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1. Introduction. Let s = o + it be a complex variable, and ((s) the
Riemann zeta function. An interesting problem in the theory of the Riemann
zeta function is to obtain lower estimates of the function

F(T;A;0)= max |((o+it)]

T<t<T+A

for a fixed 0, 1/2 < 0 < 1, where A = A(T) decreases with T. Many
important results in this area are described in [2, 6].
The most interesting case is o = 1/2. Set

F(I;A) = F(T54;1/2), G(I34)= max |((s)],

|s—so|=A

where sg = 1/2+4T. Karatsuba [3, 4] considered the behavior of F'(T; A) and
G(T; A) for A = A(T') — 0 as T — oo. He stated the following conjectures:

CONJECTURE 1. There exist a constant A > 0 and a function A =
A(T) — 0 as T — oo, such that for T large enough,

F(T;A) > T4,
CONJECTURE 2. Conjecture 1 is valid for A = (loglogT)~*.
CONJECTURE 3. Conjecture 1 is valid for A = (logT)~*.

CONJECTURE 1. There exist a constant A > 0 and a function A =
A(T) — 0 as T — oo, such that for T large enough,

G(T; A) > T4
CONJECTURE 2. Conjecture 1’ is valid for A = (loglogT)~!.
CONJECTURE 3'. Congjecture 1’ is valid for A = (logT)~ 1.
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Obviously for N = 1,2, 3 Conjecture N implies Conjecture N’, and Con-
jecture 3 implies all the other conjectures.
In [2], Garaev proved

THEOREM A. Conjecture 3" is equivalent to Conjecture 3.
It is known that the Riemann hypothesis
all the complex zeros of ((s) lie on the critical line o = 1/2

implies Conjecture 3 and thus all the Karatsuba conjectures. This can be
proved by using [6, Theorems 14.13 and 14.15] (see [2] for the details).
The Lindelof Hypothesis is that

C(1/2 +it) = O(tF)

as t — oo for every positive €. There are many equivalent forms of the
Lindelof Hypothesis; one of them is the following.

THEOREM B ([6, Theorem 13.5]). A necessary and sufficient condition
for the truth of the Lindeldf Hypothesis is that, for every o > 1/2,
(1.1) N(o,T+1)— N(0,T) = o(logT),
where N(o,T) is the number of zeros 3 + iy of the Riemann zeta function
such that B >0, 0 <t <T.

By (1.1), we see that the Lindel6f Hypothesis is equivalent to a much
less drastic hypothesis about the distribution of the zeros than the Riemann
Hypothesis.

A natural question is: what is the relation between the Karatsuba Con-
jectures and Lindelof Hypothesis? In this paper, we will prove

THEOREM 1. On the Lindeldf Hypothesis, Conjecture 1 is valid for an
arbitrary given constant A > 0.

The proof of Theorem 1 is based on the following.

THEOREM 2. On the Lindelof Hypothesis, as T — oo,

T+c

(1.2) orélféi‘ :SF log|¢(1/2 + it)|dt| = o(logT).

2. Proof of Theorem 2. To prove Theorem 2, we need the following
lemmas.

LEMMA 1. On the Lindelof Hypothesis, as T — oo,
arg (o 4+ iT') = o(logT)

uniformly for o € [1/2,2), where, if T is not the ordinate of a zero of ((s),
the wvalue of arg((o + iT) is obtained by continuous variation along the
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stratght lines joining 2, 24T, o + T, starting with the value 0; if T is the
ordinate of a zero of ((s),

arg (o +1iT) = 1Hlizrp+0 arg C(o + it).

Proof. We refer to Cramér [1], who proved the case ¢ = 1/2, and the
proof also applies to the case 1/2 <0 < 2. m

LEMMA 2. On the Lindeléf Hypothesis, as T — o0,
1
\ (N(0,T +1) = N(0,T)) do = o(log T).
1/2
Proof. Let
N(o,T+1)— N(0,T)

f(o.1) = e T

By Theorem B, we have
lim f(o,T)=0, Vo€ (1/2,1].

T—o0
By [6, Theorem 9.2], we have
fo,T) < F1/2,T) <M, VT >0, o€ (1/2,1],

where M is an absolute constant. Thus by the Lebesgue Theorem, we get

1 1 1
Tlglgo S flo,T)do = S Tlgnoof(o,T)do: S O0do = 0.
1/2 1/2 1/2

The proof is complete. m

We next need a general formula concerning the zeros of an analytic func-
tion in a rectangle, due to Littlewood.

LEMMA 3 (see [5, 6]). Suppose that ¢(s) is meromorphic in and upon the
boundary of a rectangle bounded by the linest =0, t =T, c =«, 0 =3
(6 > «), and regular and not zero on o = 3. The function log ¢(s) is reqular
in the neighborhood of o = (3, and here, starting with any value of the
logarithm, we define F(s) = log¢(s). For other points s of the rectangle,
we define F(s) to be the value obtained from log¢(B + it) by continuous
variation along t = constant from 3 + it to « + it, provided that the path
does not cross a zero or pole of ¢(s); if it does, we put

F(s) = liII(l) F(o + it +ie).

