′ = T ′1, . . . , T
′
t′1
}(29)

< exp(13 + 12400(s+ 1) + 150000(s+ 1)) < exp(170000(s+ 1)),

and if (a, b, c) ∈ A\ (A1∪A3), then there exist a proper subspace T ′ of Qm,
a subset D′ of the vertices of the Newton polygon of PT ′ , integers (i′0, j

′
0) 6=

(0, 0) with |i′0| ≤ 5 and |j′0| ≤ 2, and rational numbers Kλ′ in a set |Λ′T | of
cardinality bounded by the right hand side of (26) such that ui

′
0vj
′
0 = K ′λ.

In the above inequality, t′1, T ′, D′ and Λ′T ′ have the same meaning as t1, T ,
D and ΛT , respectively, when u and v are interchanged.

If the vector (i0, j0) is not parallel to (i′0, j
′
0), then the system of equations

ui0vj0 = Kλ and ui
′
0vj
′
0 = K ′λ has a unique solution (u, v) once Kλ and Kλ′

are fixed. Let A4 be the subset of A \ (A1 ∪ A2 ∪ A3) formed by (a, b, c)
such that the corresponding vectors (i0, j0) and (i′0, j

′
0) are not parallel, and

let B4 be the set of pairs (u, v) arising from triples (a, b, c) ∈ A4. The above
argument and estimates (23) and (26) show that

|B4| ≤ 22·18t1t
′
1(30)

× (max{|ΛT |, |Λ′T ′ | | T = T1, . . . , Tt1 , T
′ = T ′1, . . . , T

′
t′1
})2

< exp(340000(s+ 1)).
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From now on, we assume that (a, b, c) ∈ A\⋃4
k=1Ak. In this case, (i0, j0)

and (i′0, j
′
0) are parallel, and since |i0| ≤ 2, |j′0| ≤ 2, |j0| ≤ 5 and |i′0| ≤ 5,

it follows that we may assume that max{|i0|, |j0|} ≤ 2. Moreover, since
(i0, j0) 6= (0, 0), by symmetry, and up to changing the signs of both i0 and
j0, and cancelling their greatest common divisor if needed, we may assume
that i0 = 1, and that j0 ∈ {0,±1,±2}.

Step 4. The second system of forms. We now assume that (a, b, c) ∈
A \⋃4

k=1Ak, that the subspace T ∈ {T1, . . . , Tt1}, the subset D, the index
j0 in {0,±1,±2} (note that j0 depends only on T and D), and the number
K := Kλ for λ ∈ ΛT are fixed, and that uvj0 = K.

Case 1: j0 ≥ 0. We multiply both sides of (15) for j = 1 by c and
rewrite it as

(31)
∣∣∣cv5y1−

∑

4−j0<n≤4

cvn+
∑

0≤n<j0
cuvn+

∑

0≤n≤4−j0
(uvj0−1)cvn

∣∣∣ < 2cuv−1.

We write N1 := 6 + j0, note that N1 ≤ 8, and consider the linear forms in
(X1, . . . ,XN1) given by

L1∞ := X1 −
∑

1<n≤1+j0

Xn +
∑

1+j0<n≤1+2j0

Xn +
∑

1+2j0<n≤6+j0

(K − 1)Xn,

(32) L1w = X1, w ∈ S \ {∞},
and Lnw = Xn for all n = 2, . . . , N1 and w ∈ S. Let x := (x1, . . . , xN1) ∈
(Z∗)N1 be given by x1 := cv5y1, xn = cvn+3−j0 for all n ∈ {2, . . . , 1 + j0},
xn := cuvn−2−j0 for n ∈ {2 + j0, . . . , 1 + 2j0}, and xn := cvn−2−2j0 for
n ∈ {2 + 2j0, . . . , N1}. A similar calculation to Step 1 shows that

|L1∞(x)|∞ < 2cuv−1,(33) ∏

w∈S\{∞}
|L1w(x)|w ≤ v−5,(34)

∏

w∈S
|Ljw(x)|w ≤ c for j = 2, . . . , N1.(35)

Multiplying all the above inequalities, we get

(36)
N1∏

j=1

∏

w∈S
|Ljw(x)|w < 2c6+j0uv−6,

and since v > ac, a > c and u < a2 we get

(37) 2c6+j0uv−6 < 2cj0ua−6 < 2cj0a−4 < 2a−2.

