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1. Introduction. For an integer x > 1, we denote by P (x) and ω(x)
the greatest prime factor of x and the number of distinct prime divisors of x,
respectively. Further, we put P (1) = 1 and ω(1) = 0. Let pi be the ith prime
number. Let k ≥ 4, t ≥ k − 2 and γ1 < · · · < γt be integers with 0 ≤ γi < k
for 1 ≤ i ≤ t. Thus t ∈ {k, k − 1, k − 2}, γt ≥ k − 3 and γi = i − 1 for
1 ≤ i ≤ t if t = k. We put ψ = k − t. Let b be a positive squarefree integer
and we shall assume, unless otherwise specified, that P (b) ≤ k. We consider
the equation

(1.1) ∆ = ∆(n, d, k) = (n+ γ1d) · · · (n+ γtd) = by2

in positive integers n, d, k, b, y, t. It has been proved (see [SaSh03] and
[MuSh04]) that (1.1) with ψ = 1, k ≥ 9, d - n, P (b) < k and ω(d) = 1
does not hold. Further, it has been shown in [TSH06] that the assertion
continues to be valid for 6 ≤ k ≤ 8 provided b = 1. We show

Theorem 1. Let ψ = 1, k ≥ 7 and d - n. Then (1.1) with ω(d) = 1 does
not hold.

Thus the assumption P (b) < k and k ≥ 9 (in [SaSh03] and [MuSh04])
has been relaxed to P (b) ≤ k and k ≥ 7, respectively, in Theorem 1. As an
immediate consequence of Theorem 1, we see that (1.1) with ψ = 0, k ≥ 7,
d - n, P (b) ≤ pπ(k)+1 and ω(d) = 1 is not possible. If k ≥ 11, we relax the
assumption P (b) ≤ pπ(k)+1 to P (b) ≤ pπ(k)+2 in the next result.
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Theorem 2. Let ψ = 0, k ≥ 11 and d - n. Assume that P (b) ≤ pπ(k)+2.
Then (1.1) with ω(d) = 1 does not hold.

For related results on (1.1), we refer to [LaSh08].

2. Notations and preliminaries. We assume (1.1) with gcd(n, d) = 1
in this section. Then we have

n+ γid = aγix
2
γi

for 1 ≤ i ≤ t(2.1)

with aγi squarefree such that P (aγi) ≤ max(k−1, P (b)). Thus (1.1) with b as
the squarefree part of aγ1 · · · aγt is determined by the t-tuple (aγ1 , . . . , aγt).
Further, we write

bi = aγi , yi = xγi .

Since gcd(n, d) = 1, we see from (2.1) that

(bi, d) = (yi, d) = 1 for 1 ≤ i ≤ t.(2.2)

Let

R = {bi : 1 ≤ i ≤ t}.
Lemma 2.1 ([LaSh08]). Equation (1.1) with ω(d) = 1 and k ≥ 9 implies

that t− |R| ≤ 1.

Lemma 2.2. Let ψ = 0, k ≥ 4 and d - n. Then (1.1) with ω(d) = 1
implies (n, d, k, b) = (75, 23, 4, 6).

This is proved in [SaSh03] and [MuSh03] unless k = 5, P (b) = 5, and
then it is a particular case of a result of Tengely [Sz08].

Lemma 2.3 ([SaSh03, Theorem 4] and [MuSh04]). Let ψ = 1, k ≥ 9 and
d - n. Assume that P (b) < k. Then (1.1) with ω(d) = 1 does not hold.

Lemma 2.4 ([LaSh08]). Let ψ = 2, k ≥ 15 and d - n. Then (1.1) with
ω(d) = 1 does not hold.

Lemma 2.5. Let ψ= 1, k= 7 and d - n. Assume that (1.1) holds. Then
(a0, a1, . . . , a6) is different from the following tuples and their mirror images:

(1, 2, 3, ∗, 5, 6, 7), (2, 1, 6, ∗, 10, 3, 14), (2, 1, 14, 3, 10, ∗, 6),
(∗, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, ∗), (3, ∗, 5, 6, 7, 2, 1),
(1, 5, 6, 7, 2, ∗, 10), (∗, 5, 6, 7, 2, 1, 10), (5, 6, 7, 2, 1, 10, ∗),
(6, 7, 2, 1, 10, ∗, 3), (10, 3, 14, 1, 2, 5, ∗),
(∗, 10, 3, 14, 1, 2, 5), (5, 2, 1, 14, 3, 10, ∗), (∗, 5, 2, 1, 14, 3, 10).

(2.3)

Further , (a1, . . . , a6) is different from (1, 2, 3, ∗, 5, 6), (2, 1, 6, ∗, 10, 3) and
their mirror images.

The proof of Lemma 2.5 is given in Section 3.
The following result is contained in [BBGH06, Lemma 4.1].
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Lemma 2.6. There are no coprime positive integers n′, d′ satisfying the
diophantine equations∏

(0, 1, 2, 3) = by2, b ∈ {1, 2, 3, 5, 15},∏
(0, 1, 3, 4) = by2, b ∈ {1, 2, 3, 6, 30},

where
∏

(0, i, j, l) = n′(n′ + id′)(n′ + jd′)(n′ + ld′).

Lemma 2.7. Equation (1.1) with ψ = 1, k = 7 is not possible if

(i) a1 = a4 = 1, a6 = 6 and either a3 = 3 or a2 = 2,
(ii) a1 = a6 = 1 and at least two of a2 = 2, a4 = 6, a5 = 5 hold ,
(iii) a0 = a6 = 2, a5 = 3 and either a2 = 6 or a4 = 1,
(iv) a0 = a5 = 1 and at least two of a1 = 5, a2 = 6, a4 = 2 hold ,
(v) a3 = a6 = 1, a1 = 6 and a2 = 5,
(vi) a0 = a4 = 1, a3 = 3 and a6 = 2,

(vii) a0 = a5 = 1 and at least two of a1 = 2, a3 = 6, a6 = 3 hold.

Proof. The proof of Lemma 2.7 uses MAGMA to compute integral points
on quartic curves. For this we first make a quartic curve and find an integral
point on it. Then we compute all integral points on the curve by using the
MAGMA command IntegralQuarticPoints and we exclude them.

We illustrate this with an example. Consider (ii). Then from x2
6 − x2

1 =
n+ 6d− (n+ d) = 5d and gcd(x6 − x1, x6 + x1) = 1, we get either

x6 − x1 = 5, x6 + x1 = d(2.4)

or

x6 − x1 = 1, x6 + x1 = 5d.(2.5)

Assume (2.4). Then d = 2x1 + 5. This with n+ d = x2
1 gives

2x2
2 = n+ 2d = n+ d+ d = x2

1 + 2x1 + 5 = (x1 + 1)2 + 4 if a2 = 2,

6x2
4 = n+ 4d = n+ d+ 3d = x2

1 + 6x1 + 15 = (x1 + 3)2 + 6 if a4 = 6,

5x2
5 = n+ 5d = n+ d+ 4d = x2

1 + 8x1 + 20 = (x1 + 4)2 + 4 if a5 = 5.

