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1. Introduction. The aim of this article is to propose generalizations of
Stickelberger’s theorem for higher dimensions. Using these results, we study
annihilators for some cusp forms of weight 2. We address certain correspon-
dences, given by sums of Hecke correspondences and defined over Drinfeld
modular varieties. This article is motivated by the works of Anderson and
Coleman [An1], [C].

Let P1 be the projective line scheme over Fq, P1 \{∞} = Spec(Fq[t]) and
let I = p(t)Fq[t] be an ideal in Fq[t] with deg(p(t)) = d+ 1. There exists
an abelian Galois extension, K∞I /Fq(t), with group GI ' (Fq[t]/I)×. These
fields are Carlitz extensions and are cyclotomic fields in the case of function
fields (see [Ca]).

Let us consider the S-incomplete L-function evaluator (S := |I| ∪ {∞})∏
x∈|P1|\S

(1− τx · zdeg(x))−1,

τx ∈ GI being the Frobenius element for x ∈ |P1|. This Euler product can
be expressed as

Q(z) +
(
∑

h∈GI h) · zd+1

1− q · z
,

Q(z) being a polynomial in Z[GI ][z] of degree d. If one writes Q(z) :=∑d
i=0 γi · zi with γi ∈ Z[GI ], then the correspondence

d∑
i=0

Γ (Frd−i) ∗ Γ (γi)

is trivial on Spec(K∞I ⊗K∞I ). This is proved for S = {0, 1,∞} in [C] and for
general S = {?,∞} in [An1]. This result is analogous to the function field
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case of Stickelberger’s theorem. Here, Γ (Fri) denotes the (transposed) graph
of the Frobenius morphism, Fri, and Γ (γi) is a sum of graphs of elements
of GI . For arbitrary smooth curves analogous results can be found in [Al2].

These trivial correspondences give an annihilating polynomial for the
operator given by the correspondence Γ (Fr) acting on the Q[GI ]-module
H1((Y∞I )F,Ql), and this yields proofs of the Brumer–Stark conjecture in the
function field case ([An1], [C], [H1], [Ta], [Al2]). Y∞I denotes the Riemann
variety associated with K∞I /Fq.

Here, we study the Euler products∏
x∈|P1|\S

1
1− σx1 · z + qσx2 · z2 − · · ·+ (−1)nqn(n−1)/2σxn · zn

=
∑
m≥0

T (m) · zm,

where T (m) and σxj are Hecke correspondences over certain modular Drinfeld
varieties of dimension n, EI∞n,? . For the notation, see Section 2.2.

We prove

Theorem 1. The correspondence

T (nd) + Γ (Fr) ∗ T (nd− 1) + · · ·+ Γ (Frnd−1) ∗ T (1) + Γ (Frnd)

is trivial (= rationally equivalent to 0 as cycles) in EI∞n,? × EI∞n,? .

Here ∗ denotes the product of correspondences. This result for n = 1
gives us Stickelberger’s theorem for cyclotomic function fields, [An1]. To
prove it, we study the isogenies of Drinfeld modules, as given in [Gr2].

The schemes EI∞n,? are affine schemes over Spec(Fq[t, 1/h(t)]), and h(t)
is a polynomial which depends on I. We set E2(I∞) := EI∞2,? ⊗Fq [t] Fq(t).
Moreover, E(I∞) is a smooth affine curve which is defined over K∞I , and
E(I∞) denotes the associated projective curve over KI . Theorem 1 has the
following consequence:

Lemma. T (2d) + T (2d − 1) + · · · + T (1) + Γ (Id) annihilates the group
Pic(E(I∞)).

It seems to be a Stickelberger theorem for the affine modular curve
E(I∞) over K∞I .

There exists an arithmetic subgroup, ΓI∞, of Gl2(Fq[t]) such that if
we denote by Ω the Drinfeld upper half-plane and by MΓI∞ the smooth
projective model of the algebraic curve associated with Ω/ΓI∞, then

MΓI∞ = E(I∞)⊗K∞I C,

C being the algebraic closure of the completion of Fq(t) at∞. As usual, cusp
forms of weight 2 (and type 1) for ΓI∞ are given by H0(MΓI∞ , Ω

1
MΓI∞/C

).

Here we follow the notation and results of [GR]. For the definition and study
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of cusp forms, the readers are referred to the works of Gekeler, Goss or the
Habilitationsschrift of Gebhard Böckle.

From the above lemma we obtain an additive version of Stickelberger’s
theorem for n = 2:

Theorem 2. If the group Pic(E(I∞)) is infinite, then there exists a cusp
form of weight 2 (and type 1) for ΓI∞ that is annihilated by T̃ (2d)+T̃ (2d−1)
+ · · ·+ T̃ (1) + Id.

Here T̃ (j) is the linear operator given by the j-Hecke operator acting on
the cusp forms of weight 2 (and type 1).

From Theorem 1, we also obtain ideal class group annihilators for cyclo-
tomic function fields in the spirit of Stickelberger’s theorem. We prove that
the correspondence

nd∑
i=0

[
Γ (Frnd−i) ∗

( ∑
monic q(t)∈Fq [t]

(I,q(t))=1, deg(q(t))=i

ϕ(q(t), n) · Γ (q(t))
)]

is trivial on Spec(K∞I ⊗K∞I ). Here Γ (q(t)) denotes the graph of the element
of GI associated with the class of q(t) in (Fq[t]/I)×, and ϕ(q(t), n) is the
number of submodules N ⊆ Fq[t]⊕n such that

Fq[t]⊕n/N ' Fq[t]/q1(t)⊕ · · · ⊕ Fq[t]/qn(t)

with the product of the invariant factors q1(t) · · · qn(t) equal to q(t). This
latter result can also be obtained in a more direct way by using the Euler
product of Section 2.4 and Anderson and Coleman’s results ([An1], [C]).

Bearing in mind the analogy between Drinfeld varieties in positive char-
acteristic and modular curves for number fields, I believe that the interest
of this work is the possible translation of our results to modular curves.

List of notations

• Fq is a finite field with q elements (q = pm).
• ⊗ denotes ⊗Fq .
• OP1 denotes the ring sheaf of the scheme P1.
• R is an Fq-algebra.
• R× denotes the group of units in the ring R, and Fr the Frobenius

morphism.
• P1

R denotes P1 ⊗R.
• If S is a finite set of geometric points of P1, then AS denotes the adele

group outside S, and OS the adeles within AS without poles.
• If M is a vector bundle over P1, then M(k) denotes M ⊗OP1 OP1(k∞),
k ∈ Z.
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• If f : X → X is a morphism of separated schemes, then Γ (f) denotes
the (transposed) graph of f , Γ (f) = {(f(x), x) : x ∈ X}.
• |P1| and |I| denote the geometric points of P1 and Spec(Fq[t]/I), re-

spectively.

2. Elliptic sheaves and Hecke correspondences. Euler products.
In this section, except for Proposition 2.3, all results are valid for any
smooth, geometrically irreducible curve over Fq provided with a rational
point ∞, although we only consider the projective line curve.

2.1. Elliptic sheaves. In this section we recall the definition of elliptic
sheaves and level structures over an ideal I ⊂ Fq[t] ([BlSt], [Dr2], [LRSt],
[Mu]).

Definition 2.1. An elliptic sheaf of rank n over R, E := (Ej , ij , τ), is
a commutative diagram of vector bundles of rank n over P1

R, and injective
morphisms of modules {ih}h∈N, τ :

E1
i1 // E2

i2 // · · ·
in−1 // En

in // · · ·

Eσ0

τ

OO

iσ0 // Eσ1

τ

OO

iσ1 // · · ·
iσn // Eσn−1

τ

OO

// · · ·

(here Eσi denotes (Id×F )∗Ei), satisfying:

(a) deg((Ej)s) = j for any s ∈ Spec(R).
(b) Ej+n = Ej(1) for all j ∈ Z. We can assume that the ik are natural

inclusions.
(c) Ej + τ(Eσj ) = Ej+1 for all j.
(d) α∗(Ei/Ei−1) is a rank-one free module over R, α being the natural

inclusion ∞× Spec(R) ↪→ P1
R.

