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Joint value approximation and joint universality
for several types of zeta functions
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1. Introduction

Definition 1.1. Let {bn : n ∈ N0}, N0 := N ∪ {0}, be a bounded
sequence of complex numbers, and b : N0 → C be a function which satisfies

(1.1) b(n) := bn + b′(n), b′(n) = O(n−β), β > 1/2.

The generalized Barnes zeta function ζ(a, b ; s) is defined by

(1.2) ζ(a, b ; s) =
∞∑
n=0

b(n)
(n+ a)s

in its region of convergence.

In this article, we assume that the bounded function b satisfies condi-
tion (1.1) and ζ(a, b ; s) can be continued meromorphically to the half-plane
<(s) > 0. Needless to say, in the case a = b(n) = 1, the generalized Barnes
zeta function is the Riemann zeta function. When 0 < λ ≤ 1, bn = e2πiλn, it
reduces to the Lerch zeta function L(λ, a, s). By modifying the formula [20,
p. 85, (10)], we have

∞∑
n1,...,nr=0

e2πiλ(n1+···+nr)

(n1 + · · ·+ nr + a)s
=
∞∑
n=0

(
r + n− 1
r − 1

)
e2πiλn

(n+ a)s
, <(s) > r.

So for b(n) = e2πiλn
(
r+n−1
r−1

)
(n+a)1−r, ζ(a, b ; s) is the (twisted) Barnes r-ple

zeta function. Our generalization includes the case when r is not an integer.
The distribution of the values of the Riemann zeta function ζ(σ+ it) for

fixed σ and variable t > 0 was investigated by H. Bohr. In 1914, he showed
the following denseness theorem, in a joint work with R. Courant [4].
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Theorem A (see [14, Theorem 1]). Let σ0 ∈ (1/2, 1). Then the set of
values which ζ(s) takes for σ = σ0, t > 0, is everywhere dense in the whole
complex plane.

In 1975, S. M. Voronin [22] showed the theorem below, which is now
called the universality theorem. To state it, we need some notation. We
denote by meas{A} the Lebesgue measure of the set A, and, for T > 0,
ντT {. . .} := T−1meas{τ ∈ [0, T ] : . . .}, where the dots stand for a condition
satisfied by τ . LetD := {s ∈ C : 1/2 < <(s) < 1}, and letK andK1, . . . ,Km

(m ≥ 2) be compact subsets of the strip D with connected complements.

Theorem B (see [10, Theorem 6.5.2]). Let f be a non-vanishing func-
tion analytic in the interior of K and continuous on K. Then for every
ε > 0,

lim inf
T→∞

ντT {sup
s∈K
|ζ(s+ iτ)− f(s)| < ε} > 0.

Roughly speaking, this theorem means that any non-vanishing analytic
function can be uniformly approximated by the Riemann zeta function ζ(s).
As a generalization of Theorem B, Voronin also proved the next theo-
rem, meaning that a collection of Dirichlet L-functions attached to non-
equivalent characters uniformly simultaneously approximate non-vanishing
analytic functions. In a slightly different form, this was also established in-
dependently by Gonek and Bagchi (in unpublished doctoral theses).

Theorem C (see [21, Theorem 1.10]). Let χ1 mod q1, . . . , χm mod qm
be pairwise non-equivalent Dirichlet characters, and fl be a non-vanishing
function analytic in the interior of Kl and continuous on Kl for 1 ≤ l ≤ m.
Then for every ε > 0,

lim inf
T→∞

ντT { sup
1≤l≤m

sup
s∈Kl
|L(s+ iτ, χl)− fl(s)| < ε} > 0.

We call this property joint universality. Afterwards many mathemati-
cians have considered generalizations of universality (see [21]). For example,
the joint universality theorem below was proved by A. Laurinčikas in the
case k1 = · · · = km. But it can be easily generalized to the following case.

Theorem D (see [8, Theorem 1]). Let bl(n) := bln, n ∈ N0, 1 ≤ l ≤ m,
where {bln} are periodic sequences of complex numbers with period kl ∈
N\{1}. Define the matrix B := {bn1n2}

1≤n2≤m
1≤n1≤k , m ≤ k, k := lcm(k1, . . . , km),

where lcm is the least common multiple, and suppose rank(B) = m. Let
0 < a < 1 be a transcendental number , and fl be functions analytic in the
interior of Kl and continuous on Kl. Then for every ε > 0,

lim inf
T→∞

ντT { sup
1≤l≤m

sup
s∈Kl
|ζ(a, bl ; s+ iτ)− fl(s)| < ε} > 0.
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In this paper, we consider the following property, which is weaker than
joint universality, and stronger than joint denseness.

Definition 1.2. Joint value approximation (of positive density) for
ζ(a, bl ; s) is the following property: Let σ0 ∈ (1/2, 1) and Cl ∈ C for
1 ≤ l ≤ m. Then for every ε > 0,

lim inf
T→∞

ντT { sup
1≤l≤m

|ζ(a, bl ;σ0 + iτ)− Cl| < ε} > 0.

