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1. Introduction. Pseudorandom binary sequences play a role of basic
importance in applications, in particular, in cryptography. The notion of
pseudorandomness is usually defined in terms of computational complex-
ity (see, e.g., [8]). As this approach has certain weak points, Mauduit and
Sárközy [4] initiated another, more constructive approach (see [10] for a
survey of the related work and for a comparison of a two approaches).

In the applications (e.g., in connection with image or bit map encryp-
tion) one also needs the multidimensional extension of this theory. There-
fore Hubert, Mauduit and Sárközy [3], [5], [6] extended the constructive
theory of pseudorandom binary sequences to the multidimensional situa-
tion by studying pseudorandom binary lattices. It turns out that the mul-
tidimensional case is much more difficult than the one-dimensional case; it
takes a considerable effort to generalize the one-dimensional methods, re-
sults and constructions, and in most cases only much weaker partial results
are achieved. Thus it is a natural question to ask: does one really need the
multidimensional theory? Couldn’t one utilize the simpler and more effec-
tive one-dimensional theory in the multidimensional case? Aren’t there any
simple and cheap but at the same time satisfactory ways to convert the
one-dimensional results and constructions into multidimensional ones? In
general, what is the connection between the one-dimensional and multidi-
mensional cases? In this paper we study these questions. More precisely,
since the two-dimensional case is simpler and more important than the
three- or higher-dimensional ones, we will restrict ourselves to the study
of the links between the one-dimensional and two-dimensional cases. How-
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ever, with a little work our results and constructions could be extended to
higher dimensions.

2. Some basic definitions and results in one, resp. n dimensions.
In [4] Mauduit and Sárközy studied finite binary sequences

(2.1) EN = {e1, . . . , eN} ∈ {−1,+1}N .
They introduced the following measures of pseudorandomness of such se-
quences: the well-distribution measure of the sequence (2.1) is defined by

W (EN ) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣
where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,
and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣∣∣ M∑
n=1

en+d1 · · · en+dk

∣∣∣
where the maximum is taken over all D = (d1, . . . , dk) and M such that
0 ≤ d1 < · · · < dk ≤ N −M . The combined (well-distribution-correlation)
pseudorandom measure of order k was also introduced:

Qk(EN ) = max
a,t,D

∣∣∣ t∑
j=0

eja+d1 · · · eja+dk

∣∣∣
where the maximum is taken over all a, t and D = (d1, . . . , dk) with d1 <
· · · < dk such that all the subscripts ja + dl belong to {1, . . . , N}. (Note
that clearly Q1(EN ) = W (EN ).) The sequence EN is considered to be a
“good” pseudorandom sequence if W (EN ) and, for “small” k, both Ck(EN )
and Qk(EN ) are “small” in terms of N (in particular, both are o(N) as
N →∞). Indeed, later Cassaigne, Mauduit and Sárközy [2] showed that this
terminology is justified since for fixed k for almost all EN ∈ {−1,+1}N , the
measures W (EN ), Ck(EN ) and Qk(EN ) are less than N1/2(logN)c, where
the constant c depends on k (see also [1]). It was also shown in [4] that the
Legendre symbol forms a “good” pseudorandom binary sequence:

Theorem A. There is a number p0 such that if p > p0 is a prime
number , k ∈ N, k < p and if we write

Ep−1 =
((

1
p

)
,

(
2
p

)
, . . . ,

(
p− 1
p

))
(where

(
n
p

)
denotes the Legendre symbol), then

Qk(Ep−1) ≤ 9kp1/2 log p.
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The crucial tool in the proof of this theorem was the following conse-
quence of Weil’s theorem [12]:

Lemma 1. Suppose that p is a prime number , χ is a non-principal char-
acter modulo p of order d (so that d | p−1), and the polynomial f(x) ∈ Fp[x]
(Fp being the field of modulo p residue classes) has degree k and factoriza-
tion f(x) = b(x − x1)d1 · · · (x − xs)ds (where xi 6= xj for i 6= j) in Fp (the
algebraic closure of Fp) with

(2.2) (d, d1, . . . , ds) = 1.

Let X,Y be real numbers with 0 < Y ≤ p. Then∣∣∣ ∑
X<n≤X+Y

χ(f(n))
∣∣∣ < 9kp1/2 log p.