It is clear that max{|xi| | i = 1, . . . , N1} < cv5u < a13, and therefore

(38)
∏

w∈S
|Ljw(x)|w < 2(max{|xi| | i = 1, . . . , N1})−2/13.



Greatest prime factor of (ab+ 1)(bc+ 1)(ca+ 1) 285

We now note that

2(max{|xi| | i = 1, . . . , N1})−2/13 < 8−1/7(max{|xi| | i = 1, . . . , N1})−1/7

whenever
max{|xi| | i = 1, . . . , N1} > 27·13 · 813,

and that if the above inequality is not satisfied, then since a < v < cv5y1 ≤
max{|xi| | i = 1, . . . , N1}, we get a < 27·13 · 813 < e400, and such triples
(a, b, c) have already been accounted for in A1. Thus, we may assume that

(39)
∏

w∈S
|Ljw(x)|w < 8−1/7(max{|xi| | i = 1, . . . , N1})−1/7.

In particular, (11) is satisfied with δ = 1/7 becauseN1 = 6+j0 ≤ 8. It is clear
that (10) also holds. Moreover, since x1 = cv5y1 ≥ cv4(u− 1) > 9cv2(u− 1)
(because v = ac+ 1 > 3), and since one of xn for n = 2, . . . , N1 equals c, we
get

H(x) > 9cv2(u− 1)c−1 > 9v2(u− 1).

On the other hand, since the coefficients of our linear forms are integers
of absolute value at most K − 1, we get

H(Liw) ≤ (N1(K − 1)2)1/2 ≤ 81/2(K − 1) =: H

and
H = 81/2(K − 1) < 3uv2 < 9v2(u− 1) < H(x).

We can therefore apply Corollary E1 to deduce that there exist proper sub-
spaces W1, . . . ,Wt2 of QN1 with

(40) t2 ≤ (260N2
1 · 77N1)s+1 ≤ (260·82 · 77·8)s+1 < exp(2800(s+ 1))

such that x ∈ W1 ∪ · · · ∪Wt2 . Let W be one of these subspaces. Imposing
that x ∈W , and simplifying c, it follows that there exists a rational number
γW and a polynomial PW (X,Y ) ∈ Q[X,Y ] consisting only of the monomials
Y n for n = 0, . . . , 4 and XY j for j = 0, . . . , j0 − 1, not both zero, such that

(41) γW
v5(u− 1)
v − 1

+ PW (u, v) = 0.

The fact that the left hand side of (41) is not identically zero can be justified
by the argument from [4].

We now look at the solutions (u, v) of (41) with uvj0 = K. Assume first
that j0 = 0. In this case u = K > 1 is fixed, PW (u, v) = PW (v) does
not depend on u, and since not both γW and PW are zero, (41) leads to
a non-trivial polynomial equation in v of degree at most 5, so that v can
take at most 5 values. Assume now that j0 > 0. If γW = 0, then either
∂PW /∂X = 0, i.e., PW (u, v) does not depend on u, and then (41) leads
to a non-trivial polynomial equation in v of degree at most 4, and hence
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v can assume at most 4 values, or ∂PW /∂X 6= 0, in which case (41) gives
u = R(v), where R(v) is a non-zero rational function in v whose denominator
has degree ≤ j0− 1 and whose numerator has degree ≤ 4. Since u = K/vj0 ,
the equation R(v) = K/vj0 leads to a non-trivial polynomial equation in v
of degree ≤ 4 + j0 ≤ 6, and so v can take at most 6 values in this instance.

Finally, assume that γW 6= 0. In this case, we may assume that γW = 1.
Then (41) can be rewritten as

v5u− v5 + (v − 1)P1(v) + u(v − 1)P2(v) = 0,

where P2(v) is of degree ≤ j0 − 1 and P1(v) is of degree at most 4. Thus,

u(v5 + (v − 1)P2(v)) = v5 − (v − 1)P1(v),

and the polynomial v5 + (v − 1)P2(v) is non-zero because the degree of
(v − 1)P2(v) is at most j0 ≤ 2. Thus, we get the equation

(42)
v5 − (v − 1)P1(v)
v5 + (v − 1)P2(v)

=
K

vj0
.