This concept is also considered by Nagoshi, independently (see [17]).
We can interpret joint value approximation as joint universality in the

complex plane. We can also consider joint value approximation as a kind of
universality in the case where the compact subset K is a one-point set. These
viewpoints are rather important (see Remarks 4.8 and 5.5). We will show
that joint value approximation has applications to functional independence
(Proposition 5.6), almost periodicity of positive density (Corollaries 5.1 and
5.2), and self-pre-similarity (Corollary 5.4).

This paper is divided into seven sections. In Section 2, we show a limit
theorem for the generalized Barnes zeta function ζ(a, b ; s) (Proposition 2.2).

In Section 3, using that proposition, we obtain a sufficient condition for
joint value approximation (Theorem 3.4).

In Section 4, by using the theory of uniform distribution, we show ex-
amples of joint value approximation in Examples 4.3, 4.5 and Propositions
4.6 and 4.7. These examples and propositions describe the distribution of
values of generalized Barnes zeta functions in the critical strip. Note that
these examples show that joint value approximation is easier to prove than
joint universality (see Remark 4.4).

In Section 5, by using Propositions 4.6 and 4.7, we show that ζ(a, b ; s)
has a kind of almost periodicity property (see Remark 5.3), almost peri-
odicity of positive density, in the complex plane (Corollaries 5.1 and 5.2).
Next, in Corollary 5.4, we obtain self-pre-similarity for ζ(s) and L(s, χ) (see
Remark 5.5). Finally, by Examples 4.3, 4.5 and Propositions 4.6, 4.7, we
obtain the functional independence in Proposition 5.6.

In Section 6, we give a condition enabling one to disprove joint value
approximation (Theorem 6.1), and some examples (Examples 6.3 and 6.4).
These are also examples of lack of joint universality.

In Section 7, we give conditions implying the lack of joint universal-
ity (Theorems 7.2 and 7.3), and obtain an example which has the joint
value approximation property but does not satisfy joint universality (Exam-
ple 7.4). It should be noted that lack of joint universality has already been
obtained in [19, Section 6], but together with lack of joint value approxima-
tion.
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2. The limit theorem for generalized Barnes zeta function. First,
we quote some definitions and theorems from [7] and [11]. Denote by H(D)
the space of analytic functions on D equipped with the topology of uniform
convergence on compacta, and Hm(D) := H(D) × · · · × H(D). We deal
with the limit theorem for the analytic function space Hm(D), but for the
approximation of values, we only need a limit theorem for Cm. We remark
that all lemmas and propositions below also hold for Cm.

Let B(S) stand for the class of Borel sets of the space S. Define on
(Hm(D),B(Hm(D))) the probability measure

P Tζ (A) := ντT {(ζ(a, b1 ; s+iτ), . . . , ζ(a, bm ; s+iτ)) ∈ A}, A ∈ B(Hm(D)).

What we need is a limit theorem in the sense of weak convergence of proba-
bility measures for P Tζ as T →∞, with an explicit form of the limit measure.
Denote by γ the unit circle on C, and let Ω :=

∏∞
n=0 γn, where γn = γ for

all n ∈ N0. With the product topology and pointwise multiplication the
infinite-dimensional torus Ω is a compact topological Abelian group. De-
noting by mH the Haar probability measure on (Ω,B(Ω)), we obtain a
probability space (Ω,B(Ω),mH). Let ω(n) be the projection of ω ∈ Ω to
the coordinate space γn. Define

ζ(s, ω) := (ζ(a, b1 ; s, ω), . . . , ζ(a, bm ; s, ω)),

ζ(a, bl ; s, ω) :=
∞∑
n=0

bl(n)ω(n)
(n+ a)s

, s ∈ D, ω ∈ Ω, 1 ≤ l ≤ m.

Lemma 2.1. Let 0 < a < 1 be transcendental. Then ζ(a, bl ; s, ω) is an
Hm(D)-valued random element on the probability space (Ω,B(Ω),mH).

Proof. By the definition of ζ(a, bl ; s, ω), we have
∞∑
n=0

|bl(n)|2 log2 n

(n+ a)2σ
<∞, σ > 1/2, 1 ≤ l ≤ m.

Hence the assertion follows by modifying the proof of [8, Lemma 2].

Let Pζ stand for the distribution of the random element ζ(s, ω), i.e.

Pζ(A) := mH(ω ∈ Ω : ζ(s, ω) ∈ A), A ∈ B(Hm(D)).

Proposition 2.2. Suppose 0 < a < 1 is a transcendental number and

(2.1) ζ(a, bl ; s) = O(tσ).

Then the probability measure P Tζ converges weakly to Pζ as T →∞.