Remark 1. From these properties, it may be deduced that h0(Ej) =
n+ j and h1(Ej) = 0, j ≥ −n ([BlSt], [Dr2]).

Moreover, it is seen that for the R-module H0(P1
R, Ej) (j > −n), there

exists a basis {s, τs, . . . , τn+j−1s} with τs := τ((Id×F )∗s) and τhs :=
τ((Id×F )∗τh−1 · s).

Definition 2.2. An I-level structure, ιI , for the elliptic sheaf (Ej , ij , τ)
is an I-level structure, ιj,I , for each vector bundle Ej compatible with the
morphisms {ij , τ}, i.e., ιj+1,I · ij = ιj,I and ιj+1,I · τ = (Id×F )∗(ιj,I). We
denote by (E, ιI) an elliptic sheaf with an I-level structure.

Recall that an I-level structure for a vector bundle Ej over P1
R is a surjec-

tive morphism of modules Ej → (β∗(R[t]/I))⊕n, where β : Spec(R[t]/I) ↪→
P1
R is the natural inclusion.
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The elliptic sheaf (Ej , ij , τ) defined over R gives a τ -sheaf, R{τ} =⊕∞
i=0R · τ i (τ · b = bq · τ). One can identify

H0(P1
R, Ej) =

n+j−1⊕
i=0

R · τ is,

and in this way R{τ} is isomorphic to the graded R[t]-module
∞⋃
i=0

H0(P1
R, Ej(i)).

Remark 2. By taking the determinant of (E, ιI) we obtain an elliptic
sheaf of rank 1, (det(Ej),det(ij), det(τ)), with an I-level structure det(ιI).
This determinant is studied in detail in [Ge].

The τ -sheaf associated with (det(Ej), det(ij), τdet) is

R{τdet} :=
∞⊕
i=0

R · τ idet,

with τ idet = τ i ∧ τ i+1 ∧ · · · ∧ τn+i−1 (i ≥ 0). Moreover,
∧nR{τ} = R{τdet}

as R[t]-modules.

We denote det(Ej) by Lj , so deg(Lj) = j; recall that deg(Ej) = j.

Proposition 2.3. With the above notations, if rn − r1 ≥ n then

τ r1 ∧ τ r2 ∧ · · · ∧ τ rn ∈ H0(P1
R, Lrn−n).

Proof. Since

τ r1det(1 ∧ τ
r2−r1 ∧ · · · ∧ τ rn−r1) = τ r1 ∧ τ r2 ∧ · · · ∧ τ rn ∈ H0(P1

R, Lrn−n)

with 0 ≤ r1 ≤ · · · ≤ rn, it suffices to prove the result for r1 = 0.
We proceed by induction over rn. For rn = n, we have to prove that

1 ∧ τ r2 ∧ · · · ∧ τn ∈ H0(P1
R, L0).

Since t · an = a0 + a1 · τ + · · ·+ τn for some ai ∈ R, there exists c ∈ R with

1 ∧ τ r2 ∧ · · · ∧ τn = c · (1 ∧ τ2 ∧ · · · ∧ τn−1).

Recalling that 0 ≤ r2 ≤ · · · ≤ n, we conclude that

1 ∧ τ2 ∧ · · · ∧ τn−1 ∈ H0(P1
R, L0).

Now assume that the assertion is true for k < rn. Set rn = l + n. Thus,

1 ∧ τ r2 ∧ · · · ∧ τ rn

= 1 ∧ · · · ∧ τ rn−1 ∧ (t · anτ rn−n − a0τ
rn−n + a1 · τ rn−n+1 + · · ·+ an−1τ

rn−1).

Since
1 ∧ · · · ∧ τ rn−1 ∧ τ rn−i ∈ H0(P1

R, Lrn−n) for i ≥ 1,
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because
1, . . . , τ rn−1 , τ rn−i ∈ H0(P1

R, Ern−n),

it suffices to prove that

(t · an − a0) · (1 ∧ · · · ∧ τ rn−1 ∧ τ rn−n) ∈ H0(P1
R, Lrn−n).

Set k := max{rn − n, rn−1}. If n ≤ k then we use the inductive assump-
tion, because k + 1 ≤ rn. When k ≤ n− 1, it suffices to prove that

(t · an − a0) · (1 ∧ · · · ∧ τn−2 ∧ τn−1) ∈ H0(P1
R, Lrn−n).

This is true because rn − n ≥ 1.

2.2. ∞-Level structures. We shall now define level structures at∞ ∈ P1

over elliptic sheaves of rank 1. To do so, we take into account the results of
[An1, 6.1.1]. We take t−1 as a local uniformizer at ∞.

The composition of the epimorphism

OP1(k)→ OP1(k)/OP1(k − 1)

with the isomorphism

OP1(k)/OP1(k − 1) ' OP1/OP1(−1)

induced by multiplication by t1−k gives us an∞-level structure over OP1(k).

Definition 2.4. We define an ∞-level structure for a rank-1 elliptic
sheaf, (Lj , ij , τ), over R to be an ∞-level structure (L0, ι∞) such that the
diagram

(∗)

Lσ0
ισ∞

''PPPPPPPPPPPPP
τ // L0(1)

t−1·ι∞
��

γ∗(R[t−1]/t−1R[t−1])

is commutative. Here, γ : Spec(R[t−1]/t−1R[t−1]) ↪→ P1
R is the natural in-

clusion.

We denote by EIn and EI∞n the moduli of elliptic sheaves with I-level
structures (E, ιI) and with I + ∞-level structures, respectively. Here to
give an ∞-level structure for E, ι∞, is to give an ∞-level structure for the
rank-1 elliptic sheaf det(E). Henceforth, we denote by (E, ιI∞) the element
(E, ιI , ι∞) ∈ EI∞n . There exists a morphism, z : EI∞n → Spec(Fq[t]), called
the zero morphism, that is defined by

z(E, ιI∞) = supp(E0/τ(Eσ−1)) = supp(det(E0)/τdet(det(E−1)σ)).

Bearing in mind the antiequivalence between elliptic sheaves and Drinfeld
modules, one can construct a ring BIn of dimension n such that Spec(BIn)
= EIn. For these results see [Dr1], [Dr2], [Lm], [Mu].
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For n = 1, it is not hard to obtain a ring BI∞1 such that

Spec(BI∞1 ) = EI∞1 .

Moreover, the morphism of forgetting the ∞-level structure

EI∞1 → EI1
is étale outside |I|. In the following remark we calculate BI∞1 explicitly.

Remark 3. We consider the rank-1 Drinfeld module φt = aτ+t, defined
over Fq[t, a]. We shall now study what an ∞-level structure for the Drinfeld
module φ is.

Let us consider a rank-1 elliptic sheaf, (Lj , ij , τ), associated with φ, and
let ι∞ be an ∞-level structure for (Lj , ij , τ). We have the morphisms of
modules

ι∞ : L0 → Fq[t, a][t−1]/t−1Fq[t, a].

We choose s with H0(L0) = 〈s〉. Note that s is a generator of the line
bundle L0. We set ι∞(s) = λ, and hence

ισ∞ : Lσ0 → Fq[a, t ][t−1]/t−1Fq[a, t ]
gives ισ∞(s) = λq. Also,

t−1 · ι∞ : L0(1)→ Fq[t, a][t−1]/t−1Fq[a, t ]

is such that t−1 · ι∞(τ(s)) = t−1τs = a−1, because t · s = a · τs + t · s and
t · t−1 = 0 as element in

Fq[a, t ][t−1]/t−1Fq[a, t ].