Note that the same conclusion also holds if assumption (2.2) on f(x) is
replaced by

(2.3) f(x) is not of the form cg(x)d with c ∈ Fp, g(x) ∈ Fp[x]

(see [7], [11]).
In [3] Hubert, Mauduit and Sárközy extended this constructive theory

of pseudorandomness to n dimensions (see also [5], [6]). Let In
N denote the

set of n-dimensional vectors all of whose coordinates are {0, 1, . . . , N − 1}:

In
N = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

We call this set the n-dimensional N -lattice or briefly (if n is fixed) the
N -lattice. A function of the type

(2.4) η(x) : In
N → {−1,+1}

is called an n-dimensional binary N -lattice or briefly a binary lattice. (Note
that in the special case of n = 1 these functions are binary sequences EN ∈
{−1,+1}N .) In [3] the following measures of pseudorandomness of binary
lattices were proposed: if η = η(x) is an n-dimensional binary N -lattice of
the form (2.4), k ∈ N, and ui (i = 1, . . . , n) denotes the n-dimensional unit
vector whose ith coordinate is 1 and the other coordinates are 0, then write

Qk(η) = max
B,d1,...,dk,T

∣∣∣ t1∑
j1=0

· · ·
tn∑

jn=0

η(j1b1u1 + · · ·+ jnbnun + d1) · · ·

η(j1b1u1 + · · ·+ jnbnun + dk)
∣∣∣,

where the maximum is taken over all n-dimensional vectors B = (b1, . . . , bn),
d1, . . . , dk, and T = (t1, . . . , tn) such that their coordinates are non-negative
integers, b1, . . . , bn are non-zero, d1, . . . , dk are distinct, and all the points
j1b1u1 + · · · + jnbnun + di occurring in the multiple sum belong to the
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n-dimensional N -lattice In
N . Then Qk(η) is called the pseudorandom (brie-

fly PR) measure of order k of η. (Note that in the one-dimensional case
Qk(η) is the combined PR-measure Qk of order k.)

It was proved in [3] that for a fixed k ∈ N and for a truly random
n-dimensional binary N -lattice η(x) we have

Nn/2 � Qk(η)� Nn/2(logNn)1/2

with probability > 1 − ε, while the trivial upper bound for Qk(η) is Nn.
Thus an n-dimensional binary N -lattice η can be considered as a “good”
pseudorandom lattice if the PR measure of order k of η is “small” in
terms of N (in particular, Qk(η) = o(Nn) for fixed n and N → ∞) for
small k.

Moreover, in [3] an example was given (by using the quadratic character
of a finite field) of a “good” n-dimensional binary lattice (for any n).

In the rest of the paper we will restrict ourselves to the special case of
n = 2, i.e., to two-dimensional binary lattices.

3. Binary lattices whose rows are “good” PR binary sequences.
Suppose we want to construct a “good” PR two-dimensional lattice. As
mentioned earlier, it is easier to construct binary sequences than binary
lattices. Thus one might wish to construct a binary lattice by combining
binary sequences. More precisely, assume that a sequence of “good” PR
binary sequences E(1)

N , . . . , E
(j)
N = (e(j)1 , . . . , e

(j)
N ), . . . is given; then it is a

natural idea to consider the two-dimensional binary lattice η whose jth row
is the vector E(j)

N , i.e.,

(3.1) η((i, j − 1)) = e
(j)
i+1 for j = 1, . . . , N, i = 0, 1, . . . , N − 1.

If, say, E(1)
N = · · · = E

(N)
N , then η is certainly not of PR type. Thus to ensure

the pseudorandomness of η one needs an assumption on the connection
between the sequences E(j)

N . A natural assumption of this type is that the
vectors E(j)

N are nearly orthogonal, i.e., the scalar products (E(i)
N , E

(j)
N ) are

“small”:

(3.2) |(E(i)
N , E

(j)
N )| = |e(i)1 e

(j)
1 + e

(i)
2 e

(j)
2 + · · ·+ e

(i)
N e

(j)
N | is “small”
for 1 ≤ i < j ≤ N.

So the question is: if E(1)
N , . . . , E

(N)
N are “good” PR binary sequences, and

(3.2) holds, does this imply that the lattice η in (3.1) is a “good” PR bi-
nary lattice? We will show by an example that the answer is negative. This
example shows that from “good” PR binary sequences we cannot construct
a “good” lattice in this manner.
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Theorem 1. Let p be a prime number , and for j = 1, . . . , p define the
binary sequence E(j)

p = (e(j)1 , . . . , e
(j)
p ) by

e
(j)
i =


(
i+ j

p

)
for p - i+ j,

+1 for p | i+ j.