Proof. For σ > 1, we define

Z1(a, bl ; s) :=
∞∑
n=0

bnl
(n+ a)s

, Z2(a, bl ; s) :=
∞∑
n=0

b′l(n)
(n+ a)s

.
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By the definitions of ζ(a, bl ; s) (see Introduction) and Z2(a, bl ; s), Z1(a, bl ; s)
can be continued meromorphically to the half-plane <(s) > 1/2. From
[13, Lemma 2], we have

lim
T→∞

1
2T

T�

−T
|Z1(a, bl ; s+ iτ)|2 dτ =

∞∑
n=1

|bnl|2

(n+ a)2σ
, σ > 1/2.

By using |x+y|2 ≤ 2(|x|2 + |y|2), x, y ∈ C, and the above formula, we obtain
T�

0

|ζ(a, bl ; s+ iτ)|2 dτ = O(T ), 1 ≤ l ≤ m.

Hence the assertion follows by modifying the proof of [8, Theorem 3].

3. A condition for joint value approximation. We quote some well-
known results on weak convergence of probability measures. Suppose Pn and
P are probability measures on (S,B(S)) for some metric space S.

Lemma 3.1. Pn converges weakly to P as n→∞ if and only if

lim inf
n→∞

Pn(G) ≥ P (G) for all open sets G ∈ B(S).

Moreover, we recall that the minimal closed set SP ⊆ Hm(D) such that
P (SP ) = 1 is called the support of P . The set SP consists of all f ∈ Hm(D)
such that P (V ) > 0 for every neighborhood V of f . The support of the
distribution of a random element X is called the support of X and is denoted
by SX .

Lemma 3.2 ([11, Lemma 2]). Let {Xn} be a sequence of independent
Hm(D)-valued random elements, and suppose that the series

∑∞
n=1Xn con-

verges almost surely. Then the support of the sum of this series is the closure
of the set of all f ∈ Hm(D) which may be written as a convergent series
f :=

∑∞
n=1 fn, fn ∈ SXn.

The following lemma plays an important role in the theory of joint value
approximation.

Lemma 3.3 ([7, Theorem 6.1.16]). Let {xn} be a sequence in a Hilbert
space X satisfying the following conditions:

(a)
∑∞

n=0 ‖xn‖2 <∞;
(b)

∑∞
n=0 |〈xn, x〉| =∞ for all 0 6= x ∈ X.

Then the set of all convergent series
∑∞

n=0 αnxn with |αn| = 1 for all n ∈ N0

is dense in X.

Let x, y ∈ Cm. We define the inner product in the Hilbert space Cm by

〈x, y〉 := x1y1 + · · ·+ xmym,
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where the bar denotes the complex conjugate. From Lemma 3.3, we obtain
the following sufficient condition for joint value approximation. It should be
noted that such conditions for joint universality have already been proved
(see for example [21, Theorem 12.9]).

Theorem 3.4. Let σ0 ∈ (1/2, 1) and Cl ∈ C for 1 ≤ l ≤ m. Suppose
0 < a < 1 is transcendental and ζ(a, bl ; s) satisfies (2.1) and

(3.1)
∞∑
n=0

∣∣∣∣ m∑
l=1

ηlbl(n)
(n+ a)s

∣∣∣∣ =∞ for all (η1, . . . , ηm) 6= (0, . . . , 0).

Then for every ε > 0,

(3.2) lim inf
T→∞

ντT { sup
1≤l≤m

|ζ(a, bl ;σ0 + iτ)− Cl| < ε} > 0.

Proof. We put xn := (b1(n)(n+a)−σ0 , . . . , bl(n)(n+a)−σ0). We can check
(a) and (b) of Lemma 3.3 easily. We use the fact that

(3.3) sup
1≤l≤m

|xl − yl| ≤
√
〈x− y, x− y〉 ≤ m sup

1≤l≤m
|xl − yl|, x, y ∈ Cm,

which implies the equivalence of the topology defined by sup| · | and by 〈·, ·〉.
Hence the support of the measure Pζ is the whole of Cm by Lemmas 3.2
and 3.3. Denote by G the set of all g := (g1, . . . , gm) ∈ Cm such that

sup
1≤l≤m

|gl − Cl| < ε.

Obviously, G is an open set on Cm, and as SPζ = Cm, it follows that
(C1, . . . , Cm) ∈ SPζ . The weak convergence of the measures P Tζ and Lem-
ma 3.1 imply (3.2), since SPζ consists of all g ∈ Cm for which every neigh-
borhood G of g satisfies Pζ(G) > 0.

Remark 3.5. The general Dirichlet series L(bl, λ ; s) is defined by

(3.4) L(bl, λ ; s) :=
∞∑
n=1

bl(n)e−λns,

where λn ∈ R, 0 < λ1 < λ2 < · · · , limn→∞ λn =∞ (see for example [9]). It
is well known that the region of absolute convergence of (3.4) is a half-plane.
Assume (3.4) converges absolutely for σl > σal . It is proved in [9, Theorem 1]
that if λn’s are linearly independent over the field of rational numbers, and
satisfy the conditions [9, (2), (3), (6)], then we have the limit theorem. In
this case, we can also prove joint value approximation by modifying the
method in this section.