When a2 = 2, a4 = 6, by putting X = x1 +1, Y = 6x2x4, we get the quartic
curve Y 2 = 3(X2 + 4)((X + 2)2 + 6) = 3X4 + 12X3 + 42X2 + 48X + 120 in
positive integers X and Y with X = x1 + 1 ≥ 2. Observing that (X,Y ) =
(1, 15) is an integral point on this curve, we find by using the MAGMA
command

IntegralQuarticPoints([3, 12, 42, 48, 120], [1, 15]);

that all integral points on the curve are given by

(X,Y ) ∈ {(1,±15), (−2,±12), (−14,±300), (−29,±1365)}.
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Since none of the points (X,Y ) satisfy X ≥ 2, we exclude the case a2 = 2,
a4 = 6. Further, when a2 = 2, a5 = 5, by putting X = x1 + 1 and Y =
10x2x5, we get the curve Y 2 = 10(X2 + 4)((X + 3)2 + 4) = 10X4 + 60X3 +
170X2 + 240X + 520 on which (X,Y ) = (−1, 20) is an integral point. It
follows by MAGMA that all the integral points on the curve satisfy X ≤ 1,
and also this case is excluded. When a4 = 6, a5 = 5, by putting X = x1 + 3
and Y = 30x4x5, we get the curve Y 2 = 30(X2 + 6)((X + 1)2 + 4) =
30X4 +60X3 +330X2 +360X+900 on which (X,Y ) = (0, 30) is an integral
point. It follows by MAGMA that all the integral points on the curve other
than (X,Y ) = (11, 500) satisfy X ≤ 1. Since X > 1, 30 |Y and 30 - 500,
also this case is excluded. When (2.5) holds, we get 5d = 2x1 + 1, and this
with n+ d = x2

1 implies

2(5x2)2 = 25(n+ d) + 25d=25x2
1 + 10x1 + 5=(5x1 + 1)2 + 4 if a2 =2,

6(5x4)2 = 25(n+ d) + 75d=25x2
1 + 30x1 + 15=(5x1 + 3)2 + 6 if a4 =6,

5(5x5)2 = 25(n+ d) + 100d=25x2
1 + 40x1 + 20=(5x1 + 4)2 + 4 if a5 =5.

As in the case (2.4), these give rise to the same quartic curves Y 2 = 3X4 +
12X3 + 42X2 + 48X + 120; Y 2 = 10X4 + 60X3 + 170X2 + 240X + 520; and
Y 2 = 30X4 + 60X3 + 330X2 + 360X + 900 when a2 = 2, a3 = 6; a2 = 2,
a5 = 5; and a4 = 6, a5 = 5, respectively. This is not possible.

Similarly all the other cases are excluded. In case (iii), we have n = 2x2
0

and obtain either d = 2x0 + 3 or 3d = 2x0 + 1. Then we use 2aix2
i =

2(n + id) = (2x0)2 + 2i(2x0 + 3) = (2x0 + i)2 + 6i − i2 if d = 2x0 + 3 and
2ai(3xi)2 = 18(n + id) = (6x0)2 + 6i(2x0 + 1) = (6x0 + i)2 + 6i − i2 if
3d = 2x0 + 1 to get quartic equations. In case (vi), we obtain the quartic
equation Y 2 = 6X4 + 36X3 + 108X − 54 = 6(X4 + 6X3 + 18X − 9). For any
integral point (X,Y ) on this curve, we obtain 3 | (X4+6X3+18X−9), giving
3 |X. Then ord3(X4+6X3+18X−9) = 2, giving ord3(Y 2) = ord3(6)+2 = 3,
a contradiction.

3. Proof of Lemma 2.5. For the proof of Lemma 2.5, we use the
so-called elliptic Chabauty method (see [NB02], [NB03]). Bruin’s routines
related to the elliptic Chabauty method are contained in [MAGMA], so here
we indicate the main steps only, and a MAGMA routine which can be used
to verify the computations is available from the third author.

First consider the tuple (6, 7, 2, 1, 10, ∗, 3). Using the equalities n =
−2(n+ 3d) + 3(n+ 2d) = −2x2

3 + 6x2
2 and d = (n+ 3d)− (n+ 2d) = x2

3−2x2
2

we obtain the following system of equations:

−x2
3 + 3x2

2 = 3x2
0, x2

3 − x2
2 = 5x2

4,

−x2
3 + 4x2

2 = 7x2
1, 4x2

3 − 6x2
2 = 3x2

6.
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The first equation implies that x3 is divisible by 3, that is, there exists a
z ∈ Z such that x3 = 3z. By standard factorization argument we get

(
√

3 z + x2)(3z + x2)(12z2 − 2x2
2) = δ�,

where δ ∈ {±2 +
√

3,±10 + 5
√

3}. Thus putting X = z/x2 it is sufficient to
find all points (X,Y ) on the curves

(3.1) Cδ : δ(
√

3X + 1)(3X + 1)(12X2 − 2) = Y 2,

for which X ∈ Q and Y ∈ Q(
√

3). For all possible values of δ the point
(X,Y ) = (−1/3, 0) is on the curves, therefore we can transform them to
elliptic curves. We note that X = z/x2 = −1/3 does not yield appropriate
arithmetic progressions.

I. δ = 2 +
√

3. In this case C2+
√

3 is isomorphic to the elliptic curve

E2+
√

3 : y2 = x3 + (−
√

3− 1)x2 + (6
√

3− 9)x+ (11
√

3− 19).

Using MAGMA, we find that the rank of E2+
√

3 is 0 and the only point on
C2+

√
3 for which X ∈ Q is (X,Y ) = (−1/3, 0).

II. δ = −2 +
√

3. Applying elliptic Chabauty with p = 7, we deduce that
z/x2 ∈ {−1/2,−1/3,−33/74, 0}. Among these values, z/x2 = −1/2 gives
n = 6, d = 1.

III. δ = 10 + 5
√

3. Applying again elliptic Chabauty with p = 23 shows
that z/x2 ∈ {1/2,−1/3}. Here z/x2 = 1/2 corresponds to n = 6, d = 1.

IV. δ = −10 + 5
√

3. The elliptic curve E−10+5
√

3 is of rank 0 and the
only point on C−10+5

√
3 for which X ∈ Q is (X,Y ) = (−1/3, 0).

We have proved that there is no arithmetic progression with (a0, a1, . . .
. . . , a6) = (6, 7, 2, 1, 10, ∗, 3) and d - n.

Now consider the tuple (1, 5, 6, 7, 2, ∗, 10). The system of equations we
use is

x2
6 − 3x2

1 = −2(x0/2)2, 4x2
6 + 3x2

1 = 7x2
3,

x2
6 + 2x2

1 = 3x2
2, 3x2

6 + x2
1 = x2

4.