Define the binary lattice η by (3.1) (with p in place of N) so that , for
(x, y) ∈ {0, 1, . . . , p− 1}2,

η((x, y)) = e
(y+1)
x+1 =


(
x+ y + 2

p

)
for p -x+ y + 2,

+1 for p |x+ y + 2.

Then for k ∈ N, k < p, j = 1, . . . , p we have

(3.3) Qk(E(j)
p ) < 10kp1/2 log p

(so that E(1)
p , . . . , E

(p)
p are “good” PR binary sequences) and

(3.4) |(E(i)
p , E(j)

p )| < 4p1/2 for 1 ≤ i < j ≤ p

(so that (3.2) also holds), but

(3.5) Q2(η) ≥ (p− 1)2.

Proof. Denote the quadratic character of Fp by χ∗:

χ∗(n) =


(
n

p

)
for p -n,

0 for p |n.

Then

Qk(E(j)
p ) = max

a,t,D

∣∣∣ t∑
i=0

e
(j)
ia+d1

· · · e(j)ia+dk

∣∣∣
≤ max

a,t,D

(∣∣∣∣ ∑
0≤i≤t

p - (j+ia+d1)···(j+ia+dk)

(
(j + ia+ d1) · · · (j + ia+ dk)

p

)∣∣∣∣
+

∑
0≤i≤t

p|(j+ia+d1)···(j+ia+dk)

1
)

≤ max
a,t,D

(∣∣∣ t∑
i=0

χ∗((j + ia+ d1) · · · (j + ia+ dk))
∣∣∣+ k

)
,

whence, by Lemma 1, (3.3) follows.
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Moreover, for 1 ≤ i < j ≤ p we have

|(E(i)
p , E(j)

p )| =
∣∣∣ p∑
l=1

e
(i)
l e

(j)
l

∣∣∣(3.6)

≤
∣∣∣∣ ∑

1≤l≤p
p - (l+i)(l+j)

(
(l + i)(l + j)

p

)∣∣∣∣+
∑

1≤l≤p
p|(l+i)(l+j)

1

≤
∣∣∣ p∑
l=1

χ∗((l + i)(l + j))
∣∣∣+ 2.

It follows from Weil’s theorem [12] (see also Lemma 2C in [11]) that the last
sum is ≤ 2p1/2. Thus (3.4) follows from (3.6).

Finally, it follows from the definition of Qk(η) that

Q2(η) ≥
∣∣∣ p−2∑
j1=0

p−1∑
j2=1

η((j1, j2) + (0, 0))η((j1, j2) + (+1,−1))
∣∣∣(3.7)

=
∣∣∣ p−2∑
j1=0

p−1∑
j2=1

η((j1, j2))η((j1 + 1, j2 − 1))
∣∣∣.

We have

η((j1, j2))η((j1 + 1, j2 − 1)) =
(
j1 + j2 + 2

p

)(
j1 + j2 + 2

p

)
= +1 for p - j1 + j2 + 2

and

η((j1, j2))η((j1 + 1, j2 − 1)) = (+1)(+1) = +1 for p | j1 + j2 + 2,

so that, from (3.7),

Q2(η) ≥
p−2∑
j1=0

p−1∑
j2=1

1 = (p− 1)(p− 1) = (p− 1)2,

which proves (3.5) and completes the proof of Theorem 1.

Remark 1. We note that the construction of Theorem 1 is a special case
of a more general construction: Let E(1)

N = {e(1)
1 , . . . , e

(1)
N } ∈ {−1,+1}N be a

truly random binary sequence, and for 2 ≤ j ≤ n let E(j)
N be a shifted version

of E(1)
N , so E

(j)
N = {e(j)1 , . . . , e

(j)
N } = {e(1)

j , e
(1)
j+1, . . . , e

(1)
N , e

(1)
1 , e

(1)
2 , . . . , e

(1)
j−1}.

Then the E(j)
N ’s satisfy inequalities of type (3.3) and (3.4) (with N in place

of p and with upper bounds O(N1/2(logN)c)) with probability 1. Define a
lattice η by

η(x, y) = e
(y+1)
x+1 = e

(1)
rN (x+y+1) (for (x, y) ∈ {0, 1, . . . , p− 1}2)
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where rN (x+y+1) denotes the least positive residue of x+y+1 modulo N .
Similarly to (3.7) we easily get

Q2(η) ≥ (N − 1)2.