Similarly, if a certain type of Dirichlet series has an Euler product and
satisfies suitable conditions, we can also deduce joint value approximation
(see for example [21, Theorem 4.3]).
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4. Examples of joint value approximation. In this section, we show
examples of joint value approximation (see Examples 4.3 and 4.5, and Propo-
sitions 4.6 and 4.7). First, we quote a definition and a lemma on uniform
distribution.

For a real number x, let [x] denote the integer part of x, and {x}f :=
x−[x] the fractional part of x. Let {xn} be a given sequence of real numbers.
For a positive integer N and a subset E of [0, 1), define the counting function
A(E;N ; {xn}) as the number of terms xn, 1 ≤ n ≤ N , for which {xn}f ∈ E.

Definition 4.1. The sequence {xn} of real numbers is said to be uni-
formly distributed mod 1 if for every pair a, b of real numbers with 0 ≤ a ≤
b ≤ 1 we have

lim
N→∞

A([a, b);N ; {xn})
N

= b− a.

Lemma 4.2 ([6, Corollary 2.4.2]). Any sequence that is dense in (0, 1)
can be rearranged to a sequence uniformly distributed mod 1.

After these preparations, we obtain the following examples.

Example 4.3. Joint value approximation holds for {ζ(a, bl ; s)}l=1,2

when 0 < a < 1 is transcendental, bn1 := e2πiλn, bn2 := e2πi(λ+θ)n, 0 < λ ≤ 1
and θ ∈ R \Q.

Proof. In the case η1η2 = 0, we can check (3.1) immediately. Now we
assume η1η2 6= 0 and put re2πiξ := −η1/η2. For all r, ξ ∈ R, we have

(4.1) #{n ∈ N0 : 0 ≤ n ≤ N, |re2πiξ − e2πiθn| ≥ 2−1/2} ≥ 3N/5

for sufficiently large N . This is proved as follows. If a natural number n
satisfies the condition

π/4 ≤ min
j∈Z
|2πξ − 2πθn+ 2πj| ≤ 7π/4,

then it also satisfies |re2πiξ − e2πiθn| ≥ 2−1/2. Since {θn} is uniformly
distributed mod 1 because θ ∈ R\Q (see for example [6, Example 2.1]), we
obtain (4.1). Hence for all (η1, η2) 6= (0, 0) ∈ C2, we have

N∑
n=1

∣∣∣∣ 2∑
l=1

ηlbl(n)
(n+ a)σ0

∣∣∣∣ ≥ |η2|√
2

N∑
n=3N/5

1
(n+ a)σ0

−
N∑
n=1

2 maxl=1,2{|ηl|}
(n+ a)σ0+minl=1,2{βl}

→∞, N →∞.

We can check (2.1) by applying the assumption b′l(n) = O(n−βl) and [10,
Theorems 3.1.2 and 3.1.3]. Then Theorem 3.4 yields the result.

Remark 4.4. We remark that in the cases (i) λ, θ ∈ Q \Z, (ii) λ, θ ∈ Q,
and (iii) λ ∈ R, θ ∈ Q\Z, joint universality has already been proved by Lau-
rinčikas and Matsumoto [11, Theorem 1] (see also [12, Theorem 2]), Nagoshi
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[15, Theorem], and the author [18, Theorem 17], respectively. Clearly, joint
value approximation follows from joint universality. However, in the case
when θ ∈ Q \ Z, we can prove the former directly, as follows. For θ := g/h
and all η ∈ C, we can easily obtain

#{n ∈ N0 : 0 ≤ n ≤ N, |η − e2πiθn| ≥ 1} ≥ N/h.

Therefore we obtain joint value approximation by modifying the proof of
Example 4.3.

The key to Example 4.3 is the fact that {θn}, θ ∈ R \ Q, is uniformly
distributed mod 1. The sequence {θn+d log(n+a)}, d ∈ R, is also uniformly
distributed (see for example [6, Theorem 3.9]). Hence we obtain the following
example.

Example 4.5. Joint value approximation holds for {ζ(a, bl ; s+idl)}l=1,2

in the case when 0 < λ ≤ 1, θ ∈ R\Q, bn1 := e2πiλn, bn2 := e2πi(λ+θ)n, d1 = 0
and d2 ∈ R.

We can also obtain examples of joint value approximation following from
the denseness of a sequence.

Proposition 4.6. Suppose 0 < a < 1 is transcendental , 0 < λ ≤ 1,
bn1 = bn2 := e2πiλn, d1 = 0, and 0 6= d2 := d ∈ R. Then for any ε > 0,

(4.2) lim inf
T→∞

ντT { sup
l=1,2

|ζ(a, bl ;σ0 + idl + iτ)− Cl| < ε} > 0.