We factor the first equation over Q(
√

3) and the fourth over Q(
√
−3). We

obtain

x6 +
√

3x1 = δ1�,

√
−3x6 + x1

2
= δ2�,

where

δ1 ∈ {±1 +
√

3,±1−
√

3,±5 + 3
√

3,±5− 3
√

3},
δ2 ∈ {±1, (±1 +

√
−3)/2, (±1−

√
−3)/2}.

The curves for which we apply the elliptic Chabauty method are

Cδ : 3δ(X +
√

3)(
√
−3X + 1)(X2 + 2) = Y 2,
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defined over Q(α), where α4+36 = 0. It turns out that there is no arithmetic
progression with (a0, a1, . . . , a6) = (1, 5, 6, 7, 2, ∗, 10) and d - n.

We now make some observations. If

u(n+ id) + v(n+ jd) = w(n+ ld)(3.2)

holds with 0 ≤ i, j, l ≤ k − 1 and integers u, v, w, then

u+ v = w and ui+ vj = wl.

Therefore

u(n+ (k − 1− i)d) + v(n+ (k − 1− j)d) = w(n+ (k − 1− l)d)

holds, and vice versa. Therefore any tuple (a0, a1, . . . , a6) and its mirror tuple
(a6, . . . , a1, a0) give rise to the same set of equations. Hence it suffices to
exclude any one of them. Also it suffices to exclude any one of (∗, a1, . . . , a6)
and (a0, a1, . . . , a5, ∗).

Further, if we define a′i = ai/2 if ai is even and a′i = 2ai if ai is odd, then
(a′0, a

′
1, . . . , a

′
6) and (a0, a1, . . . , a6) give rise to the same set of equations. Let

i, j, l satisfy (3.2). If n + id = aix
2
i , n + jd = ajx

2
j , n + ld = alx

2
l is the one

given by (a0, a1, . . . , a6), and n + id = a′ix
′2
i , n + jd = a′jx

′2
j , n + ld = a′lx

′2
l

the one given by (a′0, a
′
1, . . . , a

′
6), then from (3.2) we get

uaix
2
i + vajx

2
j = walx

2
l(3.3)

and

ua′ix
′2
i + va′jx

′2
j = wa′lx

′2
l ,(3.4)

respectively. Since 2a′ix
′2
i = aiy

2
i for some yi, multiplying (3.4) by 2, we

obtain an equation exactly similar to (3.3). Hence if we exclude one of
(a′0, a

′
1, . . . , a

′
6) or (a0, a1, . . . , a6), the other tuple is excluded.

In view of the above observations and since (a0, a1, . . . , a6) = (1, 2, 3, ∗, 5,
6, 7) is excluded if (a1, a2, . . . , a6) = (1, 2, 3, ∗, 5, 6) is excluded, it suffices to
consider the tuples

(a0, a1, . . . , a6) ∈ {(∗, 3, 1, 5, 6, 7, 2), (3, ∗, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, ∗, 10),
(∗, 5, 6, 7, 2, 1, 10), (6, 7, 2, 1, 10, ∗, 3), (∗, 1, 2, 3, ∗, 5, 6)}.

Already the tuples (a0, a1, . . . , a6) ∈ {(1, 5, 6, 7, 2, ∗, 10), (6, 7, 2, 1, 10, ∗, 3)}
are excluded. In the table below, we indicate the relevant quartic polynomi-
als for the remaining tuples:

Tuple Polynomial

(1, 2, 3, ∗, 5, 6) 2δA1(X +
√
−1)(X + 3

√
−1)(5X2 − 3)

(∗, 3, 1, 5, 6, 7, 2) δA2(X +
√
−1)(2X +

√
−1)(5X2 − 1)

(3, ∗, 5, 6, 7, 2, 1) 5δA3(2X + 3
√
−1)(X +

√
−1)(12X2 − 3)

(∗, 5, 6, 7, 2, 1, 10) δA4(X +
√
−2)(2

√
−2X + 1)(3X2 + 1)
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4. Proof of Theorem 1. Suppose that the assumptions of Theorem 1
are satisfied and assume (1.1) with ω(d) = 1. Let k ≥ 9. By Lemma 2.3,
we may suppose that P (b) = k, implying k is a prime. After deleting the
term divisible by k on the left hand side of (1.1) and using Lemma 2.4,
the assertion for k ≥ 15 follows. Thus it suffices to prove the assertion for
k ∈ {7, 8, 11, 13} with P (b) ≤ k for k ∈ {7, 8} and P (b) = k for k ∈ {11, 13}.
Therefore we always restrict to k ∈ {7, 8, 11, 13} and P (b) ≤ k for k ∈
{7, 8} and P (b) = k for k ∈ {11, 13}. In view of Lemma 2.1, we arrive at a
contradiction by showing t − |R| ≥ 2 when k ∈ {11, 13}. Further, Lemma
2.1 also implies that p - d for p ≤ k whenever k ∈ {11, 13}.

For a prime p ≤ k and p - d, let ip be such that 0 ≤ ip < p and p |n+ ipd.
For any subset I ⊆ [0, k) ∩ Z and primes p1, p2 with pi ≤ k and pi - d,
i = 1, 2, we define

I1 =
{
i ∈ I :

(
i− ip1
p1

)
=
(
i− ip2
p2

)}
,

I2 =
{
i ∈ I :

(
i− ip1
p1

)
6=
(
i− ip2
p2

)}
.

Then from
(
ai
p

)
=
( i−ip

p

)(
d
p

)
, we see that either(

ai
p1

)
6=
(
ai
p2

)
for all i ∈ I1 and

(
ai
p1

)
=
(
ai
p2

)
for all i ∈ I2,(4.1)

or (
ai
p1

)
6=
(
ai
p2

)
for all i ∈ I2 and

(
ai
p1

)
=
(
ai
p2

)
for all i ∈ I1.(4.2)

We define (M,B) = (I1, I2) in the case (4.1) and (M,B) = (I2, I1) in the
case (4.2). We write (I1, I2,M,B) = (Ik1 , Ik2 ,Mk,Bk) when I = [0, k) ∩ Z.
Then for any I ⊆ [0, k) ∩ Z, we have

I1 ⊆ Ik1 , I2 ⊆ Ik2 , M⊆Mk, B ⊆ Bk

and

|M| ≥ |Mk| − (k − |I|), |B| ≥ |Bk| − (k − |I|).(4.3)

By taking m = n+ γtd and γ′i = γt − γt−i+1, we rewrite (1.1) as

(m− γ′1d) · · · (m− γ′td) = by2.(4.4)

The equation (4.4) is called the mirror image of (1.1). The corresponding
t-tuple (aγ′1 , . . . , aγ′t) is called the mirror image of (aγ1 , . . . , aγt).