In Theorem 1 we presented a special case of the above construction,
where E(1)

N was defined by the Legendre symbol, and then indeed (3.3) and
(3.4) hold.

4. Trying to reduce the two-dimensional case to the one-dimen-
sional one: the PR measures of order 1. The simplest and more natural
way to reduce the two-dimensional case to the one-dimensional one is the
following:

To any two-dimensional binary N -lattice

(4.1) η(x) : I2
N → {−1,+1}

we may assign a unique binary sequence EN2 = EN2(η) = (e1, . . . , eN2) ∈
{−1,+1}N by taking the first (from the bottom) row of the lattice (4.1),
then the second row, etc.; in general, we set

(4.2) eiN+j = η((j − 1, i)) for i = 0, 1, . . . , N − 1, j = 1, . . . , N.

It is natural to ask: is it true that if EN2(η) is a “good” PR binary sequence
then η is a “good” PR two-dimensional lattice? Then “good” PR binary
sequences would generate “good” PR-binary lattices automatically, so it
would be sufficient to study binary sequences, and there would be no need for
developing a theory of pseudorandomness of binary lattices. Unfortunately,
the answer to this question is negative; we will show in Sections 4 and 5
that it may occur that the PR measures of the sequence EN2(η) are small,
but the corresponding PR-measures of the lattice η are large.

We will denote the PR measures of EN2(η) by W,Ck, Qk, while we write
Qk for the pseudorandom measure of order k of η. First we will compare the
PR measures of order 1, i.e., Q1 = W and Q1.

Theorem 2. For every even number N = 2R ∈ N there is a binary
lattice η such that Q1(EN2(η)) is “small”:

(4.3) Q1(EN2(η)) = W (EN2(η)) < 4N,

but Q1(η) is large:

(4.4) Q1(η) >
1
2
N2.

Proof. Define an N -lattice of type (4.1) by

η((i, j)) =
{

+1 for i = 0, 1, . . . , R− 1 and j = 0, 1, . . . , N − 1,
−1 for i = R,R+ 1, . . . , N − 1 and j = 0, 1, . . . , N − 1.

We will show that η satisfies (4.3) and (4.4).
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By the definition of W and Q1 we have

Q1(EN2(η)) = W (EN2(η)) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣
where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a + (t − 1)b
≤ N2. Take one of the sums

∑t−1
j=0 ea+jb considered here. There are unique

integers u, v with
0 ≤ u ≤ v ≤ N − 1,
a ∈ (uN, uN +N ],
a+ (t− 1)b ∈ (vN, vN +N ].

Then
t−1∑
j=0

ea+jb =
∑

0≤j≤t−1
a+jb∈(uN,(u+1)N ]

ea+jb +
∑

u<w<v

∑
0≤j≤t

a+jb∈(wN,(w+1)N ]

ea+jb(4.5)

+
∑

0≤j≤t−1
a+jb∈(vN,(v+1)N ]

ea+jb.

Clearly, ∣∣∣ ∑
0≤j≤t−1

a+jb∈(uN,(u+1)N ]

ea+jb

∣∣∣ ≤ ∑
a+jb∈(uN,(u+1)N ]

1 ≤ N,(4.6)

∣∣∣ ∑
0≤j≤t−1

a+jb∈(vN,(v+1)N ]

ea+jb

∣∣∣ ≤ ∑
a+jb∈(vN,(v+1)N ]

1 ≤ N,(4.7)

and, for u < w < v, by the definition of η and EN2 ,

(4.8)
∣∣∣ ∑
j: a+jb∈(wN,(w+1)N ]

ea+jb

∣∣∣ =
∣∣∣ ∑
j: a+jb∈(wN,wN+R]

η((a+jb−wN−1, w))

+
∑

j: a+jb∈(wN+R,(w+1)N ]

η((a+ jb− wN − 1, w))
∣∣∣

=
∣∣∣ ∑
j: a+jb∈(wN,wN+R]

1−
∑

j: a+jb∈(wN+R,(w+1)N ]

1
∣∣∣

= | |{m : m ≡ a (mod b), wN < m ≤ wN +R}|

− |{m : m ≡ a (mod b), wN +R < m ≤ (w + 1)N}| |

= |(|{m : m ≡ a (mod b), wN < m ≤ wN +R}| −R/b)

− (|{m : m ≡ a (mod b), wN +R < m ≤ (w + 1)N}| −R/b)|
≤ 1 + 1 = 2.
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It follows from (4.5)–(4.8) that∣∣∣ t−1∑
j=0

ea+jb

∣∣∣ ≤ N + 2(v − u− 1) +N < 4N,

which proves (4.3).
On the other hand, we have

Q1(η) ≥
∣∣∣R−1∑
j1=0

N−1∑
j2=0

η((j1, j2))
∣∣∣ =

R−1∑
j1=0

N−1∑
j2=0

1 = RN =
1
2
N2,

which proves (4.4).