Proof. Some rearrangement of the sequence {d log(n+ a)}, d 6=0, is uni-
formly distributed mod 1 by Lemma 4.2 and the fact that {d log(n+ a)}f is
dense in [0, 1). Hence we find that for all (η1, η2) 6= (0, 0) ∈ C2, a rearrange-
ment of the series

∞∑
n=1

∣∣∣∣ 2∑
l=1

ηle
2πiλn

(n+ a)σ+idl

∣∣∣∣
is divergent by using (n+ a)id = exp(id log(n+ a)) and modifying the proof
of Example 4.3. We can easily show that if a rearrangement of positive terms
is divergent, the original series is also divergent. This yields the assertion.

By modifying the proof of the above proposition, we obtain the following
result. We remark that C1, C2 ∈ C do not have to be non-zero.

Proposition 4.7. Suppose σ0 ∈ (1/2, 1), d1 = 0, and 0 6= d2 ∈ R. Then
for any ε > 0,

(4.3) lim inf
T→∞

ντT { sup
l=1,2

|L(σ0 + idl + iτ, χ)− Cl| < ε} > 0.
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Proof. We only have to prove this result for the Riemann zeta function.
Since ζ(s) has the Euler product expression, we have

log ζ(s) = −
∞∑
n=1

log(1− p−σ−itn ), σ > 1,

where pn denotes the nth prime number. Next we define a C2-valued random
element log ζ(σ, ω) by

log ζ(σ, ω) :=
∞∑
n=1

(
log
(

1− ω(pn)
pσn

)
, log

(
1− ω(pn)

pσ+id
n

))
, |ω(pn)| = 1.

By using the prime number theorem and the denseness of the sequence
{log pn}f in (0, 1), and modifying the proof of Proposition 4.6, we obtain

∞∑
n=1

∣∣∣∣ 2∑
l=1

ηl log
(

1− exp(−idl log pn)
pσ0
n

)∣∣∣∣ =∞ for all (η1, η2) 6= (0, 0).

Hence by the Taylor expansion of log(1− z),
ω log(1− z) ∼ ωz ∼ log(1− ωz), |ω| = 1, |z| < 1

(see also the proof of [7, Lemma 5.4]), and Lemmas 3.2 and 3.3, the support
of log ζ(σ, ω) is C2. The map h : C2 → C2 defined by

(x1, x2) 7→ (expx1, expx2)

is continuous and sends log ζ(σ, ω) to ζ(σ, ω) and C2 to (C \ {0})2. On the
other hand, the support of ζ(σ, ω) is closed. Since the closure of (C \ {0})2
is C2, the support of ζ(σ, ω) is also C2. By using the limit theorem for ζ(s)
(see [7, Section 5] or [21, Sections 4 and 12]) and modifying the proof of
Theorem 3.4, we obtain the assertion.

Remark 4.8. Propositions 4.6 and 4.7 nearly coincide with the Shifts
Universality Principle [5, p. 311] (see also [21, p. 203]) if b1(n) = b2(n) and
the compact set is a one-point set. We can obtain these propositions by
using the universality theorem (see for example [16, Corollary 2.3]).

5. Applications of joint value approximation. By putting b1(n) =
b2(n) and C := C1 = C2 in Proposition 4.6 or 4.7 and using the following
triangle inequality:

|ζ(a, b ;σ0 + id+ iτ)− ζ(a, b ;σ0 + iτ)|
≤ |ζ(a, b ;σ0 + id+ iτ)− C|+ |ζ(a, b ;σ0 + iτ)− C|,

we obtain the following corollary, which means that generalized Barnes
zeta functions have the property of almost periodicity of positive density,
embodied in (5.1) below. These corollaries are also obtained by putting
K := {one-point set} in [5, Theorem 4] (see also [21, Theorem 10.6]).
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Corollary 5.1. Suppose 0 < a < 1 is transcendental , σ0 ∈ (1/2, 1),
0 < λ ≤ 1, bn1 = bn2 := e2πiλn, and 0 6= d ∈ R. Then for any ε > 0,

(5.1) lim inf
T→∞

ντT {|ζ(a, b ;σ0 + id+ iτ)− ζ(a, b ;σ0 + iτ)| < ε} > 0.

Corollary 5.2. Suppose σ0 ∈ (1/2, 1) and 0 6= d ∈ R. Then for any
ε > 0,

(5.2) lim inf
T→∞

ντT {|L(σ0 + id+ iτ, χ)− L(σ0 + iτ, χ)| < ε} > 0.

Remark 5.3. An analytic function f(s), defined on some vertical strip
a < σ < b, is called almost periodic in the sense of Bohr (or uniformly
almost periodic) if, for any positive ε > 0, and any α, β with a < α < β < b,
there exists a length l := l(f, α, β, ε) > 0 such that every interval (τ1, τ2)
of length l contains an almost period of f relative to ε in the closed strip
α ≤ σ ≤ β, i.e., there exists d ∈ (τ1, τ2) such that

|f(σ + id+ iτ)− f(σ + iτ)| < ε, α ≤ σ ≤ β, τ ∈ R.