4.1. The case k = 7, 8. We may assume that k = 7 since the case k = 8
follows from that of k = 7.

In this subsection, we take d ∈ {2α, pα, 2pα} where p is any odd prime
and α is a positive integer. In fact, we prove
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Lemma 4.1. Let ψ = 1, k = 7 and d - n. Then (1.1) with d ∈{2α, pα, 2pα}
does not hold.

First we check that (1.1) does not hold for d ≤ 23 and n + 5d ≤ 324.
Thus we assume that either d > 23 or n + 5d > 324. Hence n + id > 24i,
since n > 208 if d ≤ 23. Then (1.1) with ψ = 0, k ≥ 4 and ω(d) = 1 has
no solution by Lemma 2.2. Let d = 2 or d = 4. Suppose ai = aj with i > j.
Then xi − xj = r1 and xi + xj = r2 with r1, r2 even and gcd(r1, r2) = 2.
Now from aix

2
i = n+ id > 24i ≥ 4i2, we get

i− j ≥ ai(xi + xj)
2

≥
(aix2

i )
1/2 + (ajx2

j )
1/2

2
>

2i+ 2j
2

≥ i,

a contradiction. Therefore ai 6= aj whenever i 6= j, giving |R| = k − 1. But
|{ai : P (ai) ≤ 5}| ≤ 4, implying |R| ≤ 4+1 < k−1, a contradiction. Let 8 | d.
From (2.1), we get

(
ai
8

)
=
(
n+id

8

)
=
(
n
8

)
, implying ai’s belong each to exactly

one distinct residue class modulo 8. Therefore |{ai : P (ai) ≤ 5}| ≤ 1, which
together with |{j : aj = ai}| ≤ 2 for ai ∈ R implies |{i : P (ai) ≤ 5}| ≤ 2.
This is a contradiction since |{i : P (ai) ≤ 5}| ≥ 7− 2 = 5. Thus d 6= 2α. Let
t−|R| ≥ 2. Then we observe from [LaSh07, Corollary 3.10] that d2 = d < 24
and n+ 5d < 324. This is not possible.

Therefore t − |R| ≤ 1, implying |R| ≥ k − 2 = 5. If 7 | d, then we get
a contradiction since 7 - ai for any i and |{ai : P (ai) ≤ 5}| ≤ 4, implying
|R| ≤ 4 < k − 2. If 3 | d or 5 | d, then we also obtain a contradiction since
|{ai : P (ai) ≤ 5}| ≤ 2, implying |R| ≤ 2 + 1 < k − 2.

Thus gcd(p, d) = 1 for each prime p ≤ 7. Therefore 5 |n + i5d and
7 |n+ i7d with 0 ≤ i5 < 5 and 0 ≤ i7 < 7. By taking the mirror image (4.4)
of (1.1), we may suppose that 0 ≤ i7 ≤ 3.

Let p1 = 5, p2 = 7 and I = {γ1, . . . , γ6}. We observe that P (ai) ≤ 3 for
i ∈ M ∪ B. Since

(
2
5

)
6=
(

2
7

)
but

(
3
5

)
=
(

3
7

)
, we observe that ai ∈ {2, 6}

whenever i ∈M and ai ∈ {1, 3} whenever i ∈ B.
We now define four sets

Ik++ =
{
i : 0 ≤ i < k,

(
i− ip1
p1

)
=
(
i− ip2
p2

)
= 1
}
,

Ik−− =
{
i : 0 ≤ i < k,

(
i− ip1
p1

)
=
(
i− ip2
p2

)
= −1

}
,

Ik+− =
{
i : 0 ≤ i < k,

(
i− ip1
p1

)
= 1,

(
i− ip2
p2

)
= −1

}
,

Ik−+ =
{
i : 0 ≤ i < k,

(
i− ip1
p1

)
= −1,

(
i− ip2
p2

)
= 1
}

and let I++ = Ik++ ∩ I, I−− = Ik−− ∩ I, I+− = Ik+− ∩ I, I−+ = Ik−+ ∩ I.
We observe that I1 = I++∪I−− and I2 = I+−∪I−+. Since ai ∈ {1, 2, 3, 6}
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for i ∈ I1 ∪ I2 and
(
ai
p

)
=
( i−ip

p

)(
d
p

)
, we obtain four possibilities I, II, III

and IV according as
(
d
5

)
=
(
d
7

)
= 1;

(
d
5

)
=
(
d
7

)
= −1;

(
d
5

)
= 1,

(
d
7

)
= −1;(

d
5

)
= −1,

(
d
7

)
= 1, respectively.

{ai : i ∈ I++} {ai : i ∈ I−−} {ai : i ∈ I+−} {ai : i ∈ I−+}
I {1} {3} {6} {2}
II {3} {1} {2} {6}
III {2} {6} {3} {1}
IV {6} {2} {1} {3}

In case I, we have
(
ai
p

)
=
( i−ip

p

)
for p ∈ {5, 7}, which together with

(
ai
5

)
= 1

for ai ∈ {1, 6},
(
ai
5

)
= −1 for ai ∈ {2, 3},

(
ai
7

)
= 1 for ai ∈ {1, 2} and

(
ai
7

)
= −1 for ai ∈ {3, 6} implies the assertion. The assertion for cases II, III and
IV follows similarly. For simplicity, we write A7 = (a0, a1, a2, a3, a4, a5, a6).

For each possibility 0 ≤ i5 < 5 and 0 ≤ i7 ≤ 3, we compute Ik++,
Ik−−, Ik+−, Ik−+ and restrict to those pairs (i5, i7) for which max(|Ik1 |, |Ik2 |)
≤ 4. Then we check for the possibilities I, II, III or IV .

Suppose d = 2pα. Then bi ∈ {1, 3} whenever P (bi) ≤ 3. If i5 6= 0, 1,
then |R| ≤ 2 + 2 = 4, giving t− |R| ≥ 7− 1− 4 = 2, a contradiction. Thus
i5 ∈ {0, 1}. Further, M = ∅ and ai ∈ {1, 3} for i ∈ B. Therefore either
|Ik1 | ≤ 1 or |Ik1 | ≤ 2. We find that this is the case only when (i5, i7) ∈
{(0, 1), (1, 2)}. Let (i5, i7) = (0, 1). We get Ik++ = Ik−− = ∅, Ik+− = {4, 6}
and Ik−+ = {2, 3}. It suffices to consider cases III and IV , since bi ∈ {1, 3}
whenever P (bi) ≤ 3. Suppose III holds. Then by reducing modulo 3, we
obtain 4 /∈ I, a6 = 3 and a2 = a3 = 1. By reducing modulo 3 again, we
get a1 /∈ {1, 7, 3} which is not possible since 5 - a1. Suppose IV holds. Then
by reducing modulo 3, we obtain 2 /∈ I, a4 = a6 = 1 and a3 = 3. We now
get a1 ∈ {1, 7} and as t− |R| ≤ 1, we get a1 = 7. This is not possible since
−1 =

(
a1a4

5

)
=
( (1−0)(4−0)

5

)
= 1. Similarly (i5, i7) = (1, 2) is excluded. Hence

d = pα from now on.
Let (i5, i7) = (0, 0). We obtain Ik++ = {1, 4}, Ik−− = {3}, Ik+− = {6} and

Ik−+ = {2}. We may assume that 1 ∈ I, as otherwise P (a2a3a4a5a6) ≤ 5
and this is excluded by Lemma 2.2 with k = 5. Further, i /∈ I for exactly
one of i ∈ {2, 3, 4}, as otherwise P (a1a2a3a4) ≤ 3 and this is not possible by
Lemma 2.2 with k = 4 since d > 23. Consider the possibilities II and IV .
By reducing modulo 3, we obtain 2 /∈ I, 3 | a1a4 and a3a6 = 2. This is not
possible modulo 3 since −1 =

(
a3a6

3

)
=
( (3−1)(6−1)

3

)
= 1, a contradiction.