If P2 is non-zero, we may write v5 + (v − 1)P2(v) = vkQ(v), where k ≤
j0− 1 < j0 and Q(0) 6= 0. It is then easy to see (by comparing the orders at
which v divides the denominators of the two sides of (42)) that (42) leads
to a non-trivial polynomial equation in v of degree at most 5 + j0 ≤ 7, and
therefore v can take at most 7 values. Finally, when P2 = 0, (41) becomes

v5 − (v − 1)P1(v)
v5 =

K

vj0
,

which can be rewritten as

(43) v5−j0(vj0 −K) = (v − 1)P2(v),

which together with the fact that K > 1 and j0 > 0 implies that v − 1 is
coprime to both v5−j0 and to vj0−K (as polynomials in Q[v]), and therefore
(43) is a non-trivial polynomial equation in v of degree at most 5, and so v
can take at most 5 values.

Let A5 be the set of triples (a, b, c) in A\⋃4
k=1Ak for which j0 ≥ 0. The

preceding argument together with estimates (23), (26) and (41) shows that
if we write B5 for the set of pairs (u, v) arising from triples (a, b, c) ∈ A5,
then

|B5| < 218 · 7 exp(12400(s+1)) exp(150000(s+1)) exp(2800(s+1))(44)

< exp(170000(s+ 1)).

Case 2: j0 ∈ {−1,−2}. In this case, we replace j0 by −j0 and assume
again that T , D and K := Kλ for λ ∈ ΛT are fixed, and that u/vj0 = K. It
then follows easily that there exist fixed positive integers α and β, which are
S-units, and another positive integer %, also an S-unit, such that u = α%j0
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and v = β%. We multiply again both sides of (15) by c, and rewrite it as

∣∣∣cv5y1−
j0−1∑

n=0

cβn%n +
4−j0∑

n=0

(α−βj0)cβn%n+j0 +
4∑

n=5−j0
cαβn%n+j0

∣∣∣ < 2cuv−1.

We let N1 := 6 + j0, K1 := α − βj0 and consider the linear forms in
X1, . . . ,XN1 given by

L1∞ := X1−
j0+1∑

n=2

Xn+
6∑

n=j0+2

K1Xn+
6+j0∑

n=7

Xn, L1w := X1, w ∈ S\{∞},

and Ljw = Xj for j = 2, . . . , N1 and w ∈ S. Note that K1 6= 0, for otherwise
u − 1 = (β%)j0 − 1 = vj0 − 1, leading either to u = v if j0 = 1, which is
impossible, or to u = v2 and a ≤ gcd(v2−1, v−1) = v−1 = u1/2−1 < u1/2,
which is again impossible. We let x := (x1, . . . , xN1) be the obvious vector
with non-zero integer components given by x1 = cv5y1, xn = c(β%)n−2

when n ∈ {2, . . . , j0 + 1}, xn = cβn−2−j0%n−2 when n ∈ {2 + j0, 6}, and
xn = cαβn−2−j0%n−2 when n ∈ {7, . . . , 6 + j0}. Computations similar to the
ones in the previous case show that inequality (38) holds for our forms, and
since we are assuming that (a, b, c) 6∈ A1, inequality (39) is also satisfied.
Moreover, it is clear that we can take

H := 81/2|α− βj0 | < 3uvj0 ≤ 3uv2

and one checks, as in the previous case, that H(x) > H. Finally, since (10)
is also satisfied, we conclude, as in the previous case, that there exist proper
subspaces W ′1, . . . ,W

′
t′2

of QN1 with

(45) t′2 ≤ (260N2
1 · 77N1)s+1 ≤ (260·82 · 77·8)s+1 < exp(2800(s+ 1))

such that x ∈ W ′1 ∪ · · · ∪W ′t′2 . Let W ′ be one of these subspaces. Imposing
that x ∈W ′, and simplifying c, it follows that there exists a rational number
γW ′ and a polynomial PW ′ ∈ Q[%] consisting only of the monomials %n for
n = 0, . . . , 4 + j0, not both zero, such that

(46) γW ′
β5%5(α%j0 − 1)

β%− 1
+ PW ′(%) = 0.

The fact that the left hand side of (46) is not identically zero is almost clear.
Indeed, if say γW ′ = 0, then this is obviously so because PW ′ is not the zero
polynomial, while when γW ′ 6= 0, this follows from the fact that β%−1 does
not divide %5(α%j0 − 1) in Q[%], because α 6= βj0 . Clearly, each of equations
(46) is a non-trivial polynomial equation in % of degree at most 5 + j0 ≤ 7,
and therefore % can take at most 7 values.