Therefore, the above diagram is commutative if and only if λq = λ · a−1.
Thus, we can choose s := λ · s ∈ H0(M0) such that ι∞(s) = 1. Therefore
t ·s = τs+ t, and we obtain the Drinfeld module φt = τ+ t isomorphic to φt.
It is not hard to see that B∞1 = Fq[t ].

We set I = p(t)Fq[t], where d+ 1 is the degree of p(t). Then

φp(t) = cd+1τ
d+1 + · · ·+ c1τ + p(t), ci ∈ Fq[t ].

We have BI∞1 = Fq[t, p(t)−1, δ] with δ an element of an algebraic closure of
Fq(t) satisfying

φp(t)(δ) = δq
d+1

+ · · ·+ c1δ
q + r(t)δ = 0,

and φh(t)(δ) 6= 0 with h(t) a proper divisor of r(t). The I-level structure for
(Lj , ij , τ) is given by

ιI(s) = φtr−1(δ) + φtd(δ)t+ · · ·+ φt0(δ)td ∈ Fq[t, δ][t]/p(t).

The morphism Fq[t] ↪→ BI∞1 (t 7→ t) gives us the Galois extension
KI/Fq(t) with group (Fq[t]/I)×.
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By considering

det(E, ιI) := (det(E), det(ιI)),

and the determinant morphism det : EIn → EI1 , we obtain

EI∞n = EIn ×EI1 E
I∞
1 ,

and therefore EI∞n is an affine scheme of finite type over Fq. It is smooth
because the projection EIn ×EI1 E

I∞
1 → EIn is étale since EI∞1 → EI1 is also

étale. Note that EI∞1 is defined over P1 \ (|I| ∪ ∞).

2.3. Hecke correspondences. We consider J1 ⊆ · · · ⊆ Jn, a chain of ideals
of Fq[t] coprime to I, and S = |I| ∪ {∞}.

Let (E, ιI∞) be an elliptic sheaf defined over R with level structures on
I and on ∞ and with zero outside |J1|. We denote by EI∞n,|J1| the moduli
scheme

EI∞n ×P1 (P1 \ |J1|),
where the fibered product is obtained from the zero morphism z : EI∞n → P1

and the natural inclusion P1 \ |J1| ↪→ P1.
We denote by

T (J1, . . . , Jn) ⊂ EI∞n,|J1| × E
I∞
n,|J1|

the Hecke correspondence which is given by the pairs

[(E, ιI∞), (E, ῑI∞)] ∈ EI∞n,|J1| × E
I∞
n,|J1|,

E being a subelliptic sheaf of E such that for each s ∈ Spec(R) we have

Es/Es ' k(s)[t]/J1 ⊕ · · · ⊕ k(s)[t]/Jn.

The I +∞-level structure, ιI∞, defined over E is the composition ιI∞ · %,
% being the inclusion E ⊂ E.

We shall now describe the Hecke correspondences in an adelic way. To
do so, consider (E, ιI∞) defined over an algebraically closed field K.

We denote by
π1, π2 : EI∞n,|J1| × E

I∞
n,|J1| → E

I∞
n,|J1|

the natural projections. There exists a bijection between the sets:

π1(π−1
2 (E, ιI∞) ∩ T (J1, . . . , Jn)), π2(π−1

1 (E, ιI∞) ∩ T (J1, . . . , Jn)),

and Fq[t]-modules M and M ,

M ⊆ Fq[t]⊕n ⊆M
with

Fq[t]⊕n/M 'M/Fq[t]⊕n ' Fq[t]/J1 ⊕ · · · ⊕ Fq[t]/Jn.

These sets have the same cardinality, which we denote by d(J1, . . . , Jn).
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In the following proposition, ChtIn,|J1| denotes the stack of shtuckas of
rank n with zeroes outside |J1| and level structures over I (see [Lf]).

Proposition 2.5. The Hecke correspondence T (J1, . . . , Jn) is a closed
subscheme of EI∞n,|J1| × E

I∞
n,|J1|. Moreover , the morphisms π1, π2 restricted to

T (J1, . . . , Jn) are étale morphisms. We denote these restrictions by π1, π2,
respectively.

Proof. Consider the morphism e : EIn,|J1| → Cht
I
n,|J1| defined by

e(E, ιI) := ((E−1
i→ E0

τ← Eσ−1), ιI)

(see [Dr3, p. 109]). The Hecke correspondences Γn(g) defined in [Lf, Sec-
tion I, 4] are closed substacks in ChtIn,|J1| × Cht

I
n,|J1|. Let g ∈ Gln(AS) be

such that ⊕n
OS/g

(⊕n
OS
)
' Fq[t]/J1 ⊕ · · · ⊕ Fq[t]/Jn

as modules. In this way,

T I(J1, . . . , Jn) = (e× e)∗Γn(g)

is a closed subscheme of EIn × EIn, where T I(J1, . . . , Jn) denotes the Hecke
correspondence

(π∞ × π∞)(T (J1, . . . , Jn)) ⊂ EIn,|J1| × E
I
n,|J1|,

π∞ : EI∞n,|J1| → E
I
n,|J1| being the morphism of forgetting the∞-level structure.

Now, T (J1, . . . , Jn) is the closed subscheme given by the pairs

[(E, ιI∞), (E, ιI∞)] ∈ (π∞ × π∞)−1T I(J1, . . . , Jn)

such that
det(E)

ι∞

((QQQQQQQQQQQQQ
� � det(%) // det(E)

ῑ∞
��

γ∗(R[t−1]/t−1R[t−1])

is commutative. Here det(%) : det(E) ↪→ det(E) is the determinant of the
injective morphism given between the elliptic sheaves % : E ↪→ E.

Because
T I(J1, . . . , Jn) = Γn(g)×ChtIn,|J1|

EIn,|J1|,

and since the projections pi : Γn(g) → ChtIn,|J1| (i = 1, 2) are étale mor-
phisms, we see that the two projections from T I(J1, . . . , Jn) to EIn,|J1| are
étale morphisms. We conclude that π1, π2 are étale morphisms because

T (J1, . . . , Jn) = T I(J1, . . . , Jn)×EI
n,|J1|

EI∞n,|J1|.

They are morphisms of degree d(J1, . . . , Jn).
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The formal sum of Hecke correspondences gives a commutative ring
where the product is the composition of correspondences. This ring is iso-
morphic to the commutative ring

Cc(K\Gln(AS)/K)

of Z-valued compactly supported continuous functions on Gln(AS), invariant
under the action of K := Gln(OS) on Gln(AS) on the left and on the right.
The product is the convolution product. This isomorphism sends the corre-
spondence T (J1, . . . , Jn) to the characteristic function of the open compact
subset

Gln(OS) · (µJ1 , . . . , µJn) ·Gln(OS),

with µJi ∈ AS given by the element qi(t) such that Ji = qi(t)Fq[t], and
with (µJ1 , . . . , µJn) denoting the diagonal matrix in Gln(AS) with diagonal
(µJ1 , . . . , µJn).

We denote by T (m) the correspondence defined by the formal sum of
the Hecke correspondences T (J1, . . . , Jn), where

∑n
i=1 dimFq Fq[t]/Ji = m.

As in the number field case, one can consider Hecke correspondences as
operators on the abelian group of formal sums of Fq[t]-submodules, N , of
rank n of Fq(t)⊕n (= lattices of Fq(t)⊕n). One defines

T (J1, . . . , Jn)(N) =
∑

N,

where N runs over the submodules of N satisfying:

N/N ' Fq[t]/J1 ⊕ · · · ⊕ Fq[t]/Jn.

