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Distribution of consecutive modular roots of an integer

by

Jean Bourgain (Princeton, NJ) and Igor E. Shparlinski (Sydney)

1. Introduction. For a prime p we denote by Fp the finite field of p
elements, which we assume to be represented by the set {0, 1, . . . , p − 1}.
For an integer t we denote by Zt the residue ring modulo t and by Z∗t the
group of units of Zt.

Let ϑ ∈ F∗p be of multiplicative order t ≥ 1. There is a rather long history
of studying the exponential sums with the powers ϑn, n = M+1, . . . ,M+N ,
where N ≤ t, in finite fields and residue rings: see [6, 7, 17, 21–23, 26–28] for
several results in this direction together with their numerous applications.

Here we consider a presumably harder question about exponential sums
with the roots ϑ1/n, for n = M + 1, . . . ,M + N with gcd(n, t) = 1 instead
of the powers. More precisely, for an integer m > 0, we put

em(z) = exp(2πiz/m),

and define the sums

Sa(M,N) =
M+N∑
n=M+1

gcd(n,t)=1

ep(aϑ1/n), a ∈ Fp,

to which previously known techniques do not seem to apply.
We show that a different approach, which makes use of recent results

of [5] on exponential sums with sparse polynomials, allows us to estimate
the sums Sa(M,N) nontrivially, provided N and t are large enough. In
turn, this shows that, under the same conditions, the roots ϑ1/n, for n =
M + 1, . . . ,M + N with gcd(n, t) = 1, are uniformly distributed mod-
ulo p.
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Furthermore, this bound implies a nontrivial estimate for the sums over
primes

Ta(L) =
∑
l≤L

gcd(l,t)=1
l prime

ep(aϑ1/l), a ∈ Fp.

Again, exponential sums with prime powers ϑl have recently been considered
in the literature (see [1, 4, 16]).

Our bound of the sums Ta(L) follows naturally by the Vaughan method
from our bound of Sa(M,N) and of certain bilinear sums which we estimate
using some results of [4]. Similar bilinear sums have been estimated in a
number of works [1, 4, 12, 14, 15], thus our estimate of these sums follows a
well established path. It is interesting to note that usually bounds of bilinear
sums present the main difficulty in estimating exponential sums over primes.
However, in the case of the function ϑ1/l the technique for establishing such
bounds has been readily available, while finding a nontrivial bound on single
sums Sa(M,N) has been the missing element.

Finally, we discuss some applications of our results to pseudorandom
number generators.

Throughout the paper the implied constants in symbols “O” and “�”
may occasionally, where obvious, depend on the small positive parameter
ε and are absolute otherwise (we recall that A � B is equivalent to A =
O(B)).

2. Preparations. Our main tool is the following estimate from [5].

Lemma 1. For any ε > 0 there exists κ > 0 such that if ϑ1, . . . , ϑr ∈ F∗p
and their ratios ϑi/ϑj , 1 ≤ i < j ≤ r, are of multiplicative order at least pε

then

max
ai∈F∗p

∣∣∣p−1∑
s=1

ep
( r∑
i=1

aiϑ
s
i

)∣∣∣� p1−κ.

As we have mentioned, we also need a bound of some bilinear sums.

Lemma 2. For any ε > 0 there exists η > 0 such that for t ≥ pε,
uniformly over a ∈ F∗p the following holds. For any two sequences of complex
numbers A = (αr) supported on the interval [K,K + R] and B = (βs)
supported on the interval [L,L+S], and for any integer a with gcd(a, p) = 1,
we have∑
K<r≤K+R
gcd(r,t)=1

∑
L<s≤L+S
gcd(s,t)=1

αr βs ep(aϑ1/(rs))� ‖A‖‖B‖(R/t+1)1/2(S/t+1)1/2t1−η



Distribution of consecutive modular roots of an integer 85

where

‖A‖ =
( ∑
K<r≤K+R

|αr|2
)1/2

and ‖B‖ =
( ∑
L<s≤L+S

|βs|2
)1/2

.