Thus, if we let A6 be the set of triples (a, b, c) in A \⋃5
k=1Ak for which

our initial value of j0 was negative, then the preceding argument together
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with estimates (23), (26) and (45) shows that if we write B6 for the set of
pairs (u, v) arising from triples (a, b, c) ∈ A6, then

|B6| < 218 · 7 exp(12400(s+1)) exp(150000(s+1)) exp(2800(s+1))(47)

< exp(170000(s+ 1)).

The conclusion is that all pairs (u, v) obtained from all (a, b, c) ∈ A form a
finite set B :=

⋃6
k=1 Bk, whose cardinality is, by (28), (29), (30), (44) and

(47), at most

|B| ≤
6∑

k=1

|Bk|(48)

< exp(1200) + 4 exp(170000(s+ 1)) + exp(340000(s+ 1))

< 6 exp(340000(s+ 1)) < exp(341000(s+ 1)).

Step 5. Some Pell equations. Let B denote the upper bound on |B|
appearing in (48) and let (u, v) ∈ B. Write D := gcd(u − 1, v − 1), b1 :=
(u − 1)/D, c1 := (v − 1)/D and % := D/a. Write d1 := b1c1, and note
that d1 is fixed. It is then clear that % is an integer, b = b1%, c = c1%, and
bc + 1 = d1%

2 + 1. We now finally exploit the fact that w := bc + 1 is an
S-unit. Write w := d2z

2, where d2 is square-free. It is clear that d2 can be
chosen in at most 2s ways. Fixing d2, it follows that % and z are related via
the Pell equation

(49) d2z
2 − d1%

2 = 1,

and that moreover z is an S-unit. It is clear that not both d1 and d2 can be
perfect squares. It is then well known that all the positive integer solutions
(z, %) of the above equation have the property that z is a member of a Lucas
or a Lehmer sequence. That is, if (z0, %0) denotes the smallest solution of
(49) in positive integers, and if we write

λ :=
√
d2 z0 +

√
d1 %0, µ :=

√
d2 z0 −

√
d1 %0,

then any solution of (49) in positive integers must have

(50) z =
λt + µt

λ+ µ
z0

for some odd positive integer t, except when d2 = 1, in which case the
same formula holds but with an arbitrary positive integer t not necessarily
odd. The set of possible values of z given by (50) forms a Lehmer sequence
(zt)t≥0, where t is allowed to take only odd values if d2 > 1. A result of
Morgan Ward [12] says that if t > 18, then zt has primitive divisors, i.e.,
for such t there exists a prime number p | zt such that p does not divide zl
for any positive integer l < t. It now follows that if we want z = zt to be
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an S-unit, then t can take at most s+ 18 values. This shows that the triple
(u, v, w) can take at most

(51) 2s(s+ 18)B < exp(s+ 18s)B < exp(342000(s+ 1))

values. Finally, note that if (u, v, w) is given, then (a, b, c) is uniquely deter-
mined, because a2 = (u− 1)(v − 1)/(w − 1), and a is positive. Thus,

(52) |A|+ 1 < 1 + exp(342000(s+ 1)) < exp(350000(s+ 1)).

We further remark that s ≥ 2. Indeed, if s = 1 and A is non-empty, then
there exists a prime number p and positive integers i > j and a > b > c
such that ab+ 1 = u = pi, ac+ 1 = v = pj . Thus,

a ≤ gcd(u− 1, v − 1) = gcd(pi − 1, pj − 1) = pgcd(i,j) − 1

≤ pi/2 < pi/2 = u1/2 < a,

which is a contradiction. Thus, s ≥ 2, therefore s+ 1 ≤ 3s/2. Hence,

|A|+ 1 < exp(350000(s+ 1)) < exp(350000 · 3s/2) < exp(6 · 105s),

and so
s > c1 log(|A|+ 1),

with c1 := 6−1 ·10−5, which is stronger than what is claimed in our theorem.

Proof of Corollary 1. Since s ≥ 2 whenever A is non-empty, we may
assume that P := max{P ((ab+ 1)(ac+ 1)(bc+ 1)) | (a, b, c) ∈ A} ≥ 3, and
that log(|A| + 1) > 2 · 106, for otherwise the lower bound in (2) is smaller
than 3. Let m be the smallest integer ≥ 1

6·105 log(|A|+ 1). Note that m ≥ 4
since log(|A|+1) > 2·106. Let pm be the mth prime number. From the above
proof of Theorem 1, we know that s ≥ m, therefore P ≥ pm > m logm,
where the last inequality is well known (see [10], for example). We now
show that

m ≥ log1/15(|A|+ 1).