Remark 2. It is easy to see that in the example above we have

Q2(EN2(η)) ≥ C2(EN2(η))� N2.

One might like to give a construction where we also have Q2(EN2(η)) =
o(N2) or at least C2(EN2(η)) = o(N2). We have not be able to give such a
construction. So we arrive at the following natural question:

Problem 1. Is it true that

C2(EN2(η)) = o(N2) ⇒ Q1(η) = o(N2)?

5. Trying to reduce the two-dimensional case to the one-dimen-
sional case: the PR measures of order 2. One might wish to save the
above idea on reducing the two-dimensional case to the one-dimensional one
by also considering the PR measures of order 2. So one may ask: is it true
that if W (EN2(η)) and C2(EN2(η)) are small, then η must be a “good” PR
binary lattice? Again, the answer is negative:

Theorem 3. For every even number N = 2R ∈ N there is a binary
lattice η such that Q1(EN2(η)) and C2(EN2(η)) are small :

(5.1) Q1(EN2(η)) = W (EN2(η)) < 6N(logN)1/2

and

(5.2) C2(EN2(η)) < 12N(logN)1/2,

but Q2(η) is large:

(5.3) Q2(η) ≥ 1
4
N2.

Proof. We will present a probabilistic construction, more precisely we
will consider all the binary N -lattices η satisfying certain conditions and
chosen with equal probability, and then we will show that for ε > 0 and
N > N0(ε), such a lattice η satisfies (5.1), resp. (5.2) with probability greater
than 1− ε, and all these lattices η also satisfy (5.3).
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Define an N -lattice η so that

(i) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ R− 1 the numbers η(x, y) are indepen-
dent random variables with distribution

(5.4) P (η(x, y) = +1) = P (η(x, y) = −1) = 1/2,

(ii) η(x, y) = −η(x, y −R) for R ≤ x ≤ N − 1, R ≤ y ≤ N − 1,
(iii) η(x, y) = η(x, y −R) for 0 ≤ x ≤ R− 1, R ≤ y ≤ N − 1.

The structure of this binary lattice η is the following:

Y −Z
Y Z

Then defining the binary sequence EN2 = EN2(η) = (e1, . . . , eN2) by (4.2),
it is easy to check that e1, . . . , eN2 have the following properties:

(P1) For n = 1, . . . , N2 the number en is a random variable with distri-
bution

P (en = +1) = P (en = −1) = 1/2.

(P2) If 1 ≤ n < n+ d ≤ N2 and d 6= RN , then the random variables en
and en+d are independent.

(P3) If 1 ≤ n < n+d ≤ N2, d = RN , and we write n in the form iN + j
with i ∈ {0, 1, . . . , R− 1}, j ∈ {1, . . . , N}, then

en+d =
{
en for 1 ≤ j ≤ R,
−en for R < j ≤ N (= 2R).

We will denote the mean value and standard deviation of the random
variable ξ by M(ξ) and D(ξ), respectively. We will need Bernstein’s inequal-
ity [9, Ch. 7]:

Lemma 2. If ξ1, . . . , ξm are independent random variables with M(ξk)
= Mk, D(ξk) = Dk and |ξk −Mk| ≤ K for k = 1, . . . ,m, then, writing
ξ = ξ1 + · · · + ξm, M = M1 + · · · + Mm and D = (D2

1 + · · · + D2
m)1/2, for

any positive number µ ≤ D/K we have

P (|ξ −M | ≥ µD) ≤ 2 exp
(
− µ2

2(1 + µK/2D)2

)
.

To estimate W (EN2(η)), fix positive integers a, b, t with 1 ≤ a ≤
a+ (t− 1)b ≤ N2, and consider the sum

S(a, b, t) =
t−1∑
j=0

ea+jb.

Denote by t∗ the largest integer for which

a+ (t∗ − 1)b < N2/2.
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Let

S1(a, b, t) =
t∗−1∑
j=0

ea+jb, S2(a, b, t) =
t−1∑
j=t∗

ea+jb.