In this way T (m)(N) =
∑

N̄⊂N N , where dimFq N/N = m.
A more rigorous presentation of this section can be found in [Lf] and [Lm].

2.4. Euler products. A generalization to the non-abelian case of the S-
incomplete L-function evaluator at s = 0 (cf. [H1], [Ta]) is studied in [H2].
In this section we address this issue in another way.

Here, EI∞n,|P1| denotes the moduli scheme of elliptic sheaves of rank n with
level structures over I and ∞ and with zero outside |P1|.

Let x ∈ |P1| \ S (S = |I| ∪ {∞}) and let tx be a local uniformizer for x.
We consider the diagonal matrix

(µx,
j

.̂ . . , µx, 1, . . . , 1) ∈ Gln(AS),

µx being the adele in AS that is 1 over each place of |P1| \ S ∪ {x} and tx
over x. We denote by σxj , 1 ≤ j ≤ n, the Hecke correspondence over EI∞n,|P1|
given by the characteristic function of

Gln(OS) · (µx,
j

.̂ . . , µx, 1, . . . , 1) ·Gln(OS).
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In the following lemma, for ease of notation we assume that deg(x) = 1
and tx is a local parameter for x; mx is the maximal ideal associated with x.

One can find a proof of the next lemma in [Sh, Th. 3.21]. More or less,
we repeat that proof.

Lemma 2.6. We have
1

1− σx1 · z + qσx2 · z2 − q3σx3 · z3 + · · ·+ (−1)nqn(n−1)/2σxn · zn

=
∑
m≥0

T x(m) · zm,

where
T x(m) ⊂ EI∞n,|P1| × E

I∞
n,|P1|

denotes the sum of the Hecke correspondences T (mr1
x , . . . ,m

rn
x ) with r1 ≥

· · · ≥ rn ≥ 0 and r1 + · · ·+ rn = m.

Proof. We model this proof after [Ln]. It suffices to prove that for each
r ∈ N we have “Newton’s” formulas

P := T x(r)− T x(r − 1) · σx1 + qσx2 · T x(r − 2)− · · ·

+ (−1)nqn(n−1)/2T x(r − n) · σxn = 0

by setting T x(0) = 1 and T x(l) = 0 for l < 0.
To accomplish this, we consider Hecke correspondences as operators over

the formal abelian group of lattices, N and N being lattices with N ⊆ N ,
dimFq N/N = r and N/N concentrated over x. We shall prove that the
multiplicity of N in the formal sum P (N) is 0.

We have σxj (N) =
∑
N ′, where N ′ runs over the sublattices of N with

N/N ′ ' Fq[t]/mx ⊕
j
^· · · ⊕ Fq[t]/mx

or, equivalently, the vector subspaces of codimension j of N/mx ·N .
Set h := dimFq N/(mx · N + N). The number of lattices N ′ such that

N ⊂ N ′ is given by the number of Fq-vector subspaces in N/(mx ·N + N)
of codimension j. This number is given by the q-combinatorial number(

h

j

)
q

:=
(qh − 1) · · · (qh−j+1 − 1)

(qj − 1) · · · (q − 1)

for j ≤ h, and
(
h
j

)
q

:= 0 for either j < 0 or j > h.
We conclude the proof bearing in mind the relation(
h

h

)
q

−
(

h

h− 1

)
q

+ q ·
(

h

h− 2

)
q

− · · ·+ (−1)nqn(n−1)/2 ·
(

h

h− n

)
q

= 0.

I have taken this formula from [Lm, Appendix D] (cf. [Ma]).
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Theorem 2.7. Set

Lx :=
1

1− σx1 · z + qσx2 · z2 − q3σx3 · z3 + · · ·+ (−1)nqn(n−1)/2σxn · zn
.

Then ∏
x∈|P1|\S

Lx =
∑
m≥0

T (m) · zm.

Proof. It suffices apply the above lemma bearing in mind that if J1 and
J1 are coprime ideals in Fq[t], then

T (J1, . . . , Jn) · T (J1, . . . , Jn) = T (J1 · J1, . . . , Jn · Jn).

3. Isogenies and Hecke correspondences. Here, we study the iso-
genies between Drinfeld modules (= elliptic sheaves) [Gr2] to establish the
relation between these isogenies and the above Euler products.

3.1. Isogenies for elliptic sheaves

Definition 3.1. An isogeny , Φ, of degree m ∈ N between two elliptic
sheaves with I-level structures (E, ιI∞), (E, ιI∞) and ∞-level structures for
det(E) and det(E) is a morphism of modules Φi : Ei → Ei+m, for each i,
with Im(Φi) 6⊂ Ei+m−1, preserving the diagrams that define the elliptic
sheaves and their level structures.

If E and E are defined over R, then to give an isogeny Φ : E → E
of degree m is equivalent to giving a morphism of τ -sheaves φ : R{τ} →
R{τ} such that if r(τ) is a monic polynomial with degτ (r(τ)) = j then
degτ̄ φ(r(τ)) = m+ j.

Lemma 3.2. Let M and N be vector bundles of rank n over P1
R, and

with x a rational point of P1. If f : M → N is a morphism of modules such
that its restriction to k(x)

f|k(x)⊗R : M|k(x)⊗R → N|k(x)⊗R

is an isomorphism, then f is injective.

Proof. Assume that x is the rational point 0 ∈ P1. We have the exact
sequence

0→ K →M
f→ N.

If we prove that K(P1\{∞})⊗R = 0 then we conclude the proof. Let

0→ K̂ → M̂
bf→ N̂
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be the completion of the above exact sequence along the ideal tR[t]. By
hypothesis, f|k(x)⊗R is an isomorphism. One deduces that f̂ is also an iso-
morphism and hence K̂ = 0, since

Specmaximal(R[[t]]) = 0× Specmaximal(R),

and in view of the Nakayama lemma. If we prove that the natural morphism
g : K → K̂ is injective we are done. By the Krull theorem, if g(a) = 0 then
there exists 1 + t · q(t) ∈ R[t] such that (1 + t · q(t)) · a = 0. However, the
homothety morphism given by 1 + t · q(t) over R[t] is injective and therefore
it is also injective over M , because M is locally free. Hence, a = 0.

Lemma 3.3. In the above notation, if Φ is an isogeny of degree m ≤ nd
between (E, ιI∞), (E, ιI∞) then Φ is injective, and it is the only isogeny
between these elliptic sheaves with level structures. Moreover , there exists a
maximal r ∈ N (r ≤ nd) such that φ(R{τ}) ⊆ R{τ} · τ r.

Proof. We can assume that the elliptic sheaves are defined over an Fq-
algebra R. In this way, the injectivity is deduced from the above lemma. We
denote by I indiscriminately the ideal in Fq[t] and the ideal sheaf in OP1 .

Let Φ′ be another isogeny; Φ−Φ′ defines a morphism E0 → I ·End. Since
E0 is generated by its global sections, and since deg(I ·End) = −n, because
deg(I) = d+ 1, we have h0(I · End) = 0. Hence Φ = Φ′.

The last assertion of the lemma is evident.

We consider |P1|nd, the subset of geometric points of P1 of degree less
than or equal to nd. Let EI∞n,|P1|nd denote the moduli scheme of elliptic sheaves
of rank n with level structures over I and ∞ and with zero outside |P1|nd.

Lemma 3.4. With the above notations, the set

[(E, ιI∞), (E, ιI∞)] ∈ EI∞n,|P1|nd × E
I∞
n,|P1|nd

such that there exists an isogeny of degree m ≤ nd between (E, ιI∞) and
(E, ιI∞) with r = 0 is given by the correspondence T (m) ⊂ EI∞n,|P1|nd ×
EI∞n,|P1|nd .