Indeed, this follows from
1

6 · 105 log(|A|+ 1) > log1/15(|A|+ 1),

which is equivalent to

log(|A|+ 1) > (6 · 105)15/14,

and this last inequality is satisfied when log(|A|+ 1) > 2 · 106. Thus,

P > m logm >
1

6 · 105 log(|A|+ 1) log
(

log(|A|+ 1)
6 · 105

)

>
1

6 · 15
· 1

105 log(|A|+ 1) log log(|A|+ 1)

> c2 log(|A|+ 1) log log(|A|+ 1),
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with c2 := 9−1 · 10−6, which is a stronger inequality than the one asserted
by Corollary 1.

5. Other quantitative aspects. As mentioned in the introduction, it
is shown in [4] that P ((ab+ 1)(ac+ 1)) tends to infinity over all the triples
of distinct positive integers (a, b, c) with a > b > c. One could ask whether
there exists a quantitative lower bound for the number of distinct prime
factors of (ab + 1)(ac + 1), where (a, b, c) varies in a finite set of triples of
distinct positive integers with a > b > c. More precisely, one can address
the following question:

Question 1. Does there exist a function f : N→ N with limn→∞ f(n)
= ∞ such that if A is any non-empty set of triples of distinct positive
integers (a, b, c) with a > b > c, then

(53) ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)

)
> f(|A|)?

The answer to the above question is no. In order to show this, we recall a
result on the distribution of primes in arithmetic progressions. For positive
integers 1 ≤ a < d with gcd(a, d) = 1 and for a large positive real number
x we write π(x; d, a) for the number of prime numbers p ≤ x with p ≡ a
(mod d). We also write π(x) for the number of prime numbers p ≤ x. The
following theorem on the distribution of primes in arithmetic progressions
with large moduli follows from Theorem 9 of [2] by partial integration.

Theorem BFI. For any positive constant B and any ε > 0, there exists
a positive constant C := C(B) depending on B such that if x is a large real
number , and Q and R are positive integers with R < x1/10−ε and QR <
x/logCx, then

(54)
R∑

r=1

∣∣∣∣
Q∑

q=1

(
π(x; qr, 1)− π(x)

φ(qr)

)∣∣∣∣�
x

logB x
.

Let c3 > 1 be any fixed constant, x be a large positive real number, and
put z := c3 log log x and R :=

∏
p≤z p. We note that by the Prime Number

Theorem,

(55) R = exp(c3(1 + o(1)) log log x) < log2c3 x

for large values of x. In particular, R < x1/10−ε say with ε := 1/20 when
x > x(c3).

Let B := 2c3 and C := C(B). Since x3/4R < x3/4 log2c3 x < x/logCx for
sufficiently large values of x, we apply Theorem BFI twice, with Q = Q1 :=
bx2/3c and with Q = Q2 := bx3/4c, and use the absolute value inequality,
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to conclude that

(56)
∣∣∣∣

∑

Q1<q≤Q2

(
π(x; qR, 1)− π(x)

φ(qR)

)∣∣∣∣�
x

logB x
.

We now show that there exists q ∈ [Q1, Q2] such that π(x; qR, 1) ≥ 2.
Assume that this is not so. Then π(x; qR, 1) ≤ 1 for all q ∈ [Q1, Q2], and
therefore

∣∣∣∣
∑

Q1<q≤Q2

(
π(x)
φ(qR)

− π(x; qR, 1)
)∣∣∣∣ ≥

∑

Q1<q≤Q2

π(x)
qR
−Q2(57)

>
π(x)
R

∑

Q1<q≤Q2

1
q
− x3/4.

Clearly,

∑

Q1<q≤Q2

1
q

= log
(
Q2

Q1

)
+ o(1) =

1
12

log x+ o(1) > c4 log x

for large values of x, where one can take c4 := 1/13, and since π(x) > x/log x
for all x > 17 (see [10]), the above inequality together with (55) implies that

π(x)
R

∑

Q1<q≤Q2

1
q
≥ c4

x

log2c3−1 x
.

By (57),
∣∣∣∣

∑

Q1<q≤Q2

(
π(x)
φ(qR)

− π(x; qR, 1)
)∣∣∣∣ ≥ c4

x

log2c3−1 x
− x3/4(58)

≥ c5
x

log2c3−1 x

for large values of x, where one can take c5 := 1/14; but (58) contradicts
(56) for large values of x.