Suppose I holds. Then a1 = 1 and a6 = 6. If 4 ∈ I, then a1 = a4 = 1 and
at least one of a3 = 3, a2 = 2 holds, which is excluded by Lemma 2.7(i).
Assume that 4 /∈ I. Then a1 = 1, a2 = 2, a3 = 3, a6 = 6, giving a5 = 5
by reducing modulo 2 and 3. Thus we have (a1, . . . , a5, a6) = (1, 2, 3, ∗, 5, 6).
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This is not possible by Lemma 2.5. Suppose III holds. Then 4 /∈ I, a1 = 2,
a2 = 1, a3 = 6, a6 = 3, giving a5 = 10 by reducing modulo 2 and 3. Thus
(a1, . . . , a5, a6) = (2, 1, 6, ∗, 10, 3) which is also excluded by Lemma 2.5.

Let (i5, i7) = (0, 1). We obtain Ik++ = Ik−− = ∅, Ik+− = {4, 6} and
Ik−+ = {2, 3}. The possibility I is excluded by parity and modulo 3. The
possibility II implies that 3 /∈ I, a4 = a6 = 2 and a2 = 3. This is not
possible modulo 3. Suppose III holds. Then a2 = a3 = 1 and either 4 /∈ I,
a6 = 3 or 6 /∈ I, a4 = 3. By reducing modulo 3, we obtain 4 /∈ I, a6 = 3 and(
a5
3

)
=
(
a2
3

)
= 1. This gives a5 ∈ {1, 10}, which together with t − |R| ≤ 1

implies a5 = 10. But this is not possible by Lemma 2.6 with n′ = n + 2d,
d′ = d and (i, j, l) = (1, 3, 4). Hence III is excluded. Suppose IV holds.
Then a4 = a6 = 1 and 2 /∈ I, a3 = 3 by reducing modulo 3. By reducting
modulo 3, we get a5 ∈ {2, 5} and we may take a5 = 5, as otherwise we
get a contradiction from d > 23 and Lemma 2.2 with k = 4 applied to
(n+ 3d)(n+ 4d)(n+ 5d)(n+ 6d). This is again not possible by Lemma 2.6
with n′ = n+ 3d, d′ = d and (i, j, l) = (1, 2, 3).

Let (i5, i7) = (0, 3). We obtain Ik++ = {4}, Ik−− = {2}, Ik+− = {1, 6} and
Ik−+ = ∅. By reducing modulo 3, we observe that the possibilities I and III
are excluded. Suppose II happens. Then a2 = 1, a4 = 3 and either a6 = 2,
1 /∈ I or a1 = 2, 6 /∈ I. If a6 = 2, 1 /∈ I, then a5 ∈ {1, 5}, which gives a5 = 1
by reducing modulo 3. This is not possible modulo 7 since −1 =

(
a4a5

7

)
=( (4−3)(5−3)

7

)
= 1. Thus a1 = 2, 6 /∈ I. Then a0 = 5, a5 = 10, a3 = 14 by

reducing modulo 3, giving (a0, a1, . . . , a5, a6) = (5, 2, 1, 14, 3, 10, ∗). Suppose
IV happens. Let 1, 6 ∈ I. Then a1 = a6 = 1 and either a2 = 2 or a4 = 6.
By Lemma 2.7(ii), we may assume that either 2 /∈ I or 4 /∈ I. If 2 /∈ I,
then a4 = 6, a3 = 7 and a5 = 5, which is excluded by Lemma 2.7(ii).
Thus 4 /∈ I, a2 = 2 and a5 = 5 since 3 - a5. This is also excluded by
Lemma 2.7(ii). Therefore a2 = 2, a4 = 6 and either 6 /∈ I, a1 = 1 or
1 /∈ I, a6 = 1. Now 7 | a3, as otherwise P (a1a2 . . . a5) ≤ 5 if 1 ∈ I or
P (a2a3 . . . a6) ≤ 5 if 6 ∈ I, and this is excluded by Lemma 2.2 with k = 5.
Further, by reducing modulo 3, we get a3 = 7, a0 = 10 and a5 = 5. Hence
we obtain A7 = (10, ∗, 2, 7, 6, 5, 1) or A7 = (10, 1, 2, 7, 6, 5, ∗).

Let (i5, i7) = (1, 0). We obtain Ik++ = {2}, Ik−− = {3}, Ik+− = {5}
and Ik−+ = {4}. We consider the possibility I. By a parity argument, we
have either 5 /∈ I or 4 /∈ I. Again by reducing modulo 3, either 3 /∈ I or
5 /∈ I. Thus 5 /∈ I, giving a2 = 1, a3 = 3, a4 = 2. Now 5 | a1, as otherwise
we get a contradiction from P (a1a2a3a4) ≤ 3, Lemma 2.2 with k = 4 and
d > 23. Hence a1 = 5. This is again a contradiction since −1 =

(
a1a2

7

)
=( (1−0)(2−0)

7

)
= 1. Thus the possibility I is excluded. If III holds, then 3 /∈ I,

a2 = 2, a5 = 3, a4 = 1, giving a1 ∈ {1, 5} and a6 = 5. By reducing modulo
3, we get a1 = 1. But this is not possible by Lemma 2.6 with n′ = n + 2d,
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d′ = d and (i, j, l) = (1, 3, 4). Similarly, the possibilities II and IV are also
excluded. If II holds, then 4 /∈ I, a2 = 3, a3 = 1, a5 = 2. Now a6 ∈ {1, 5}
and by further reducing modulo 3, we get a6 = 1. This is not possible by
Lemma 2.6 with n′ = n+ 2d, d′ = d and (i, j, l) = (1, 3, 4). If IV holds, then
2 /∈ I, a3 = 2, a5 = 1, a4 = 3. Then a6 ∈ {1, 5}, giving a6 = 5 by reducing
modulo 3. This is not possible modulo 7.