Proof. It is clear that a pair in T (m) defines an isogeny of degree m
with the required properties. Moreover, Lemma 3.3 asserts that there only
exists one isogeny of degree m ≤ nd between two elliptic sheaves with I-level
structures. With this result, one deduces that if (E, ιI∞) and (E′, ι′I∞) are
subelliptic sheaves with level structures of (E, ιI∞) by two different isogenies
of degree m, then (E, ιI∞) is not isomorphic to (E′, ι′I∞).

On the other hand, if Φ : (E, ιI∞) → (E, ιI∞) is an isogeny with
r = 0 and degree m, then by the serpent lemma we have isomorphisms
(Id×F )∗(Ei+m/Φi(Ei)) ' Ei+m/Φi(Ei) for each integer i. Since the zeroes
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of the elliptic sheaves considered are of degree > nd, we have

Ei+m/Φi(Ei) ' R[t]/J1 ⊕ · · · ⊕R[t]/Jn,

where J1⊆· · ·⊆Jn are ideals in Fq[t] coprime to I with
∑n

i=0 dimFqA/Ji=m.
Here, we have assumed that (E, ιI∞) and (E, ιI∞) are defined over R.

Corollary 3.5. The subset of pairs (e, ē) ∈ EI∞n,|P1|nd × E
I∞
n,|P1|nd such

that there exists an isogeny of degree nd is given by the correspondence

T (nd) + Γ (Fr) ∗ T (nd− 1) + · · ·+ Γ (Frnd−1) ∗ T (1) + Γ (Frnd).

Here, Γ (Fri) is given by the graph of the qi-Frobenius morphism, and ∗
denotes the product of correspondences.

Proof. The elliptic sheaf associated with the τ -sheaf R{τ} · τ r is

[(Id×Fr)r]∗E.

In view of the two last lemmas, the corollary is deduced from the fact that
between E0 and [(Id×Fr)nd+j ]∗E−j there is no injective morphism for j > 0,
because deg(E0) = 0 and deg[((Id×Fr)nd+j)∗E−j ] = −j.

3.2. Trivial correspondences. In this section we shall prove that the cor-
respondence of the above Corollary 3.5 is trivial.

Proposition 3.6. Let M be a vector bundle over P1
R of rank n and de-

gree 0 where h0(M(−1)) = h1(M(−1)) = 0, and with an I-level structure ιI .
Then H0(P1

R,M) is a free R-module of rank n, and M ' H0(P1
R,M)⊗OP1.

Proof. If x ∈ Spec(Fq[t]/I) is a rational point, then h0(M(−x)) =
h1(M(−x)) = 0. Bearing in mind the morphism given by the x-level struc-
ture ιx : M → (k(x)⊗R)n, we obtain an isomorphism

M/M(−x) ' (R[t]/mx)⊕n.

Therefore, by taking global sections in the exact sequence ofOP1⊗R-modules

0→M(−x)→M →M/M(−x)→ 0

we conclude the proof.
The argument is valid when Spec(Fq[t]/I) does not have rational points,

because N is an R-free module if and only if N ⊗ Fqd is an R ⊗ Fqd-free
module.

If (M, ιI) is an I-level structure then we denote by (M(d), ιI(d)) the
I-level structure over M(d) obtained from ιI by considering the natural
inclusion M ⊆M(d). Recall that ∞ /∈ |I|.

Lemma 3.7. If (M, ιI), (M, ιI) are level structures over R, where M
and M satisfy the conditions of the above proposition, then there exists a
morphism of vector bundles, h : M →M(d), such that the diagram
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M
ιI

%%LLLLLLLLLLL
h // M(d)

ῑI(d)

��
(β∗(R[t]/I))⊕n

is commutative.

Here h is said to be a morphism between (M, ιI) and (M(d), ιI(d)).

Proof. If we choose a base {s1, . . . , sn} for H0(P1
R,M), then H0(ιI) :

H0(M)→ (R[t]/I)⊕n has the associated matrix

∆0 +∆1t+ · · ·+∆dt
d,

where ∆i are n× n-matrices with entries in R.
We have

H0(P1
R,M(d)) =

d⊕
i=0

H0(P1
R,M) · ti.

Moreover, bearing in mind that deg(I) = d+ 1 we also have

H0(P1
R,M(d))

H0(ιI)
' (R[t]/I)⊕n,

because h0(I ·M(d)) = 0. Thus, H0(h) must satisfy

H0(h) = A0 + · · ·+Ad · td := (H0(ιI))−1 · (∆0 +∆1t+ · · ·+∆dt
d),

where Ai are n × n-matrices with entries in R. We conclude the proof by
invoking the above proposition.

The same arguments of Lemma 3.3 allow us to deduce that h is unique.
By Remark 1, if E is an elliptic sheaf of rank n, then E0 satisfies the

conditions of Proposition 3.6.
Let us consider the elliptic sheaves, defined overR, with I-level structures

(E, ιI∞), (E, ιI∞) and ∞-level structures for det(E) and det(E).

Lemma 3.8. Let h : (E0, ι0,I) → (E0(d), ι0,I(d)) be the morphism be-
tween vector bundles with level structures given in Lemma 3.7, and let ι∞,
ι∞ be level structures at ∞ over det(E) and det(E), respectively. Then
there exists an isogeny Φ : (E, ιI∞) → (E, ιI∞) of degree nd with Φ0 = h
if and only if det(h) is a morphism for the level structures (det(E0), ι∞),
(det(E0(d)), ι∞) (i.e. ι∞ · det(h) = ι∞), and the morphism of R[t]-modules
given by h, hA : R{τ} → R{τ}, satisfies

degτ̄ (hA(1)) ≤ n− 2 + nd, . . . , degτ̄ (hA(τn−2)) ≤ n− 2 + nd.

Proof. The direct implication is trivial.
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We prove the converse. Since h is a morphism for the I-level structures
(E0, ι0,I) and (E0(d), ι0,I(d)), we have

hA(τ)− τ · hA(1), . . . , hA(τn−1)− τ · hA(τn−2) ∈ I ·R{τ}.
Moreover, since deg(I) = d + 1, if r(τ) 6= 0 ∈ R{τ̄} · I then degτ̄ (r(τ)) ≥
n(d+ 1). Thus, by the hypothesis of the lemma we deduce that

hA(τ)− τ · hA(1) = · · · = hA(τn−1)− τ · hA(τn−2) = 0.

Therefore, hA(τ i) = τ j · hA(τk) for j + k = i and 1 ≤ i ≤ n− 1.
Now, we prove the equalities

(∗) degτ̄ (hA(1)) = nd, degτ̄ (hA(τ)) = nd+ 1, . . . ,
degτ̄ (hA(τn−1)) = nd+ n− 1.

We consider the determinant elliptic sheaves det(E) and det(E) and their
τ -sheaves R{τdet} and R{τdet}, respectively. We see that

[det(hA) · τdet − τdet · det(hA)](1 ∧ τ ∧ · · · ∧ τn−2 ∧ τn−1)

is an element of R{τdet} of degree ≤ nd+ 1. However, by hypothesis det(h)
is a morphism for ∞-level structures for elliptic sheaves and therefore this
element is of degree ≤ nd.

Because hA(τ i) = τ · hA(τ i−1) for 1 ≤ i ≤ n − 1, the above element of
R{τdet} is equal to

hA(τ) ∧ · · · ∧ hA(τn−1) ∧ [hA · τ − τ · hA](τn−1).

Since degτ̄ (hA(τn−1)) ≤ nd+ n− 1 and hA(τ i) = τ i · hA(1) for 1 ≤ i ≤
n− 1, we have the inequalities

degτ̄ (hA(1)) ≤ nd,degτ̄ (hA(τ)) ≤ nd+ 1, . . . ,degτ̄ (hA(τn−1)) ≤ nd+ n− 1.