Letv(o’,T) denote the excess of the number of zeros of ¢(s) over the number
of poles of ¢(s) in the part of the rectangle for which o > o', including zeros
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or poles on t =T, but not those ont =0. Then

B
(2.1) \F(s)ds = —2mi \ v(0, T) do,

where the first integral is taken around the rectangle in the positive direction.

Proof of Theorem 2. Applying Lemma 3 with ¢(s) = ((s), a = 1/2,
0 = 2, and taking the imaginary part of (2.1), we get

T T
(22)  \log|¢(1/2+it)|dt = {log|¢(2 + it)| dt
0 0

2 1
- S arg (o + 1) do — 2w S N(o,T)do,
1/2 1/2

where the value of arg (o + ¢T) is defined in Lemma 1. Replacing T with
T + cin (2.2), we obtain

T—+c T+Hc
23) | loglc(i/2+it)|dt = | log|¢(2+it)| dt
0 2 0 1
- S arg((oc +i(T +c))do — 27 S N(o,T + c) do.
1/2 1/2
(2.3) minus (2.2) gives
T+c 2
S log |¢(1/2 4 it)| dt = — S (arg (o +i(T +¢)) —arg((o +iT)) do
T 1/2
T+Hc 1
+ | log|¢(2+it)|dt —2x | (N(0,T + ) — N(0,T)) do
T 1/2
Hence
T+c
(2.4) 0@%‘ | log\((l/Q—i—zt)\dt‘
Sestl 2 ,
< max | | (argC(o +i(T + ) — arg (o +1T)) do
T2
T+c
+Or£3§1‘ ; log |C(2 + it)| dt

1
+ 01;1?%:1‘271' 1§Z(N(J, T+c¢)— N(o,T))do|.



Karatsuba Conjecture and Lindelsf Hypothesis 299

By Lemma 1,

2
(2.5) max‘ | (argClo +i(T + ¢) — arg (o +T)) do

0<c<1
1/2

2
X max |arg§ o+ i(T+c)|+ |arg (o +iT)|)do = o(log T).

Let A(n) = logp if n is p or a power of p, and otherwise A(n) = 0, and let
Ai(n) = A(n)/logn. We have

o~ Ai(n)
. 1
log((2+it) =) n2+it
n=2
Hence
T+c
(2.6) 0123%{1‘ ; 10g|§(2—|—zt)|dt‘

R a).Al(n) ni4(T+c)_>nAdT
ez n2 —ilogn

By Lemma 2,

1
(2.7)  max ‘277 | V(0. T +0¢) - N(o,T)) do—‘

0<c<1
- 1/2
1
=21 | (N(0,T+1) - N(0,T))do = o(log T).
1/2

Combining (2.4)—(2.7), we get (1.2). m

3. Proof of Theorem 1. By Theorem 2, there exists a function h(T)
such that

(3.1) h(T)>0, VI >1,
(3.2) Tlg%o hT) =
and for all T' > 1,
T+c
(3.3) Orgfg(l‘ ; log |C(1/2 + it)| dt| = h(T) log T

Given arbitrary A > 0, set
(3.4) hi(T) =suph(t), T >1,

t>T
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(3.5) A= A(T) = hlﬁlT).

Then A(T) decreases, and limp_,oo A(T) = 0. Hence there exists Ty > 1
such that A(T") <1 for T' > Tj. Then by (3.3)(3.5), for T' > T, we have

T+A(T)
| log|¢(1/2 +it)| dt| < A(T)AlogT.
T
Thus
. T+A(T)
—_— log [C(1/2 +it)|dt > —AlogT.
aE ) leela/ze

That is, the mean value of log [((1/2+it)| on [T, T + A(T)] is not less than
—AlogT, so there exists tg € [T, T + A(T')] such that

log|C(1/2 + itg)| > —AlogT.
Hence |¢(1/24ito)| > T~A. Then F(T; A) > T~4. The proof is complete. m

Acknowledgements. The author thanks the referee for valuable com-
ments, Professor Ding Xiaqi for fruitful discussions, and Professor He Yuzan
for translating the ref. [1].

References

[1] H. Cramér, Uber die Nullstellen der Zetafunktion, Math. Z. 2 (1918), 237-241.

[2] M. Z. Garaev, Concerning the Karatsuba Conjectures, Taiwanese J. Math. 6 (2002),
573-580.

[3] A. A. Karatsuba, On lower estimates of the Riemann zeta function, Dokl. Akad.
Nauk 376 (2001), 15-16.

[4] —, Lower bounds for the maximum modulus of ((s) in small domains of the critical
strip, Math. Notes 70 (2001), 724-726.

[5] J.E. Littlewood, On the zeros of the Riemann zeta function, Proc. Cambridge Philos.
Soc. 22 (1924), 295-318.

[6] E. C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed., revised by
D. R. Heath-Brown, Clarendon Press, Oxford, 1986.

Academy of Mathematics and Systems Science
Chinese Academy of Sciences

Beijing 100080, P.R. China

E-mail: jxfsj@hotmail.com

Received on 1.9.2003
and in revised form on 12.12.2003 (4608)