Let (i5, i7) = (1, 1). We obtain Ik++ = {2, 5}, Ik−− = {4}, Ik+− = {0}
and Ik−+ = {3}. We consider the possibilities III and IV . By parity, we
obtain 5 /∈ I. But then we get a contradiction modulo 3 since a4 = 6,
a0 = 3 if III holds and a2 = 6, a3 = 3 if IV holds are not possible. Next we
consider the possibility I. Then 0 /∈ I by reducing modulo 2 and 3 and we get
P (a2a3 . . . a6) ≤ 5, which is excluded by Lemma 2.2 with k = 5. Let II hold.
Then 3 /∈ I by reducing modulo 2 and 3 and a2 = a5 = 3, a4 = 1, a0 = 2.
Further, a6 ∈ {5, 10} which together with reduction modulo 3 gives a6 = 5.
Now we get a contradiction modulo 7 from a5 = 3, a6 = 5.

Let (i5, i7) = (3, 1). We obtain Ik++ = {2}, Ik−− = {0, 6}, Ik+− = {4} and
Ik−+ = {5}. We may assume that i /∈ I for exactly one of i ∈ {0, 2, 4, 6},
as otherwise n is even, P (a0a2a4a6) ≤ 3 and this is excluded by k = 4 of
Lemma 2.2 applied to (n/2)(n/2 + d)(n/2 + 2d)(n/2 + 3d). We consider the
possibilities I and III. By reducing modulo 3, we get 4 /∈ I, a0 = a6, 3 | a0

and a2a5 = 2. This is not possible by reducing modulo 3. Next we consider
the possibility II. Then 4 /∈ I by a parity argument. Further, a0 = a6 = 1,
a2 = 3, a5 = 6. This is not possible since 8 |x2

6 − x2
0 = n+ 6d− n = 6d and

d is odd. Finally, we consider the possibility IV . If 2 /∈ I or 4 /∈ I, then
a0 = a6 = 2, a5 = 3 and one of a2 = 6 and a4 = 1. This is excluded by
Lemma 2.7(iii). Thus a2 = 6, a4 = 1, a5 = 3 and either a0 = 2, 6 /∈ I or
a6 = 2, 0 /∈ I. Then a1 = 7, a3 = 5 by parity and reduction modulo 3.
Hence A7 = (2, 7, 6, 5, 1, 3, ∗) or A7 = (∗, 7, 6, 5, 1, 3, 2).

All the other pairs are excluded similarly. For (i5, i7) = (0, 2), we ob-
tain either A7 = (1, 2, 3, ∗, 5, 6, 7) or (5, 6, 7, 2, 1, 10, ∗) or (10, 3, 14, 1, 2, 5, ∗),
which are all excluded by Lemma 2.5. For (i5, i7) = (1, 3), we obtain A7 =
(1, 5, 6, 7, 2, ∗, 10), (∗, 5, 6, 7, 2, 1, 10) or (∗, 10, 3, 14, 1, 2, 5), which is not pos-
sible by Lemma 2.5, or a0 = a5 = 1 and at least two of a1 = 5, a2 = 6,
a4 = 2 hold, which is again excluded by Lemma 2.7(iv). For (i5, i7) = (2, 0),
we obtain A7 = (14, 3, 10, ∗, 6, 1, 2), (7, 6, 5, ∗, 3, 2, 1) or a3 = a6 = 1, a0 = 7,
a1 = 6, a2 = 5, a4 = 3 or a5 = 2. These are impossible by Lemma 2.7(v).
For (i5, i7) = (2, 1), we obtain a0 = a4 = 1, a3 = 3, a6 = 2, which
is not possible by Lemma 2.7(vi). For (i5, i7) = (4, 1), we obtain A7 =
(6, 7, 2, 1, 10, ∗, 3), which is also excluded. For (i5, i7) = (4, 2), we obtain
A7 = (2, 1, 14, 3, 10, ∗, 6), (1, 2, 7, 6, 5, ∗, 3), (∗, 2, 7, 6, 5, 1, 3) or a0 = a5 = 1
and at least two of a1 = 2, a3 = 6, a6 = 3 hold. The previous possibility is
excluded by Lemma 2.5 and the latter by Lemma 2.7(vii).
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4.2. The case k = 11. We may assume that 11 | ai for some i ∈ {4, 5, 6}
whenever i /∈ I, as otherwise the lemma follows from Lemma 4.1.

Let p1 = 5, p2 = 11 and I = {γ1, . . . , γt}. We observe that P (ai) ≤ 7 for
i ∈ M∪ B. Since

(
3
5

)
6=
(

3
11

)
but

( q
5

)
=
( q

11

)
for a prime q < k other than

3, 5, 11, we observe that 3 | ai whenever i ∈M. Since σ3 ≤ 4 and |I| = k−1,
we deduce from (4.3) that |Mk| ≤ 5 and 3 | ai for at least |Mk|−1 elements
i ∈ Mk. Further, ai ∈ {1, 2, 7, 14} for i ∈ B, giving |B| ≤ 5, as otherwise
t− |R| ≥ 2. Hence |Bk| ≤ 6 by (4.3).

By taking the mirror image (4.4) of (1.1), we may suppose that 4 ≤ i11

≤ 5. For each possibility 0 ≤ i5 < 5 and 4 ≤ i11 ≤ 5, we compute |Ik1 |, |Ik2 |
and restrict to those pairs (i5, i11) for which max(|Ik1 |, |Ik2 |) ≤ 6. Further,
we restrict to those pairs (i5, i11) for which either

3 | ai for at least |Ik1 | − 1 elements i ∈ Ik1 ,(4.5)

or

3 | ai for at least |Ik2 | − 1 elements i ∈ Ik2 .(4.6)

We find that exactly one of (4.5) or (4.6) happens. We have Mk = Ik1 ,
Bk = Ik2 when (4.5) holds, and Mk = Ik2 , Bk = Ik1 when (4.6) holds. If
3 | ai for exactly |Mk| − 1 elements i ∈Mk, then B = Bk and we restrict to
such pairs (i5, i11) for which there are at most three elements i ∈ Bk with
P (ai) ≤ 2, as otherwise t− |R| ≥ 2. Now all the pairs (i5, i11) are excluded
other than

(0, 4), (1, 5), (4, 5).(4.7)

For these pairs, we find that |Bk| ≥ 5. Hence we may suppose that 7 | ai for
some i ∈ B, as otherwise ai ∈ {1, 2} for i ∈ B, which together with |B| ≥ 4
gives t−|R| ≥ 2. Further, if |Bk| = 6, then we may assume that 7 | ai, 7 | ai+7

for some 0 ≤ i ≤ 3.
Let (i5, i11) = (0, 4). Then Mk = {3, 9} and Bk = {1, 2, 6, 7, 8}, giving

i3 = 0. If 7 | a6a7, then |B| = |Bk| − 1 and ai ∈ {3, 6} for i ∈ M = Mk

but
(
a3a9

7

)
=
( (3−i7)(9−i7)

7

)
= −1 for i7 = 6, 7, a contradiction. If 7 | a2,

then ai ∈ {5, 10} for i ∈ {5, 10} ⊆ I but
(
a5a10

7

)
=
( (5−2)(10−2)

7

)
= −1, a

contradiction again. Thus 7 | a1a8 and ai ∈ {1, 2} for {2, 6, 7} ∩ Bk. From(
ai
7

)
=
(
i−1
7

)(
d
7

)
,
(

6−1
7

)
=
(

7−1
7

)
= −1 and

(
2−1
7

)
= 1, we find that 2 /∈ I.