Then
S(a, b, t) = S1(a, b, t) + S2(a, b, t).

By properties (P1) and (P2) we may use Lemma 2 with ea+(k−1)b in place of
ξk for k = 1, . . . , t∗ and for k = t∗+ 1, . . . , t, so that now Mk = 0, Dk = 1/2,
K = 1/2, M = 0 and in the first case D = 1

2 t
∗1/2 and in the latter case

D = 1
2(t− t∗)1/2. Then using Lemma 2 with µ = 12(logN)1/2 we easily get

P (|S1(a, b, t)| > 6N(logN)1/2) <
1

2N8
,

P (|S2(a, b, t)| > 6N(logN)1/2) <
1

2N8
,

uniformly in a, b, t for N > N0. From this and the triangle inequality we get

P (|S(a, b, t)|> 12N(logN)1/2)≤P (|S1(a, b, t)| > 6N(logN)1/2)

+ P (|S2(a, b, t)|> 6N(logN)1/2)≤ 1/N8.

Thus we have

(5.5) P (W (EN2)> 12N(logN)1/2) = P (max
a,b,t
|S(a, b, t)|> 12N(logN)1/2)

≤
∑
a,b,t

P (|S(a, b, t)| > 12N(logN)1/2) ≤
∑

1≤a,b,t≤N2

1
N8

=
1
N2

.

Now we will estimate

(5.6) C2(EN2(η)) = max
L,d1,d2

∣∣∣ L∑
n=1

en+d1en+d2

∣∣∣ = max
U,V,d

∣∣∣ V∑
n=U

enen+d

∣∣∣
where the maximum is taken over all U, V, d with 1 ≤ U ≤ V < V +d ≤ N2.
Consider one of these sums

∑V
n=U enen+d. We have to distinguish two cases.

Case 1. Assume first that

(5.7) d 6= RN.

Define

A1 = {U,U + 1, . . . , V } ∩
+∞⋂
k=0

{2kd+ 1, 2kd+ 2, . . . , (2k + 1)d},

A2 = {U,U + 1, . . . , V } ∩
+∞⋂
k=0

{(2k + 1)d+ 1, (2k + 1)d+ 2, . . . , (2k + 2)d},
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so that ∣∣∣ V∑
n=U

enen+d

∣∣∣ =
∣∣∣ ∑
n∈A1

enen+d +
∑

n∈A2

enen+d

∣∣∣(5.8)

≤
∣∣∣ ∑
n∈A1

enen+d

∣∣∣+
∣∣∣ ∑
n∈A2

enen+d

∣∣∣ =
∣∣∣∑

1

∣∣∣+
∣∣∣∑

2

∣∣∣.
It follows from (P1), (P2) and (5.7) that the terms of

∑
1 are independent

random variables of distribution

P (enen+d = +1) = P (enen+d = −1) = 1/2 (for n ∈ A1).

Thus the terms of
∑

1 can be estimated by using Lemma 2 (in the same way
as in the estimate of W (EN2)). We obtain

(5.9) P
(∣∣∣∑

1

∣∣∣ > 6N(logN)1/2
)
<

1
2N8

for N > N0. In the same way we get

(5.10) P
(∣∣∣∑

2

∣∣∣ > 6N(logN)1/2
)
<

1
2N8

.

It follows from (5.8)–(5.10) that for all U , V and d (satisfying (5.7)) we have

P
(∣∣∣ V∑

n=U

enen+d

∣∣∣ > 12N(logN)1/2
)

≤ P
(∣∣∣∑

1

∣∣∣ > 6N(logN)1/2
)

+ P
(∣∣∣∑

2

∣∣∣ > 6N(logN)1/2
)

<
1

2N8
+

1
2N8

=
1
N8

,

whence

(5.11) P
(

max
U,V,d6=RN

∣∣∣ V∑
n=U

enen+d

∣∣∣ > 12N(logN)1/2
)

≤
∑

U,V,d6=RN

P
(∣∣∣ V∑

n=U

enen+d

∣∣∣ > 12N(logN)1/2
)
<

∑
U,V,d6=RN

1
N8

≤ (N2)3
1
N8

=
1
N2

(for N > N0).

Case 2. Assume that

(5.12) d = RN.

