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1. Introduction. The Steinitz class of an extension of number fields
is a familiar object of study. Numerous algebraic results concerning it are
known, and recently ([2], [4]) density and distribution results have been ob-
tained for suitable families of extensions. Our purpose here is to present
analogous results for the case where the extension field is replaced by a
central simple algebra over the base field. Since central simple algebras gen-
erally have several conjugacy classes of maximal orders, it is not obvious at
first that a Steinitz class can be defined in this setting. However, it emerges
(see Corollary 3.2) that all maximal orders are isomorphic as modules over
the integers of the base field, and so we may define the Steinitz class of a
central simple algebra to be the common Steinitz invariant of these mod-
ules. Next we determine (see Proposition 3.5) precisely which classes may
appear as Steinitz classes of central simple algebras. In Section 4, we find
the asymptotic frequency with which each of these possible classes occurs
as the algebra is varied in the family of central division algebras with fixed
dimension and fixed splitting type at infinity, ordered by the norm of the
discriminant. The distribution of Steinitz classes is not generally uniform,
but is so in some cases, including that of algebras of prime degree. The pos-
sible non-uniformity is demonstrated in the last section by giving a specific
example.

2. Notation. We begin by introducing our notation for arithmetical
objects. Let k be a number field, O the ring of integers of k, and M, Mf,
M∞, Mr, Mc, the set of all places, finite places, infinite places, real places,
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and complex places of k, respectively. Let kv be the localization of k at v. If
v ∈ Mf then let Ov be the ring of integers of kv, Pv the maximal ideal of Ov,
̟v ∈ Pv a generator, qv the cardinality of Ov/Pv, and pv = Pv ∩ O. If a is
an ideal of O then we shall write N(a) ∈ N for the absolute ideal norm of a,
that is, the cardinality of the ring O/a.

Let A× be the group of ideles of k and write

A×
0 =

∏

v∈Mf

O
×
v , A×

∞ =
∏

v∈M∞

k×v .

It is well known that the ideal class group Cl(k) of k may be identified with
the group

A×/(k× · A×
∞ · A×

0 )

and we shall make this identification here. The class group may equally be
identified with the Picard group of O, that is, the group of isomorphism
classes of rank one projective O-modules under the operation induced by
the tensor product. If M is a finitely generated torsion-free O-module of
rank r then the class of the module

∧r M in Cl(k) is called the Steinitz

invariant of M and denoted by S(M).

Next we introduce notation and terminology pertaining to central simple
algebras. Let K be a field. Whenever we consider a K-algebra, it is assumed
to be finite-dimensional over K. Let A be a central simple K-algebra. Then
dimK(A) is a square and we refer to deg(A) =

√
dimK(A) as the degree

of A. There is a division algebra D over K and an integer κ such that
A ∼= M(κ,D). We call ind(A) =

√
dimK(D) the index of A, con(A) = κ the

content of A, and D the spine of A.

Now suppose that A is a central simple algebra over a number field k
of degree m and let n = m2. By an order in A we shall always mean an
O-order, that is, a subring of A sharing the same unit element that is also
an O-lattice in A. We refer to [8] for the basic theory of such orders. If R is
an order in A then we let disc(R) denote its discriminant [8, p. 126]. Given
any set of elements x1, . . . , xn we define

disc(x1, . . . , xn) = det[tr(xixj)],

where tr denotes the reduced trace in A [8, p. 116].

3. The Steinitz class of a central simple algebra. In order to define
the Steinitz class of a central simple algebra, we first require the following
analogue of the famous result of Emil Artin [1] that describes the Steinitz
class of an extension of a number field.

Proposition 3.1 (Artin’s theorem). Let a1, . . . , an be a k-basis for a

central simple k-algebra A and R an order in A. Then there is a fractional
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ideal a such that

disc(R) = (disc(a1, . . . , an))a2

and we have S(R) = [a].

Proof. We first recall the correspondence of elements of the Picard group
of O with classes in Cl(k). Let N be a rank one projective O-module. Then
k ⊗ON is a one-dimensional k-vector space and we choose a basis a for it.
For each v ∈ Mf, Nv = Ov ⊗O N is a free Ov-module of rank one and we
choose a basis rv for it. For each v ∈ Mf, we may regard both a and rv as
elements of the one-dimensional kv-vector space

kv ⊗k (k ⊗ON) ∼= kv ⊗Ov Nv

and then choose xv ∈ k×v such that rv = xva. The idele x with component
xv at v ∈ Mf and component 1 at v ∈ M∞ represents S(N) in Cl(k).

We apply the preceding discussion to N =
∧nR. For each v ∈ Mf, we

may choose an Ov-basis r1,v, . . . , rn,v for Rv. Let gv ∈ Aut(kv ⊗k A) be the
element that satisfies gv(ai) = ri,v for 1 ≤ i ≤ n. Define a = a1 ∧ · · · ∧ an

and rv = r1,v ∧ · · · ∧ rn,v and note that (
∧n gv)(a) = rv. This equation may

be written as det(gv)a = rv and it follows that the idele with components
xv = det(gv) for v ∈ Mf and xv = 1 for v ∈ M∞ represents the class of
S(R). On the other hand, from the basic properties of the discriminant we
get the equation

disc(R)v = (disc(r1,v, . . . , rn,v)) = (disc(a1, . . . , an))(x2
v)

for all v ∈ Mf. Thus we need only let a be the fractional ideal corresponding
to the idele x.