This is not possible.
Let (i5, i11) = (1, 5). Then Mk = {4, 10} and Bk = {0, 2, 3, 7, 8, 9},

giving i3 = 1. Thus M = Mk, ai ∈ {3, 6} for i ∈ M and |B| = |Bk| − 1,
ai ∈ {1, 2, 7, 14} for i ∈ B. Further, we have either 7 | a0a7 or 7 | a2a9. Taking(
ai
7

)
for i ∈ {4, 10, 0, 2, 3, 7, 8, 9}, we find that 7 | a2a9 and 3 /∈ B. This is not

possible.
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Let (i5, i11) = (4, 5). Then Mk = {0, 6} and Bk = {1, 2, 3, 7, 8, 10},
giving M = Mk and i3 = 0. Further, 7 | a1a8 or 7 | a3a10. Taking

(
ai
7

)
for

i ∈M∪Bk, we find that 7 | a1a8 and B = Bk \{7}. This is not possible since
7 ∈ I.

4.3. The case k = 13. We may assume that 13 | a3a4a5a6a7a8a9, other-
wise the assertion follows from Theorem 1 with k = 11.

Let p1 = 11, p2 = 13 and I = {γ1, . . . , γt}. Since
(

5
11

)
6=
(

5
13

)
but( q

11

)
=
( q

13

)
for q = 2, 3, 7, we observe that for 5 | ai for i ∈M and P (ai) ≤ 7,

5 - ai for i ∈ B. Since σ5 ≤ 3, we obtain |Mk| ≤ 4 and 5 | ai for at least
|Mk| − 1 elements i ∈Mk.

By taking the mirror image (4.4) of (1.1), we may suppose that 3 ≤ i13

≤ 6 and 0 ≤ i11 ≤ 10. We may suppose that i13 ≥ 4, 5 if i11 = 0, 1 respec-
tively, and max(i11, i13) ≥ 6 if i11 ≥ 2, as otherwise the assertion follows
from Lemma 4.1.

Since max(|Ik1 |, |Ik2 |) ≥ 5 and |Mk| ≤ 4, we restrict to those pairs sat-
isfying min(|Ik1 |, |Ik2 |) ≤ 4, and further Mk is exactly one of Ik1 or Ik2 with
minimum cardinality and hence Bk is the other one. Now we restrict to
those pairs (i11, i13) for which 5 | ai for at least |Mk| − 1 elements i ∈ Mk.
If 5 | ai for exactly |Mk| − 1 elements i ∈ Mk, then B = Bk and hence we
may assume that |B| = |Bk| ≤ 7, as otherwise there are at least six elements
i ∈ B for which ai ∈ {1, 2, 3, 6}, giving t−|R| ≥ 2. Therefore we now exclude
those pairs (i11, i13) for which 5 | ai for exactly |Mk| − 1 elements i ∈ Mk

and |Bk| > 7. We find that all the pairs (i11, i13) are excluded other than

(1, 3), (2, 4), (3, 5), (4, 2), (5, 3), (6, 4).(4.8)

From i13 ≥ 5 if i11 = 1 and max(i11, i13) ≥ 6 if i11 ≥ 2, we find that all
these pairs are excluded other than (6, 4).

Let (i11, i13) = (6, 4). Then Mk = {0, 2, 7, 12} and Bk = {1, 3, 5, 8, 9,
10, 11}, giving i5 = 1, M = {2, 7, 12} and 0 /∈ I. This is excluded by
applying Lemma 4.1 to

∏5
i=0(n+ d+ 2i).

5. Proof of Theorem 2. By Lemma 2.2, we may suppose that P (b)>k.
If P (b) = pπ(k)+1 or P (b) = pπ(k)+2 with pπ(k)+1 - b, then the assertion
follows from Theorem 1. Thus we may suppose that P (b) = pπ(k)+2 and
pπ(k)+1 | b. Then we delete the terms divisible by pπ(k)+1, pπ(k)+2 on the left
hand side of (1.1), and the assertion for k ≥ 15 follows from Lemma 2.4.
Thus 11 ≤ k ≤ 14 and it suffices to prove the assertion for k = 11 and
k = 13. After removing the i’s for which p | ai with p∈{13, 17} when k = 11
and p | ai with p ∈ {17, 19} when k = 13, we observe from Lemma 2.1 that
k − |R| ≤ 1 and p - d for each p ≤ k.
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5.1. The case k = 11. Let p1 = 11, p2 = 13 and I = {0, 1, . . . , 10}. Since(
5
11

)
6=
(

5
13

)
,
(

17
11

)
6=
(

17
13

)
but

( q
11

)
=
( q

13

)
for q = 2, 3, 7, we observe that

either 5 | ai or 17 | ai for i ∈ M and either 5 · 17 | ai or P (ai) ≤ 7 for i ∈ B.
Since σ5 ≤ 3, we obtain |M| ≤ 4.

By taking the mirror image (4.4) of (1.1), we may suppose that 0 ≤
i13 ≤ 5 and 0 ≤ i11 ≤ 10. If both i11, i13 are odd, then we may suppose that
i17 is even, as otherwise we get a contradiction from Lemma 4.1 applied
to
∏5
i=0 (n+ i(2d)). Also we may suppose that max(i11, i13) ≥ 4, as other-

wise we get a contradiction from Lemma 4.1 applied to
∏6
i=0 (n+ 4d+ id).

Further, from Lemma 4.1, we may assume i17 > 4 if max(i11, i13) = 4.
Since max(|Ik1 |, |Ik2 |) ≥ 5 and |Mk| ≤ 4, we restrict to those pairs sat-

isfying min(|Ik1 |, |Ik2 |) ≤ 4, and further Mk is exactly one of Ik1 or Ik2 with
minimum cardinality and hence Bk is the other one. Now we restrict to
those pairs (i11, i13) for which either 5 | ai or 17 | ai whenever i ∈ M. Let
B′ = B \ {i : 5 · 17 | ai}. If |B′| ≥ 8, then there are at least six elements
i ∈ B′ such that P (ai) ≤ 3, giving k − |R| ≥ 2. Thus we restrict to those
pairs for which |B′| ≤ 7. Further, we observe that 7 | ai and 7 | ai+7 for some
i, i+ 7 ∈ B′ if |B′| = 7.