But E0(d)/h(E0) is not concentrated at ∞, because ι∞ · det(h) = ι∞ and
ι∞, ι∞ are surjective morphisms, and hence the equalities (∗) follow.

Using Remark 2, since

hA(τ) ∧ · · · ∧ hA(τn−1) ∧ [hA · τ − τ · hA](τn−1)

is an element of R{τdet} of degree ≤ nd, we have

degτ̄ [hA · τ − τ · hA](τn−1) ≤ nd+ n− 1,

and we conclude that [hA · τ − τ · hA](τn−1) = 0, because

[hA · τ − τ · hA](τn−1) ∈ R{τ} · I
and deg(I) = d+ 1. Thus, hA : R{τ} → R{τ} is an isogeny of degree nd.

Lemma 3.9. Let X = Spec(A) be a smooth, noetherian scheme of di-
mension 2n. Let Z1 + · · · + Zr be an n-cycle in X such that the Zi are
different irreducible closed subschemes of dimension n in X. If the closed
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subscheme Z := Z1 ∪ · · · ∪ Zr is given by an ideal generated by n elements
a1, . . . , an ∈ A, then the n-cycle Z1 + · · ·+ Zr is rationally equivalent to 0.

Proof. Let I be an ideal in A. We denote by Z(I) the cycle associated
in X with the closed subscheme given by I. The prime ideal in A given by
Zi is denoted by Pi. Thus,

Z(P1 ∩ · · · ∩ Pr) = Z1 + · · ·+ Zr.

Consider the ideal (a2, . . . , an) in A generated by a2, . . . , an and let Q1∩
· · · ∩ Qh be a minimal primary decomposition of this ideal. If Y1, . . . , Yk
(k ≤ h) are the irreducible components of the closed subscheme in X given
by (a2, . . . , an), then dimYj ≥ n+1. We may assume, reordering the indices,
that Z(Q1) = Y1, . . . , Z(Qk) = Yk.

By taking the localization with respect to Pi, one obtains

(A/Q1 ∩ · · · ∩Qh)Pi ,

which is a local ring of dimension 1 because dimYj ≥ n+ 1 for all j. From
the equality of rings

A/Q1 ∩ · · · ∩Qh + (a1) = A/P1 ∩ · · · ∩ Pr
one obtains

(A/Q1 ∩ · · · ∩Qh + (a1))Pi = (A/Pi)Pi .

Therefore, (A/Q1 ∩ · · · ∩ Qh)Pi is principal and hence an integral domain,
and therefore there exists a unique Qli (li ≤ k) with Qli ⊂ Pi. If we denote
by Pj1 , . . . , Pjmj the Pi’s with Qj ⊂ Pj1 , . . . , Qj ⊂ Pjmj (j ≤ k), then within
the n+ 1-dimensional scheme Z(Qj) = Yj ,

Zj1 + · · ·+ Zjmj

is given by the zero locus of a1, which proves that Zj1+· · ·+Zjmj is rationally
equivalent to 0 on X. This yields the conclusion, because Z1 + · · · + Zr =∑k

j=1(Zj1 + · · ·+ Zjmj ).

Theorem 3.10. The correspondence

TnI := T (nd) + Γ (Fr) ∗ T (nd− 1) + · · ·+ Γ (Frnd−1) ∗ T (1) + Γ (Frnd)

is trivial (= rationally equivalent to 0 as an n-cycle in EI∞n,|P1|nd × E
I∞
n,|P1|nd).

Proof. In view of Corollary 3.5 and Lemma 3.8, this correspondence is
given by the zero locus in n regular functions in EI∞n,|P1|nd × E

I∞
n,|P1|nd .

We are under the hypotheses of the above lemma because the projection
on the first entry, T (r)→ EI∞n,|P1|nd , is an étale morphism and therefore T (r)
is smooth. Moreover, by Lemma 3.3, if i, j ≤ nd and i 6= j then

Γ (Fri) ∗ T (nd− i) ∩ Γ (Frj) ∗ T (nd− j) = ∅.



128 A. Álvarez

3.3. Some explicit calculations. One can make explicit calculations by
using the antiequivalence between elliptic sheaves and Drinfeld modules
([Dr2], [Mu]) and by using the explicit calculation of the global sections s,
([Al1, Remark 3.1]), in terms of the I-torsion elements of the Drinfeld mod-
ules. For n = 1, calculations are made in [An2] and in the spirit of that work
in [Al3, Example 2, p. 21] and in [Al2, 3.2].

We begin with the following example.

Example 3.11. We set n = 1, I = p(t)Fq[t], p(t) = (t−a1) · · · (t−ad+1)
with ai 6= aj for i 6= j and ai ∈ Fq. Let (Lj , ij , τ) be the rank-1 elliptic sheaf
defined over Carlitz’s cyclotomic ring KI∞

1 = Fq(t)[δ], with δ an element of
an algebraic closure of Fq(t) satisfying

φp(t)(δ) = δq
d+1

+ · · ·+ c1δ
q + p(t)δ = 0,

where φ is the Drinfeld module φt = τ + t (Remark 3 of Section 2.2).
Let us consider the I∞-level structure, ιI∞, for (Lj , ij , τ). We have

ιI : L0 → KI∞
1 [t]/p(t)

given by ιI∞(s) = m1δ1
p(t)
t−α1

+ · · ·+md+1δd+1
p(t)

t−αd+1
, and

ι∞ : L0 → KI∞
1 [t−1]/t−1

with ι∞(s) = 1. Here L0 = s · OP1 ⊗KI∞
1 , φp(t)/(t−aj)(δ) = δj and the mj

are obtained from the equality
1
p(t)

=
m1

t− a1
+ · · ·+ md+1

t− ad+1
.

We shall obtain the element of KI∞
1 ⊗KI∞

1 whose divisor is

T (d) + Γ (Fr) ∗ T (d− 1) + · · ·+ Γ (Frd−1) ∗ T (1) + Γ (Frd).

Let π1 and π2 be the natural projections

Spec(KI∞
1 ⊗KI∞

1 )→ Spec(KI∞
1 ).

The morphism h of Lemma 3.7 applied to the rank-1 line bundles with an
I-level structure, π∗1(L0, ιI) and π∗2(L0(d), ιI), is given by

h(π∗1s) =
[
m1

δ1 ⊗ 1
1⊗ δ1

p(t)
t− α1

+ · · ·+md+1
δd+1 ⊗ 1
1⊗ δd+1

p(t)
t− αd+1

]
π∗2s.

By Lemma 3.8, one must require that

π∗2ι∞(h(π∗1s)) = π∗1ιI∞(π∗1s).

By the definition of ∞-level structures,

π∗2ι∞(h(π∗1s)) = m1
δ1 ⊗ 1
1⊗ δ1

+ · · ·+md+1
δd+1 ⊗ 1
1⊗ δd+1

,
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which is the leading coefficient of the polynomial

m1
δ1 ⊗ 1
1⊗ δ1

p(t)
t− a1

+ · · ·+md+1
δd+1 ⊗ 1
1⊗ δd+1

p(t)
t− ad+1

.

Since ιI∞(s) = 1, the element sought is

m1
δ1 ⊗ 1
1⊗ δ1

+ · · ·+md+1
δd+1 ⊗ 1
1⊗ δd+1

− 1.

Example 3.12. Now, we consider the easiest non-abelian case with n=2,
I = tFq[t]. Let φt = aσ2 + bσ + t be a Drinfeld module of rank two defined
over the ring

BI∞
2 = (Fq[a, a1/(1−q), b, t, r(t)−1]/a+ b+ t− 1)[Γ ],

with φt(1) = 0, Γ q − Γ 6= 0 and φt(Γ ) = 0. Here r(t) is the product of the
monic polynomials of degree less than or equal to 2. Let (Mj , ij , τ) be the
rank-2 elliptic sheaf associated with φ, and let ιI∞ be an I∞-level structure
for (Mj , ij , τ) given by

ιI : M0 → (BI∞
2 [t]/t)⊕2 ' (BI∞

2 )⊕2

with ιI∞(s) = (1, Γ ) and ιI∞(τs) = (1, Γ q). Recall that

M0 = s · (OP1 ⊗BI∞
2 )⊕ τs · (OP1 ⊗BI∞

2 ).