Bohr [3] proved that every Dirichlet series is almost periodic in the sense of
Bohr in its half-plane of absolute convergence. Moreover, he showed that if
χ is non-principal, then the Riemann hypothesis for the Dirichlet L-function
L(s, χ) is equivalent to the almost periodicity in the sense of Bohr of L(s, χ)
in σ > 1/2 (see also [21, Section 8.2]).

Next we consider the property of “self-similarity” which resembles al-
most periodicity for zeta functions. Considering the case of m = 1 in Propo-
sition 4.7 and putting C1 = L(σ1, χ), we obtain the following corollary.

Corollary 5.4. Let σ0, σ1 ∈ (1/2, 1). Then for any ε > 0,

(5.3) lim inf
T→∞

ντT {|L(σ0 + iτ, χ)− L(σ1, χ)| < ε} > 0.

Remark 5.5. More than 50 years after Bohr’s paper [3], Bagchi in his
Ph.D. thesis [1] proved that the Riemann hypothesis is true if and only if
the Riemann zeta function can be approximated by itself in the sense of
universality.

The Riemann hypothesis is true if and only if, for any compact subset
K in the strip D with connected complement and for any ε > 0,

(5.4) lim inf
T→∞

ντT {max
s∈K
|ζ(s+ iτ)− ζ(s)| < ε} > 0

(see also [21, Theorem 8.3]). In Bagchi [2, Theorem 3.7], it is shown that
the above statement also holds for L(s, χ) in place of ζ(s). We call this
property self-similarity and the property in Corollary 5.4 with σ0 = σ1

self-pre-similarity. We can say that self-pre-similarity is self-similarity on a
one-point set.
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Note that self-similarity implies almost periodicity in the sense of Bohr.
By modifying the proof of Theorem D with m = 1, we can see that the
generalized Barnes zeta function ζ(a, b ; s) has the universality property (see
also [10, Theorem 6.1.1]). Applying the universality Theorem D with f(s) =
ζ(a, b ; s), we obtain self-similarity for ζ(a, b ; s), which also implies almost
periodicity in the sense of Bohr.

Recall that both almost periodicity in the sense of Bohr and self-similar-
ity for L-functions are equivalent to the (generalized) Riemann hypothesis.
The difference between Corollary 5.2 and almost periodicity in the sense
of Bohr lies in the difference between positive density and uniformity. The
difference between Corollary 5.4 and self-similarity amounts to the difference
between the complex plane and a functional space (difference caused by the
fact that the compact set K is a one-point set or not). If we could close one
of these gaps, we could prove the Riemann hypothesis. Needless to say, this
is very difficult.

Finally, as an application of Examples 4.3, 4.5 and Propositions 4.6
and 4.7, we obtain the following joint functional independence result. We
can prove it by modifying the proof of, for example, [10, Theorem 7.2.1].

Proposition 5.6. Let ζ(a, bl ; s), l = 1, 2, be as in Examples 4.3, 4.5 or
Propositions 4.6, 4.7. Suppose F is a continuous function on C2 and

(5.5) F (ζ(a, b1 ; s), ζ(a, b2 ; s)) = 0

for all s. Then F ≡ 0.

6. Lack of joint value approximation. The following theorem gives
a condition implying that joint value approximation fails to hold.

Theorem 6.1. Let σ0 ∈ (1/2, 1). Suppose there exists (η1, . . . , ηm) 6=
(0, . . . , 0) such that

(6.1)
∞∑
n=0

∣∣∣∣ m∑
l=1

ηlbl(n)
(n+ a)σ0

∣∣∣∣ <∞.
Then for all τ ∈ R, there exist ε > 0 and Cl ∈ C, 1 ≤ l ≤ m, satisfying

(6.2) sup
1≤l≤m

|ζ(a, bl ;σ0 + iτ)− Cl| ≥ ε.

Proof. We can assume that η1 6= 0 and Cl = 0 for 2 ≤ l ≤ m. Put
η := max1≤l≤m |ηl| and suppose

sup
2≤l≤m

|ζ(a, bl ;σ0 + iτ)| < M.



78 T. Nakamura

For all τ satisfying the above inequality, we have

(6.3) |η1ζ(a, b1 ;σ0 + iτ) + (mη + 1)M |

=
∣∣∣(mη + 1)M +

m∑
l=1

ηlζ(a, bl ;σ0 + iτ)−
m∑
l=2

ηlζ(a, bl ;σ0 + iτ)
∣∣∣ > ηM,

because of the equality |(n+ a)−iτ | = 1 and∣∣∣ m∑
l=1

ηlζ(a, bl ;σ0 + iτ)
∣∣∣ ≤ ∞∑

n=0

∣∣∣∣ m∑
l=1

ηlbl(n)
(n+ a)σ0+iτ

∣∣∣∣ < M.