Proof. We follow the standard argument which has been applied to sim-
ilar sums with ϑrs instead of ϑ1/(rs) (see [1, 4]). In fact in this case there are
some simplifications due to the extra condition gcd(rs, t) = 1.

Let us fix an a ∈ F∗p and denote the corresponding bilinear sums by W .
Using the Cauchy inequality, we find

W 2 ≤
∑

K<r≤K+R

|αr|2
∑

K<r≤K+R

∣∣∣ ∑
L<s≤L+S
gcd(s,t)=1

βs ep(aϑ1/(rs))
∣∣∣2

≤ ‖A‖2(R/t+ 1)
∑
r∈Z∗t

∣∣∣ ∑
L<s≤L+S
gcd(s,t)=1

βs ep(aϑ1/(rs))
∣∣∣2

≤ ‖A‖2(R/t+ 1)
∑
r∈Zt

∣∣∣ ∑
L<s≤L+S
gcd(s,t)=1

βs ep(aϑr/s)
∣∣∣2

= ‖A‖2(R/t+ 1)
∑

L<s,v≤L+S
gcd(s,t)=gcd(v,t)=1

βs βv
∑
r∈Zt

ep(a(ϑr/s − ϑr/v)).

Since

2|βsβv| ≤ |βs|2 + |βv|2,

we deduce that

W 2 ≤ 1
2
‖A‖2(R/t+ 1)

∑
L<s,v≤L+S

gcd(s,t)=gcd(v,t)=1

|βs|2
∣∣∣∑
r∈Zt

ep(a(ϑr/s − ϑr/v))
∣∣∣

+
1
2
‖A‖2(R/t+ 1)

∑
L<s,v≤L+S

gcd(s,t)=gcd(v,t)=1

|βv|2
∣∣∣∑
r∈Zt

ep(a(ϑr/s − ϑr/v))
∣∣∣

= ‖A‖2(R/t+ 1)
∑

L<s,v≤L+S
gcd(s,t)=gcd(v,t)=1

|βs|2
∣∣∣∑
r∈Zt

ep(a(ϑr/s − ϑr/v))
∣∣∣

≤ ‖A‖2(R/t+ 1)(S/t+ 1)
∑

L≤s≤L+S
gcd(s,t)=1

|βs|2
∑
v∈Z∗t

∣∣∣∑
r∈Zt

ep(a(ϑr/s − ϑr/v))
∣∣∣.
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For each s, we make the change of variables r 7→ rs, v 7→ v−1s. Therefore,

W 2 ≤ ‖A‖2(R/t+ 1)(S/t+ 1)
∑

L≤s≤L+S
gcd(s,t)=1

|βs|2
∑
v∈Z∗t

∣∣∣∑
r∈Zt

ep(a(ϑr − ϑrv))
∣∣∣.

The double sum over v and r does not depend on s and is O(t2−2κ) by [4,
Theorem 4] for some κ > 0 (provided that t ≥ pε), which concludes the
proof.

Let, as usual,

Λ(n) =
{

log p if n is a power of a prime p,
0 otherwise,

be the von Mangoldt function, where log z denotes the natural logarithm
of z.

We use the following result of [29] in the form given in [11, Chapter 24]:

Lemma 3. For any complex-valued function f(n) and any real numbers
U, V > 1 with UV ≤ L, we have∑

n≤L
Λ(n)f(n)� Σ1 +Σ2 +Σ3 + |Σ4|,

where

Σ1 =
∣∣∣∑
n≤U

Λ(n)f(n)
∣∣∣,

Σ2 = ( logUV )
∑
v≤UV

∣∣∣ ∑
s≤L/v

f(sv)
∣∣∣,

Σ3 = ( logL)
∑
v≤V

max
w≥1

∣∣∣ ∑
w≤s≤L/v

f(sv)
∣∣∣,

Σ4 =
∑
km≤L

k>V,m>U

Λ(m)
∣∣∣ ∑
d|k, d≤V

µ(d)
∣∣∣f(km).