Let K1 and K2 denote respectively the smallest and greatest integer K with

(KN, (K + 1)N ] ∩ [U, V ] 6= 0.
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Then by (P3) and (5.12) we have

(5.13)
∣∣∣ V∑
n=U

enen+d

∣∣∣
=
∣∣∣(K1+1)N∑

n=U

enen+d +
K2−1∑

K=K1+1

(K+1)N∑
n=KN+1

enen+d +
V∑

n=K2N+1

enen+d

∣∣∣
≤
∣∣∣(K1+1)N∑

n=U

1
∣∣∣+ K2−1∑

K=K1+1

∣∣∣ KN+R∑
n=KN+1

enen+d +
(K+1)N∑

n=KN+R+1

enen+d

∣∣∣+
∣∣∣ V∑
n=K2N+1

1
∣∣∣

≤ N +
K2−1∑

K=K1+1

∣∣∣ KN+R∑
n=KN+1

1 +
(K+1)N∑

n=KN+R+1

(−1)
∣∣∣+N

= 2N (for d = RN).

Finally, by (ii) we have

Q2(η) ≥
∣∣∣R−1∑
j1=0

R−1∑
j2=0

η((j1, j2) + (0, 0))η((j1, j2) + (0, R))
∣∣∣(5.14)

=
∣∣∣R−1∑
j1=0

R−1∑
j2=0

η((j1, j2))2
∣∣∣ =

R−1∑
j1=0

R−1∑
j2=0

1 = R2 =
1
4
N2.

By (5.5), (5.11) and (5.13), for N ≥ N0(ε) both (5.1) and (5.2) hold with
probability greater than 1 − ε, and by (5.14), for all lattices η considered,
(5.3) also holds; this completes the proof of Theorem 3.

Remark 3. In Theorem 3 we could have replaced C2(EN2) by Q2(EN2)
but this would have made the argument lengthier, so we preferred to present
this simpler version. It is easy to see that in the construction of Theorem 3
we have

Q4(EN2(η)) ≥ C4(EN2(η))� N2.

Thus one might ask the following question:

Problem 2. Is it true that Q4(EN2(η))=o(N2) implies Q2(η) = o(N2)?

Remark 4. Theorem 3 could be extended from C2(EN2) to Ck(EN2)
(and beyond, to Qk(EN2)) by using the following generalization of our con-
struction: Let N = 2kR where k,R ∈ N. Define an N -lattice η so that

(i) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ (2k − 2)R − 1 the numbers η(x, y) are
independent random variables with distribution

P (η(x, y) = +1) = P (η(x, y) = −1) = 1/2,
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(ii) η(x, y) =
∏k−1

i=1 η((x, y− 2iR)) for 0 ≤ x ≤ kR− 1, (2k− 2)R ≤ y ≤
N − 1,

(iii) η(x, y) = −
∏k−1

i=1 η((x, y − 2iR)) for kR ≤ x ≤ N − 1, (2k − 2)R ≤
y ≤ N − 1.

The structure of this lattice η is the following:

kRz }| { kRz }| {
2R{

Q
Yi −

Q
Zi

2R{ Yk−1 Zk−1

...
...

...

2R{ Y3 Z3

2R{ Y2 Z2

2R{ Y1 Z1

(Here
∏
Yi means that the jth element in the lth row of this 2R×kR matrix

is the product of the corresponding elements of the matrices Y1, . . . , Yk−1;
the meaning of

∏
Zi is similar.)

It is easy to see that in this construction we have

Q2k(EN2(η)) ≥ C2k(EN2(η))� N2.

This motivates the following question:

Problem 3. Is it true that if Q2k(EN2(η)) = o(N2) for some fixed
k > 1, then Qk(η) = o(N2)?

By Theorem 3 it may occur that C2(EN2) is small but Q2(η) is large.
The opposite cannot occur:

Theorem 4. For every binary N -lattice η and k ∈ N we have

Qk(EN2(η)) ≤ 3N(Qk(η))1/2.

Note that, as shown in [3], for a truly random two-dimensional N -lattice
η the order of magnitude of Qk(η) is N , so that the right hand side is
O(N3/2). Thus in general this theorem gives the nontrivial bound O(N3/2)
for Qk(EN2(η)).

Proof. By the definition of Qk(EN2(η)) there exist a, t and D =
(d1, . . . , dk) with 0 < d1 < · · · < dk such that

(5.15) Qk(EN2(η)) =
∣∣∣ t∑
j=0

eja+d1 · · · eja+dk

∣∣∣,
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where all subscripts ja+dl belong to {1, . . . , N2}. We split {1, . . . , N2} into
several subsets. For 0 ≤ i ≤ N − 1 the (i+ 1)-st subset is

Ii = {iN + 1, iN + 2, . . . , (i+ 1)N}.
For 0 ≤ j ≤ t the minimum value of ja+ d1 is d1. Write d1 in the form

d1 = yminN + x1 where 0 ≤ x1 ≤ N − 1.