The ∞-level structure

ι∞ : Det(M0)→ BI∞
2 [t−1]/t−1

is given by ι∞(s ∧ τs) = a.
Let π1 and π2 be the natural projections

Spec(BI∞
2 ⊗BI∞

2 )→ Spec(BI∞
2 ).

The morphism h of Lemma 3.7 applied to the rank-2 vector bundles with
an I-level structure, π∗1(M0, ιI) and π∗2(M0, ιI) (here d = 0), is given by the
matrix product

D :=

(
1 1

1⊗ Γ 1⊗ Γ q

)−1

·

(
1 1

Γ ⊗ 1 Γ q ⊗ 1

)
.

By Lemma 3.8, one must require that deg(hA(1)) = 0, where

hA : BI∞
2 ⊗BI∞

2 {τ} → BI∞
2 ⊗BI∞

2 {τ}
is the restriction of h to P1 \ {∞}. By considering the second entry of D

(
1
0

)
,

this condition is

∗ := (1⊗ Γ q − 1⊗ Γ )−1(Γ ⊗ 1− 1⊗ Γ ) = 0.

We must now impose that

π∗2ι∞(det(h)(π∗1(s ∧ τs))) = π∗1ιI∞(π∗1(s ∧ τs)).
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Since ι∞(s ∧ τs) = a, we have

π∗2ι∞(det(h)(π∗1(s ∧ τs))) = Det(D) · (1⊗ a),

and
π∗1ιI∞(π∗1(s ∧ τs)) = a⊗ 1.

Thus we obtain the element

∗∗ := (Γ q − Γ )⊗ (Γ q − Γ )−1 − a⊗ a−1.

The final result is that the diagonal subscheme of Spec(BI∞
2 ⊗ BI∞

2 ) is
the zero locus of the ideal generated by ∗ and ∗∗.

4. The additive case: n = 2 (annihilators for cusp forms of
weight 2). In this section, we shall follow the notation set out in the in-
troduction. The set of cusps is E(I∞) \ E(I∞). We denote by C0(I∞) the
divisor class group on E(I∞) whose support lies among the cusps. As in the
introduction we follow the notation and results of [GR]. For the definition
and study of cusp forms, the readers are referred to the works of Gekeler,
Goss or the Habilitationsschrift of Gebhard Böckle.

We now prove a lemma which is the counterpart for n = 2 for Stick-
elberger’s theorem. For n = 1 this is a result of Anderson and Coleman
([An1], [C]).

Lemma 4.1. The correspondence T (2d) +T (2d− 1) + · · ·+T (1) +Γ (Id)
annihilates the group Pic(E(I∞)).

Proof. This lemma is proved by using Theorem 6.1 below, and the fact
that the divisor group, D0(E(I∞)), of the affine curve E(I∞) defined over
K∞I is a subgroup of the group of Weil divisors of EI∞2,|P1|2d . Recall that EI∞2,|P1|2d
is a smooth variety of dimension 2.

Note that the Hecke correspondences operate on the cusps. Thus, the
above correspondence gives a group endomorphism C0(I∞)→ C0(I∞). We
denote by S2(d), S2(d) and S′2(d) the group endomorphisms given by

T (2d) + T (2d− 1) + · · ·+ T (1) + Γ (Id)

on the groups Pic0(E(I∞)), Pic(E(I∞)) and C0(I∞), respectively.
Let us consider j∗, the pull back of the line bundles over E(I∞) by the

natural inclusion
j : E(I∞) ↪→ E(I∞).

We assume that
j∗ : Pic0(E(I∞))→ Pic(E(I∞))

is surjective, which is the case, for example, if among the cusp points E(I∞)\
E(I∞) there exists a rational point over K∞I . If this does not occur then it
suffices to replace Pic(E(I∞)) by Pic0(E(I∞)).
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Lemma 4.2. If Pic(E(I∞)) is an infinite group, then Ker(S2(d)) is also
infinite.

Proof. If Coker(S) is not finite then the proof is finished, since C0(I∞)
is a finitely generated group. Thus, we can assume that Ker(S′2(d)) and
Coker(S′2(d)) are finite groups.

From the serpent lemma applied to the commutative diagram

0 // C0(I∞)

S′2(d)

��

// Pic0(E(I∞))

S2(d)
��

j∗ // Pic(E(I∞))

S2(d)

��

//// 0

0 // C0(I∞) // Pic0(E(I∞))
j∗ // Pic(E(I∞)) // 0

one obtains an exact sequence

Ker(S′2(d))→ Ker(S2(d))→ Pic(E(I∞)) δ→ Coker(S′2(d)).

This completes the proof since Ker(S′2(d)) and Coker(S′2(d)) are finite groups
and by hypothesis, Pic(E(I∞)) is infinite.

Theorem 4.3. If the group Pic(E(I∞)) is infinite, then there exists a
cusp form of weight 2 (and type 1) for ΓI∞ that is annihilated by T̃ (2d) +
T̃ (2d− 1) + · · ·+ T̃ (1) + Id.

Proof. We denote by J the Jacobian of the curve E(I∞) over K∞I . Thus,
the correspondence S2(d) gives an endomorphism of this Jacobian. By the
last lemma, this endomorphism cannot be an isogeny. Accordingly, the mor-
phism induced on the tangent space Te(J) of J at the zero element,

S̃2(d) : Te(J)→ Te(J),

is not injective. This yields the assertion because Te(J) is the dual of the
space of 1-holomorphic differential forms, H0(E(I∞), Ω1

E(I∞)/K∞I
), and the

space of cusp forms of weight 2 (and type 1) is identified with

H0(MΓI∞ , Ω
1
MΓI∞/C

) = H0(E(I∞), Ω1
E(I∞)/K∞I

)⊗K∞I C.

5. Ideal class group annihilators for cyclotomic function fields.
We consider EI∞1,|P1|nd = Spec(BI∞1 ). The construction of BI∞1 is detailed in
Section 2.2, Remark 3, and is essentially as follows:

Let ((Lj , ij , τ), ιI∞) be an element of EI∞1,|P1|nd . To construct BI∞1 , we can
fix a global section s of L0 such that t · s = λ · s + τs and ι∞(s) = 1.
Hence, Spec(BI∞1 ) represents the pairs (φ, ιI), with φ a rank 1-normalized
Drinfeld module and ιI an I-level structure for φ. BI∞1 is considered in
[An1] and [C] and is obtained from the I-torsion elements of a normalized
Drinfeld module. The “zero” morphism EI∞1,|P1|nd → Spec(Fq[t]) gives a Galois
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extension K∞I /Fq(t) with group (Fq[t]/I)×. We denote by Y∞I the proper
smooth curve associated with EI∞1,|P1|nd .

We consider the Hecke correspondence

T (J1, . . . , Jn) ⊂ EI∞n,|P1|nd × E
I∞
n,|P1|nd ,

which is of degree d(J1, . . . , Jn) over the second component. Let J be the
product of ideals

n∏
i=1

Ji =: J.

T (J) denotes the Hecke correspondence on EI∞1,|P1|nd given by J .
There exist actions, T (J1, . . . , Jn)∗ and T (J)∗, of these correspondences

on the functors Pic(EI∞n,|P1|nd) and Pic0(Y∞I ), respectively. These functors are
defined over the category of Fq-schemes. Recall that the projections

π1, π2 : T (J1, . . . , Jn)→ EI∞n,|P1|nd

are étale. In this way it is possible to define T (J1, . . . , Jn)∗ := (π2)∗ · π∗1.