3. Sums over consecutive integers. Following the usual approach
to estimating incomplete sums (see [18, Section 12.2]), we first estimate the
complete sums

Sa,b =
∑
n∈Z∗t

ep(aϑ1/n)et(bn).

Theorem 4. For any ε > 0 there exists δ > 0 such that for t ≥ pε,
uniformly over a ∈ F∗p and b ∈ Zt, we have the bound

Sa,b � t1−δ.
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Proof. For any integer k ≥ 2,

Ska,b =
∑

n1,...,nk∈Z∗t

ep
(
a

k∑
j=1

ϑ1/nj

)
et
(
b

k∑
j=1

nj

)
.

For each m ∈ Zt, we collect together the terms with n1 + · · · + nk ≡ m
(mod t), getting

|Sa,b|k ≤
∑
m∈Zt

∣∣∣ ∑
n1,...,nk∈Z∗t

n1+···+nk≡m (mod t)

ep(a(ϑ1/n1 + · · ·+ ϑ1/nk))
∣∣∣.

Next, by the Cauchy inequality, we derive

|Sa,b|2k ≤ t
∑
m∈Zt

∣∣∣ ∑
n1,...,nk∈Z∗t

n1+···+nk≡m (mod t)

ep
(
a

k∑
j=1

ϑ1/nj

)∣∣∣2

= t
∑

(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jϑ1/nj

)
,

where the outside summation is taken over the set of vectors

Nk = {(n1, . . . , n2k) ∈ (Z∗t )2k :
n1 + n3 + · · ·+ n2k−1 ≡ n2 + n4 + · · ·+ n2k (mod t)}.

It is now easy to see that for any m with gcd(m, t) = 1 we have∑
(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jϑ1/nj

)
=

∑
(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jϑm/nj

)
.

Let Q be the set of primes q ≤ t3/4 with gcd(q, t) = 1. Averaging over all
q ∈ Q we obtain

|Sa,b|2k ≤
t

#Q
∑
q∈Q

∑
(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jϑq/nj

)
.

Furthermore, changing the order of summation, we obtain

|Sa,b|2k ≤
t

#Q
∑

(n1,...,n2k)∈Nk

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jϑq/nj

)∣∣∣.
Clearly #Nk ≤ ϕ(t)2k−1, where ϕ(t) is the Euler function. Since t has at
most O(log t) prime divisors, by the prime number theorem we see that
#Q ≥ (4/3+o(1))t3/4/log t+O(log t) ≥ t3/4/log t, provided t is large enough.
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Now, using the Hölder inequality and then extending the region of sum-
mation, we derive

|Sa,b|8k ≤
t4

(#Q)4
(#Nk)3

∑
(n1,...,n2k)∈Nk

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jϑq/nj

)∣∣∣4
≤ t6k−2(log t)4

t∑
n1,...,n2k=1

gcd(n1···n2k,t)=1

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jϑq/nj

)∣∣∣4

≤ t6k−2(log t)4
t∑

n1,...,n2k=1

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jϑqnj

)∣∣∣4
≤ t6k−2(log t)4

×
t∑

n1,...,n2k=1

∑
q1,q2,q3,q4∈Q

ep
(
a

2k∑
j=1

(ϑq1nj + ϑq2nj − ϑq3nj − ϑq4nj )
)

≤ t6k−2(log t)4

×
∑

q1,q2,q3,q4∈Q

∣∣∣ t∑
n=1

ep(a(ϑq1n + ϑq2n − ϑq3n − ϑq4n))
∣∣∣2k

≤
(

t

p− 1

)2k

t6k−2(log t)4

×
∑

q1,q2,q3,q4∈Q

∣∣∣p−1∑
n=1

ep(a(ϑq1n + ϑq2n − ϑq3n − ϑq4n))
∣∣∣2k

� p−2kt8k−2(log t)4

×
∑

q1,q2,q3,q4∈Q

∣∣∣p−1∑
n=1

ep(a(ϑq1n + ϑq2n − ϑq3n − ϑq4n))
∣∣∣2k.