Let (i11, i13) = (2, 4). Then Mk = {1, 6, 8} and Bk = {0, 3, 5, 7, 9, 10},
giving i5 = 1, 17 | a8 and P (ai) ≤ 7 for i ∈ B. For each possibility i7 ∈
{0, 3, 4, 5}, and i17 = 8, we take p1 = 7, p2 = 17, I = Bk and compute I1
and I2. Since

(p
7

)
=
( p

17

)
for p ∈ {2, 3}, we should have either I1 = ∅ or

I2 = ∅. We find that min(|I1|, |I2|) > 0 for each possibility i7 ∈ {0, 3, 4, 5}.
Hence (i11, i13)=(2, 4) is excluded. Similarly all pairs (i11, i13) are excluded
except (i11, i13) ∈ {(4, 2), (6, 4)}. When (i11, i13) = (3, 5), we get Mk =
{2, 7, 9}, giving 5 | a2a7, 17 | a9 and hence it is excluded. When (i11, i13) =
(1, 4), we obtain Mk = {5, 9} and Bk = {0, 2, 3, 6, 7, 8, 10}, giving either
5 | a5, 17 | a9 or 17 | a5, 5 | a9. Also i7 ∈ {0, 3}. Thus we have (i7, i17) ∈ {(0, 5),
(0, 9), (3, 5), (3, 9)} and apply the procedure for each of these possibilities.

Let (i11, i13) = (6, 4). Then Mk = {0, 2, 7} and Bk = {1, 3, 5, 8, 9, 10},
giving i5 = 2, 17 | a0 and P (ai) ≤ 7 for i ∈ B. For each possibility i7 ∈
{1, 3, 4, 5}, and i17 = 0, we take p1 = 7, p2 = 17 and I = Bk. Since

(p
7

)
=( p

17

)
for p ∈ {2, 3}, we observe that either I1 = ∅ or I2 = ∅. We find that

this happens only when i7 = 3 where we get I1 = ∅ and I2 = {1, 5, 8, 9}.
By reducing modulo 7, we get ai ∈ {1, 2} for i ∈ {1, 8, 9} and a5 ∈ {3, 6}.
Further, by reducing modulo 5, we obtain a1 = a8 = 1, a9 = 2, a5 = 3,
a1 = 4, a10 = 7, and this is excluded by Runge’s method as in [MuSh03].
When (i11, i13) = (4, 2), we get Mk = {0, 5, 10} and Bk = {1, 3, 6, 7, 8, 9},
giving 5 | a0a5a10 and i17 ∈ {5, 10}. Here we obtain i17 = 10, i7 = 3 where
I1 = ∅ and I2 = {1, 6, 7, 8, 9}. This is not possible by Lemma 2.2 with k = 4
applied to (n+ 6d)(n+ 6d+ d)(n+ 6d+ 2d)(n+ 6d+ 3d).
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5.2. The case k = 13. Let p1 = 11, p2 = 13 and I = {0, 1, . . . , 12}. Since(
5
11

)
6=
(

5
13

)
,
(

17
11

)
6=
(

17
13

)
but

( q
11

)
=
( q

13

)
for q = 2, 3, 7, we observe that

either 5 | ai or 17 | ai for i ∈ Mk and either 5 · 17 | ai or 19 | ai or P (ai) ≤ 7
for i ∈ Bk. Since σ5 ≤ 3, we obtain |Mk| ≤ 4.

By taking the mirror image (4.4) of (1.1), we may suppose that 0 ≤ i13

≤ 6 and 0 ≤ i11 ≤ 10. We may assume that i11, i13, i17, i19 are not all even,
as otherwise P (

∏5
i=0 a2i+1) ≤ 7, which is excluded by Lemma 4.1. Further,

exactly two of i11, i13, i17, i19 are even and the other two odd, as otherwise
this is excluded again by Lemma 4.1 applied to

∏6
i=0(n+ i(2d)) if n is odd

and
∏6
i=0(n/2 + id) if n is even. Also exactly two of i11, i13, i17, i19 lie in

each set {2, 3, 4, 5, 6, 7, 8} and {3, 4, 5, 6, 7, 8, 9}, otherwise this is excluded
by Lemma 4.1.

Since max(|Ik1 |, |Ik2 |) ≥ 5 and |Mk| ≤ 4, we restrict to those pairs sat-
isfying min(|Ik1 |, |Ik2 |) ≤ 4, and further Mk is exactly one of Ik1 or Ik2 with
minimum cardinality and hence Bk is the other one. Now we restrict to
those pairs (i11, i13) for which either 5 | ai or 17 | ai whenever i ∈ M. Let
B′ = Bk \{i : 5 ·17 | ai}. If |B′| ≥ 9, then there are at least six elements i ∈ B′
such that P (ai) ≤ 3, giving k − |R| ≥ 2. Thus we restrict to those pairs for
which |B′| ≤ 8. For instance, let (i11, i13) = (0, 0). We obtain Mk = {5, 10}
and Bk = {1, 2, 3, 4, 6, 7, 8, 9, 12}, giving i5 = 0, i17 ∈ {5, 10}, B′ = Bk and
|Bk| = 9. This is excluded.

Let (i11, i13)=(1, 1). ThenMk={0, 6, 11} and Bk={2, 3, 4, 5, 7, 8, 9, 10},
giving i5 = 1, i17 = 0. This is excluded. Similarly (i11, i13) ∈ {(1, 3), (2, 4),
(3, 5), (4, 6), (6, 4), (7, 5), (8, 6)} are excluded where we find that i17 is of the
same parity as i11, i13.

Let (i11, i13) = (4, 2). Then Mk = {0, 5, 10} and Bk = {1, 3, 6, 7, 8, 9,
11, 12}, giving 5 | a0, 5 | a10 and i17 = 5. Further, for i ∈ Bk, we have either
19 | ai or P (ai) ≤ 7. Also 7 | a1 and 7 | a8, as otherwise k − |R| ≥ 2. We now
take (i7, i17) = (1, 5), p1 = 7, p2 = 17, I = Bk and compute I1 and I2.
Since

(p
7

)
=
( p

17

)
for p ∈ {2, 3}, and

(
19
7

)
=
(

19
17

)
, we should have either

|I1| = 1 or |I2| = 1. We find that I1 = {3, 9, 11}, I2 = {6, 7, 12}, which is a
contradiction. Similarly (i11, i13) ∈ {(5, 3), (8, 4)} are also excluded. When
(i11, i13) = (5, 3), we find that i17 = 6 and i7 ∈ {0, 2}, and this is excluded.

6. A remark. We consider (1.1) with ψ = 0, ω(d) = 2 and the assump-
tion gcd(n, d) = 1 replaced by d - n if b > 1. It is proved in [LaSh07] that
(1.1) with ψ = 0, b = 1 and k ≥ 8 is not possible. We show that (1.1) with
ψ = 0, k ≥ 6 and ω(d) = 2 is not possible. The case k = 6 has already been
solved in [BBGH06]. Let k ≥ 7. As in [LaSh07] and since d - n, the assertion
follows if (1.1) with ψ = 1, k ≥ 7, ω(d) = 1 and gcd(n, d) = 1 does not hold.
This follows from Theorem 1.
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