This implies the assertion.

Remark 6.2. The negation of assumption (3.1) is (6.1). In addition,
we can see that the condition in this theorem also implies the lack of joint
universality (see [19, Section 6]), which means that there exist ε > 0 and
Cl ∈ C, 1 ≤ l ≤ m, for which there does not exist τ satisfying

(6.4) sup
1≤l≤m

sup
s∈Kl
|ζ(a, bl ; s+ iτ)− Cl| ≤ ε.

By using this theorem, we obtain the following examples where joint
value approximation fails to hold. The example below should be compared
with Theorem D.

Example 6.3. Define B := {bn1,n2}
1≤n2≤m
1≤n1≤k , m ≤ k, where bnl, n ∈

N0, are periodic sequences of complex numbers with period kl ∈ N \ {1},
k := lcm(k1, . . . , km), and suppose rank(B) < m. Then condition (6.1) is
satisfied.

As a generalization, we have the following example, which contains [19,
Proposition 6.4].

Example 6.4. Suppose there exists (η1, . . . , ηm) 6= (0, . . . , 0) such that∑m
l=1 ηlbnl = 0 for all but finitely many n ∈ N0. Then condition (6.1) is

satisfied.

7. Lack of joint universality. The next lemma is a generalization
of [19, Theorem 5.2] and a kind of counter-proposition to Lemma 3.3. The
assumption that

∑∞
n=1 αnxn is convergent is essential to prove [19, Theorem

5.2], but we do not need it in the proof below.

Lemma 7.1. Let {xn} be a sequence in a pre-Hilbert space X with an
inner product 〈·, ·〉 satisfying the following condition.

(a) There exists a non-zero x ∈ X and M > 0 such that
∑∞

n=1 |〈xn, x〉|
< M .

Then the set of all series
∑∞

n=0 αnxn with |αn| = 1 for all n ∈ N0 is not
dense in X.
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Proof. We can assume ‖x‖ = 1 by replacing x with x‖x‖−1. The conclu-
sion follows from the inequality∥∥∥3Mx−

∞∑
n=0

αnxn

∥∥∥2
≥ 9M2‖x‖2 − 6M

∞∑
n=0

|〈xn, x〉| > 3M2.

Theorem 7.2. Suppose that for 1 ≤ l ≤ m, the Dirichlet series expres-
sion of ζ(a, bl ; s) is valid in the critical strip D, and there exist functions
gl ∈ H(D) and measures µl with compact supports Kl ⊂ D such that

(7.1)
∞∑
n=0

∣∣∣∣ m∑
l=1

�

C

bl(n)gl(s)
(n+ a)s

dµl(s)
∣∣∣∣ <∞.

Then for all τ ∈ R, there exist ε > 0 and fl ∈ H(D) satisfying

(7.2) sup
1≤l≤m

sup
s∈Kl
|ζ(a, bl ; s+ iτ)− fl(s)| ≥ ε.

Proof. Obviously, 〈x, y〉 :=
∑m

l=1

	
C xlyl dµl, x, y ∈ H

m(D), is an inner
product in the pre-Hilbert space Hm(D). Because |(n + a)iτ | = 1 and the
Dirichlet series expression of ζ(a, bl ; s) is valid in D, we have

{(ζ(a, b1 ; s+iτ), . . . , ζ(a, bm ; s+ iτ)) : τ ∈ R} ⊂ {the set of all series S},
where

S :=
∞∑
n=0

(
αnb1(n)
(n+ a)s

, . . . ,
αnbm(n)
(n+ a)s

)
, |αn| = 1.

By Lemma 7.1, the set of all series S is not dense in Hm(D) with the norm
defined by the inner product 〈·, ·〉. Hence neither is the set {(ζ(a, b1 ; s+ iτ),
. . . , ζ(a, bm ; s+ iτ)) : τ ∈ R}. For all F ∈ Hm(D), we immediately obtain

m∑
l=1

�

C
|Fl(s)|2 dµl(s) ≤

m∑
l=1

Cl sup
s∈Kl
|Fl(s)|2 ≤ C sup

1≤l≤m
sup
s∈Kl
|Fl(s)|2,

for some positive constants C and Cl. This implies the conclusion.

When the Dirichlet series expression of ζ(a, bl ; s) is not valid in the
critical strip D, we can also disprove joint universality by using a limit
theorem.

Theorem 7.3. Suppose a = bl(n) = 1 or a is transcendental and there
exist functions gl ∈ H(D) and measures µl with compact supports Kl ⊂ D
satisfying (7.1). Then there exist ε > 0 and fl ∈ H(D) satisfying

(7.3) lim sup
T→∞

ντT { sup
1≤l≤m

sup
s∈Kl
|ζ(a, bl ; s+ iτ)− fl(s)| ≤ ε} = 0.