Thus, we have shown that there exists q ∈ [Q1, Q2] such that π(x; qR, 1)
≥ 2. Let v < u ≤ x be two prime numbers which are congruent to 1
modulo qR. For every divisor d of R we let a := qR/d, b := (u − 1)/a and
c := (v − 1)/a. Note that a ≥ q ≥ bx2/3c > x1/2 ≥ u1/2, and therefore
a > b > c. Let A be the set of all the above triples. It is clear that

(59) |A| = τ(R) = 2π(z) > exp
(
c6

log log x
log log log x

)

for sufficiently large x, where c6 can be taken to be any positive constant
smaller than c3 log 2. However, (ab + 1)(ac + 1) = uv for all triples (a, b, c)
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of A. Thus,

(60) ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)

)
= 2,

and now (59) and (60) show that the answer to Question 1 is indeed negative.
Győry & Sárközy [7] also raised the question of finding examples of finite

sets A of triples of distinct positive integers (a, b, c) such that the quantity

ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)

is small with respect to |A|. The trivial construction obtained by letting A
be the set of all triples with max{a, b, c} < x shows that

(61) ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)
� |A|

2/3

log |A|

for infinitely many finite sets A whose cardinalities tend to infinity. Our next
result improves upon the above estimate.

Proposition 1. Fix ε > 0. There are infinitely many finite sets A of
triples (a, b, c) of distinct positive integers whose cardinalities tend to infinity
such that

(62) ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)
� |A|1/2+ε.

The constant understood in the � above depends at most on ε.

For the proof of Proposition 1, we need a result concerning the distribu-
tion of smooth numbers in arithmetic progressions. Let x be a large positive
real number. For any positive integer y ≤ x, we write Ψ(x, y) for the number
of positive integers n ≤ x with P (n) ≤ y. For positive integers 1 ≤ r < q
with gcd(r, q) = 1 we write Ψ(x, y; q, r) for the number of numbers n ≤ x
with P (n) ≤ y such that n ≡ r (mod q). The following result is due to Balog
& Pomerance [1].

Theorem BP. Let ε > 0 be an arbitrarily small positive real number.
The estimate

(63) Ψ(x, y; q, r) =
x

q
(w log(w + 1))−weO(w)

holds uniformly under the conditions

(64)
x ≥ 2, exp((log log x)2) ≤ y ≤ x2/3−ε,

1 ≤ q ≤ (min{y, x/y})4/3−ε, gcd(r, q) = 1,

where w := log x/log y.
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Let ε > 0 be sufficiently small, x be a large positive real number, and
put I := [x2/3−ε/2/2, x2/3−ε/2]. Let r := 1, q be an arbitrary integer in I,
and y := x1/2. It is clear that

exp((log log x)2) ≤ y ≤ x2/3−ε/2

if x is sufficiently large and ε < 1/12. Note also that

(min{y, x/y})4/3−ε/2 = x2/3−ε/4 > q

for all q ∈ I. Thus, all conditions (64) are satisfied, and by (11) with w =
log x/log y = 2, we get

(65) Ψ(x, y; q, 1)� x

q
� x1/3+ε/2.

We now take A to be the set of all triples (a, b, c), where a := q ∈ I,
b := (u − 1)/a, c := (v − 1)/a, and v < u ≤ x are positive integers with
P (uv) ≤ y both in the arithmetic progression 1 (mod q). We observe that
since q > x2/3−ε/2/2 > x1/2 whenever ε < 1/12 and x is sufficiently large,
it follows that all such triples are distinct. Thus,

(66) |A| ≥ |I ∩ N|
(
Ψ(x, y; q, 1)

2

)
� |I ∩ N|Ψ(x, y; q, 1)2 � x4/3+ε/2.

We now note that

bc+ 1 ≤ (2x1/3+ε/2)2 + 1 ≤ 5x2/3+ε,

and since P (uv) ≤ x1/2, it follows that for large x we have

(67) ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)
≤ π(5x2/3+ε)� x2/3+ε

log x
.

Finally, note that inequality (66) implies that

|A|1/2+ε � x(4/3+ε/2)(1/2+ε) > x2/3+ε,

which together with (67) shows that

ω
( ∏

(a,b,c)∈A
(ab+ 1)(ac+ 1)(bc+ 1)

)
< |A|1/2+ε

for large values of x, which completes the proof of Proposition 1.
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