For O((#Q)2) = O(t3/2) tuples (q1, q2, q3, q4) ∈ Q4 such that (q1, q2) is
a permutation of (q3, q4) we estimate the inner sum trivially as p− 1.

For other O((#Q)4) = O(t3) tuples, noticing that if qi 6= qj then

gcd(qi − qj , t) ≤ |qi − qj | ≤ t3/4, 1 ≤ i < j ≤ 4,

we see that the bound of Lemma 1 applies. Therefore

|Sa,b|8k � p−2kt8k−2(t3p2k(1−κ) + t3/2p2k)(log t)4

� (t8k+1p−2kκ + t8k−1/2)(log t)4,

with some κ > 0, depending only on ε > 0. Taking k = dκ−1e we conclude
the proof.
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The standard technique (see [18, Section 12.2]) now immediately leads
us to the following estimate of the sums Sa(M,N).

Corollary 5. For any ε > 0 there exists δ > 0 such that for t ≥ pε,
uniformly over a ∈ F∗p and integers M and N with 1 ≤ N ≤ t, we have

Sa(M,N)� t1−γ .

4. Sums over primes

Theorem 6. For any ε > 0 there exists σ > 0 such that for t ≥ pε,
uniformly over a ∈ F∗p and integer L ≥ t2+ε, we have the bound

Ta(L)� Lt−σ.

Proof. Our proof follows very closely to the proof of [4, Theorem 6] which
gives an estimate of exponential sums with ϑl. In particular, we also choose
U = V = t in the Vaughan identity given by Lemma 3. Then, exactly as
in [4, Theorem 6],

• we estimate Σ1 trivially as Σ1 ≤ t,
• we estimate Σ2 � Lt−% and Σ3 � Lt−% using Corollary 5 instead

of [4, Theorem 4],
• we estimate Σ4 � Lt−% using Lemma 2 instead of [4, Bounds (57)

and (58)] on the double sum in [4, Bound (55)],

where % > 0 depends only on ε. Collecting these bounds together, we obtain∑
n≤L

gcd(n,t)=1

ep(aϑ1/n)� Lt−%,

and now via partial summation we obtain the desired result.

5. Remarks. Clearly, consecutive iterations of the map x 7→ ϑx in Fp
lead to the sequence xn = aϑn, n = 0, 1, . . . , where x0 = a is the initial
value. For many years such sequences have served as sources of pseudoran-
dom numbers (see [20, 27, 28]). However, unfortunately such sequences are
not suitable for cryptographic applications, because even some of the in-
formation about the output sequence is discarded (for example, only some
portion of the most significant bits of each xn is output), the attacker is still
able to find the “hidden” parameters a and ϑ (and in some cases even if p
is unknown, it can also be recovered); see [8, 9, 10, 13, 19, 24, 25]. More-
over, even iterations of nonlinear maps can be attacked in a similar way
(see [2, 3]).

Thus, in this context, it seems quite promising to use the sequence zn =
aϑ1/n for the purpose of creating cryptographically strong pseudorandom
number generators (one can choose ϑ ∈ Fp to be of prime order t to avoid
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problems with inverting n modulo t). In particular, the bound of Corollary 5
implies that elements of such sequences are uniformly distributed in residue
classes modulo p. In this context it would also be interesting to extend our
method to the sums

M+N∑
n=M+1

gcd((n+1)···(n+s),t)=1

ep
( s∑
j=1

ajϑ
1/(n+i)

)
,

which are necessary to study the joint distribution of s consecutive terms of
the sequence zn.

Finally, we remark that our argument can easily be adapted to apply to
the sums

M+N∑
n=M+1

gcd(n,t)=1

ep
( s∑
j=1

ajϑ
1/n
j

)
,

for distinct elements ϑ1, . . . , ϑs of order t.
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