Remark 4. Consider the morphism det : EI∞n,|P1|nd → E
I∞
1,|P1|nd . Then

T (J1, . . . , Jn)∗det∗[D] = d(J1, . . . , Jn)det∗T (J)∗[D],

where [D] is the class of a divisor D on EI∞1,|P1|nd .
The above equality is proved bearing in mind the projection formula for

the rational equivalence of cycles; that π2 is an étale morphism of degree
d(J1, . . . , Jn); and that given e := (E, ιI∞) ∈ EI∞n we have

π2[T (J1, . . . , Jn) ∩ (det−1(det(e))× EI∞n,|P1|nd)] = det−1(T (J)∗ det(e)),

T (J1, . . . , Jn) ∩ (det−1(det(e))× EI∞n,|P1|nd) = π−1
2 [det−1(T (J)∗ det(e))].

Lemma 5.1. The correspondence

Dn
I :=

nd−i∑
i=0

Γ (Fri) ∗
[ ∑

J⊂Fq [t]
J+I=Fq [t],deg(J)=i

( ∑
J1⊆···⊆JnQn
k=1 Jk=J

d(J1, . . . , Jn)
)
T (J)

]

is trivial on Y∞I × Y∞I up to vertical and horizontal correspondences.

Proof. It suffices to consider a curve Z → EI∞n,|P1|nd such that the mor-
phism composition

g : Z → EI∞n,|P1|nd
det−−→ EI∞1,|P1|nd

is not constant. By the above remark, (det)∗ · (Dn
I )∗ = (TnI )∗ · (det)∗. Since

TnI is rationally equivalent to zero, (g)∗(g)∗ ·(Dn
I )∗ is trivial on Y∞I ×Y∞I up
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to vertical and horizontal correspondences, but by the projection formula,

(g)∗(g)∗ · (Dn
I )∗ = m ·Dn

I

with some m ∈ N. This yields the assertion, since the ring of correspon-
dences, modulo horizontal and vertical ones, is without Z-torsion.

We consider J = q(t)Fq[t] with q(t) monic. Then T (J) is given by the
graph, Γ (q(t)) of the automorphism of EI∞1,|P1|nd obtained from the action of
q(t) ∈ (Fq[t]/I)×. Recall that to obtain BI∞1 we have fixed a global section s
of L0 such that t · s = λ · s+ τs, and ι∞(s) = 1. In this way, T (J) = Γ (q(t)).
By Section 2.3, if we set Ji = qi(t)Fq[t], then

ϕ(q(t), n) :=
∑

J1⊆···⊆JnQn
k=1 Jk=J

d(J1, . . . , Jn)

is the number of submodules N ⊆ Fq[t]⊕n such that

Fq[t]⊕n/N ' Fq[t]/q1(t)⊕ · · · ⊕ Fq[t]/qn(t),

with the product of the invariant factors q1(t) · · · qr(t) equal to q(t). There-
fore, if we consider p(t)Fq[t] = I, then the following corollary can be deduced
from the Euler product of Theorem 2.7 and Anderson and Coleman’s results
([An1], [C]).

Corollary 5.2. The correspondence

nd∑
i=0

[
Γ (Frnd−i) ∗

( ∑
monic q(t)∈Fq [t]

(p(t),q(t))=1, deg(q(t))=i

ϕ(q(t), n) · Γ (q(t))
)]

is trivial on Y∞I × Y∞I up to vertical and horizontal correspondences.

Example 5.3. We can check this result for n = 2 and p(t) = t(t − 1).
Let K∞t(t−1)/Fq(t) be the Galois extension of group (Fq[t]/t(t− 1))×.

One has

ϕ(t− α, 2) = q + 1, ϕ((t− α)(t− β), 2) = q2 + 2q + 1,

ϕ((t− α)2, 2) = q2 + q + 1, ϕ(t2 + at+ b, 2) = q2 + 1

with t2 +at+b ∈ Fq[t] an irreducible polynomial and α, β ∈ Fq, α 6= β. Thus

(∗)
2∑
i=0

[
Γ (Fr2−i) ∗

( ∑
monic q(t)∈Fq [t]

(t(t−1),q(t))=1, deg(q(t))=i

ϕ(q(t), 2) · Γ (q(t))
)]
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is

Γ (Fr2) + (q + 1)
∑
α 6=0,1

Γ (Fr) ∗ Γ (t− α)

+ (q2 + 2q + 1)
∑

{α,β}⊂Fq
α,β 6=0,1
α 6=β

Γ ((t− α)(t− β))

+ (q2 + q + 1)
∑
α 6=0,1

Γ ((t− α)2)

+ (q2 + 1)
∑
a,b∈Fq

t2+at+b irreducible

Γ (t2 + at+ b),

and grouping terms, we have

Γ (Fr) ∗
[
Γ (Fr) +

∑
α 6=0,1

Γ (t− α)
]

+ q
[ ∑
α 6=0,1

Γ (t− α)
]
∗
[
Γ (Fr) +

∑
α 6=0,1

Γ (t− α)
]

+ (q2 + 1)
[ ∑
{α,β}⊂Fq
α,β 6=0,1
α 6=β

Γ ((t−α)(t−β)) +
∑
α 6=0,1

Γ ((t−α)2) +
∑

Γ (t2 +at+ b)
]
.

Now, bearing in mind that the last summand is

(q2 + 1)
∑

g∈(Fq [t]/t(t−1))×

Γ (g),

which is a trivial correspondence, we conclude that (∗) is also trivial because
the correspondence

Γ (Fr) +
∑

α∈Fq\{0,1}

Γ (t− α)

is trivial on K∞t(t−1) ⊗K
∞
t(t−1) (see [C]).

6. The above results without ∞-level structures. With minor
changes in the above results one can obtain similar results but over the
modular varieties EIn. The results obtained match, for n = 1, the classical
Stickelberger theorem over Z (see [An1], [C], [Gr1] and [Gr2]).

To obtain these results it suffices to replace in Lemma 3.8 the condition
imposed on h to be a morphism of ∞-level structures, by the condition

degτ̄ (hA(τn)− τ · hA(τn−1)) ≤ n− 1 + nd.
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And now in Corollary 3.5 one allows pairs, [(E, ιI), (E, ιI)], given by an
isogeny for I-level structures, Φ : (E, ιI) → (E, ιI), such that ∞ can be in
supp(E/Φ(E)). Thus, one obtains:

Theorem 6.1. The correspondence

T (nd) + [Γ (Fr)+Γ (Id)] ∗ T (nd− 1) + · · ·+ [Γ (Frnd−1) + · · ·+Γ (Id)] ∗ T (1)

+ [Γ (Frnd)+Γ (Frnd−1) + · · ·+ Γ (Fr) + Γ (Id)]

is trivial (= rationally equivalent to 0 as an n-cycle) in EIn,|P1|nd × E
I
n,|P1|nd.

From the last theorem one has, for n = 2:

Lemma 6.2. The correspondence

T (2d) + 2T (2d− 1) + · · ·+ 2dT (1) + (2d+ 1)Γ (Id)

annihilates the group Pic(E(I)).

Theorem 6.3. If the group Pic(E(I)) is infinite, then there exists a cusp
form of weight 2 (and type 1) for ΓI that is annihilated by

T̃ (2d) + 2T̃ (2d− 1) + · · ·+ 2dT̃ (1) + (2d+ 1)Γ (Id).
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function field, in: Séminaire de Théorie des Nombres, Bordeaux, 1980–1981, exp.
3, 5 pp.

[Gr2] —, Algebraic Hecke characters for function fields, in: Séminaire de Théorie des
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