For 0 ≤ j ≤ t the maximum value of ja+ d1 is ta+ d1. Write ta+ d1 in the
form

ta+ d1 = ymaxN + x2 where 0 ≤ x2 ≤ N − 1.
Then

Qk(EN2(η)) =
∣∣∣ ymax∑
i=ymin

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

∣∣∣(5.16)

≤
∣∣∣ ∑

0≤j≤t
ja+d1∈Iymin∪Iymax

eja+d1 · · · eja+dk

∣∣∣
+
∣∣∣ ymax−1∑
i=ymin+1

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

∣∣∣
≤ 2N +

∣∣∣ ymax−1∑
i=ymin+1

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

∣∣∣
= 2N +

∣∣∣a−1∑
l=0

ymax−1∑
i=ymin+1
i≡l (mod a)

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

∣∣∣
≤ 2N +

a−1∑
l=0

∣∣∣ ymax−1∑
i=ymin+1
i≡l (mod a)

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

∣∣∣.
It is easy to check that if 0 ≤ l < a and

(5.17) {eja+d1 : ja+ d1 ∈ Il, j ∈ N}
= {η(xl, l), η(xl + a, l), . . . , η(xl + tla, l)},

then for i ≡ l (mod a) we have

{eja+d1 : ja+ d1 ∈ Ii, j ∈ N} = {η(xl, i), η(xl + a, i), . . . , η(xl + tla, i)}.
In (5.16), j assumes values from the interval [0, t]. By the definition of ymin

and ymax, and (5.17), if i ≡ l (mod a) and ymin + 1 ≤ i ≤ ymax − 1, then

{eja+d1 : ja+ d1 ∈ Ii, 0≤ j ≤ t}= {η(xl, i), η(xl + a, i), . . . , η(xl + tla, i)}.
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Write di − d1 in the form
di − d1 = di,1N + di,2 with 0 ≤ di,2 ≤ N − 1

and define
d′i−1 = (di,1, di,2).

Then for i ≡ l (mod a) and ymin + 1 ≤ i ≤ ymax − 1 we have∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

=
tl∑

j=0

η((xl + ja, i))η((xl + ja, i) + d′1) · · · η((xl + ja, i) + d′k−1).

Let
{i : i ≡ l (mod a), ymin + 1 ≤ i ≤ ymax − 1} = {yl, yl + a, . . . , yl + sla}.

Then
ymax−1∑

i=ymin+1
i≡l (mod a)

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

=
sl∑

i=0

tl∑
j=0

η((xl + ja, yl + ia))η((xl + ja, yl + ia) + d′1)

· · · η((xl + ja, yl + ia) + d′k−1).
By the definition of Qk(η) we have

(5.18)
∣∣∣ ymax−1∑

i=ymin+1
i≡l (mod a)

∑
0≤j≤t

ja+d1∈Ii

eja+d1 · · · eja+dk

∣∣∣
=
∣∣∣ sl∑

i=0

tl∑
j=0

η((xl + ja, yl + ia))η((xl + ja, yl + ia) + d′1)

· · · η((xl + ja, yl + ia) + d′k−1)
∣∣∣ ≤ Qk(η).

Using (5.16) and (5.18) we get

(5.19) Qk(EN2(η)) ≤ 2N + aQk(η).

On the other hand, the number of terms in (5.15) is t + 1 ≤ 2t ≤ 2N2/a,
thus Qk(EN2(η)) ≤ 2N2/a. Therefore

a ≤ 2N2

Qk(EN2(η))
.

Using this and (5.19) yields

Qk(EN2(η)) ≤ 2N +
2N2Qk(η)
Qk(EN2(η))

,

Qk(EN2(η))2 ≤ 2NQk(EN2(η)) + 2N2Qk(η),
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(Qk(EN2(η))−N)2 ≤ N2 + 2N2Qk(η),

Qk(EN2(η)) ≤ N +N(1 + 2Qk(η))1/2,

Qk(EN2(η)) ≤ 3N(Qk(η))1/2

which was to be proved.
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Alfréd Rényi Institute of Mathematics
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