Proof. Let F ∈ Hm(D). Denote by Vk, k = 1, 2, the set of g ∈ Hm(D)
such that

sup
1≤l≤m

sup
s∈Kl
|gl(s)− Fl(s)| < kε.
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We recall that the support SP consists of all f ∈ Hm(D) such that P (V ) > 0
for every neighborhood V of f . By using Proposition 2.2, and modifying
the proof of Theorem 7.2, we find that the support of the random ele-
ment ζ(s, ω) := (ζ(a, b1 ; s, ω), . . . , ζ(a, bm ; s, ω)) is not the whole of Hm(D).
Hence there exists a set of analytic functions fl, 1 ≤ l ≤ m, and its neighbor-
hood V2 satisfying Pζ(V2) = 0. Since V1 ⊂ V2, we have Pζ(V1) = 0. Let Pn
and P be probability measures defined on (S,B(S)). It is well known that Pn
converges weakly to P as n → ∞ if and only if lim supn→∞ Pn(C) ≤ P (C)
for all closed sets C. The set V1 is closed, so we obtain

lim sup
T→∞

ντT { sup
1≤l≤m

sup
s∈Kl
|ζ(a, bl ; s+ iτ)− fl(s)| ≤ ε} ≤ Pζ(V1) = 0.

This proves that joint universality fails to hold. By a slight modification,
we can prove the assertion in the case a = bl(n) = 1, the Riemann zeta
function.

By taking g1(s) ≡ −g2(s) ≡ 1 and dµ1(s) = dµ2(s+ id2) in Theorem 7.2,
we can obtain the next example of lack of joint universality. We remark
that when the compact sets are one-point sets in the following example, we
showed joint value approximation in Propositions 4.6.

Example 7.4. Suppose d1 = 0, 0 6= d2 ∈ R, and
∑N

n=0 bn, bn := bn1 =
bn2, is uniformly bounded. Then for all τ ∈ R, there exist ε > 0, compact
subsets K1,K2 ⊂ D, and f1, f2 ∈ H(D) satisfying

sup
l=1,2

sup
s∈Kl
|ζ(a, bl ; s+ idl + iτ)− fl(s)| ≥ ε.

Remark 7.5. When b1(n) = b2(n), Example 7.4 can also be proved as
follows. Suppose K1 and K2 := {s + id : s ∈ K1} are compact subsets
of D, and K1 ∩ K2 is not empty. In this case, the pair of zeta functions
(ζ(a, b ; s), ζ(a, b ; s+id)) is essentially one-dimensional in K1∩K2 (see Shifts
Universality Principle [5, p. 311] or [21, p. 203]) .

Example 7.4 with b1(n) = b2(n) is a counter-example to the conjecture
in [21, Section 12.5] since

∑
p p

i−1 = O(1). We can obtain this estimate from∑
p

pi−1 ∼
∞�

2

xi−1d

(
x

log x

)
=
[
xi

log x

]∞
2

− (i− 1)
∞�

2

xi

x log x
dx

= O(1) + (1− i)
∞�

log 2

eit

t
dt = O(1).

Remark 7.6. For the general Dirichlet series (3.4) and a certain type
of Dirichlet series which has the Euler product expression, under suitable
conditions, we can also disprove joint value approximation by modifying
the process in this section. It should be noted that to disprove joint value
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approximation when
∑N

n=0 blnl are uniformly bounded, we do not need a
limit theorem. This means that to disprove joint universality, we do not
use the fact that log p or log(n+ a), where a is transcendental, are linearly
independent over the field of rational numbers.

To end this paper, we give the following chart for the convenience of
reader.

Property
P

or
Q

C H(D)

Joint uni. Series Exist (Thm. D) Exist (Thm. D)

{ζ(a, bl ; s)} Product Exist (Thm. C) Exist (Thm. C)

Self- Series Exist (Rmk. 5.5) Exist (Rmk. 5.5)

similarity Product Exist (Cor. 5.4) R. H. (Rmk. 5.5)

Joint uni. Series Exist (Prop. 4.6) Not exist (Thm. 7.2, 7.3)

{ζ(a, b ; s+idl)} Product Exist (Prop. 4.7) Not exist (Thm. 7.2, 7.3)

Acknowledgments. I thank Professor Kohji Matsumoto and Professor
Hirofumi Nagoshi for very useful advice. The author is supported by JSPS
Research Fellowship for Young Scientists (JSPS Research Fellow DC2).

References

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-
function and other allied Dirichlet series, Ph.D. thesis, Indian Statistical Institute,
Calcutta, 1981

[2] —, A joint universality theorem for Dirichlet L-functions, Math. Z. 181 (1982),
319–334.

[3] H. Bohr, Über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwen-
dung auf die Dirichletschen L-Funktionen, Math. Ann. 85 (1922), 115–122.

[4] H. Bohr and R. Courant, Neue Anwendungen der Theorie der Diophantischen
Approximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144
(1914), 249–274.
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