In contradistinction to the number field case, there may be more than
one conjugacy class of maximal orders in a given central simple k-algebra.
However, we are now in a position to show that all these maximal orders
are isomorphic to one another as O-modules. This is the crucial fact that
allows us to define the Steinitz class of a central simple k-algebra.

Corollary 3.2. Let A be a central simple algebra over a number field k
and R and R′ maximal orders of A. Then S(R) = S(R′).

Proof. It is known that disc(R) = disc(R′) [8, Theorem 25.3] and the
claim follows at once from this and Proposition 3.1.

Definition 3.3. The Steinitz class St(A) of a central simple algebra A
over a number field is the Steinitz invariant of any maximal order in A.

Let A be a central simple k-algebra of degree m. If v ∈ M then Av =
kv ⊗k A is a central simple kv-algebra and we write κv for its capacity and
lv for its index. Note that m = κvlv for all v. We have in addition a Hasse
invariant inv(Av) ∈ Q/Z for each v (see [8, equation (31.7)]). We shall write



396 A. C. Kable et al.

invv(A) rather than inv(Av) for this invariant below. If Dv is the spine
of Av then invv(A) = inv(Dv) and this invariant has the form [sv/lv] with
gcd(sv, lv) = 1. The invariant may be rewritten as invv(A) = [tv/m] if we
define tv = svκv. In terms of tv, we have κv = gcd(tv,m). It is known [8,
Theorem 32.1] that the discriminant of any maximal order in A is given by
the expression

D(A) =
∏

v∈Mf

pm(lv−1)κv
v .

In terms of the notation just introduced, this may also be written as

(1) D(A) =
∏

v∈Mf

pm(m−gcd(tv,m))
v .

Proposition 3.4. With notation and hypotheses as above, we have

St(A) =
∏

v∈Mf

[pv]
m(m−gcd(tv,m))/2.

Proof. Choose a basis a1, . . . , an for the algebra A over k and write

δ = disc(a1, . . . , an).

By Theorem 1.3 of [5], we have δ = ±c2 for some c ∈ k× (the sign is made
precise in Lewis’ result, but we do not need it). Note that every exponent
in (1) is even and hence we may define an ideal in O by

b =
∏

v∈Mf

pm(m−gcd(tv,m))/2
v ,

so that b2 = D(A). By Proposition 3.1 there is a fractional ideal a such
that D(A) = (δ)a2 and St(A) = [a]. The former equation is equivalent to
b2 = (c)2a2 and, by unique factorization, this implies that b = (c)a. Thus
St(A) = [a] = [(c−1)b] = [b], as claimed.

Our next task is to determine precisely which classes in Cl(k) can appear
as the Steinitz class of a central simple algebra of degree m. Recall that, by
Hasse’s theorem [7, Propositions 18.7a and 18.7b], the isomorphism classes
of central simple k-algebras of degree m are in one-to-one correspondence
with sequences {iv}v∈M in Q/Z such that iv = 0 for all but finitely many v,
iv = 0 for all v ∈ Mc, 2iv = 0 for all v ∈ Mr,

∑
v∈M

iv = 0, and miv = 0 for
all v.

If m is a natural number then we define

α(m) = gcd
0≤t≤m−1

(m− gcd(t,m)).

We note that α(m) = 1 if m is even and that α(m) is even if m is odd. If m
is a power of the prime number p then α(m) = p− 1. One may verify that

α(m1m2) = gcd(α(m1), α(m2))
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for any natural numbers m1 and m2, from which it follows that

α(m) = gcd
p|m

(p− 1).

This formula and Dirichlet’s theorem on primes in an arithmetic progression
easily imply that every even natural number lies in the range of α.

It is convenient to be able to fix the splitting type of the central simple
algebras under consideration at all infinite places and we now introduce
terminology to do so. We define an infinity type to be a choice of τv ∈ Q/Z
for each v ∈ M∞ in such a way that τv = 0 for all v ∈ Mc and 2τv = 0
for all v ∈ Mr. Any central simple k-algebra A gives rise to an infinity type
τ(A) by setting τ(A)v = invv(A) for all v ∈ M∞. If τ is any infinity type
then we define ε(τ) =

∑
v∈M∞

τv. Given a positive natural number m, we
say that an infinity type τ is compatible with m if m is even or if m is odd
and τv = 0 for all v ∈ M∞.

Proposition 3.5. Let m be a positive natural number and τ a compat-

ible infinity type. Then we have

{St(A) | deg(A) = m, τ(A) = τ} = Cl(k)mα(m)/2.

The equality remains true if we also restrict A to be a division algebra.

Proof. In the exceptional case where m = 1, the claim is true by in-
spection. We now assume that m ≥ 2. Since α(m) | (m − gcd(t,m)) for all
natural numbers t, the expression for St(A) given in Proposition 3.4 makes
it clear that St(A) always lies in Cl(k)mα(m)/2.

To prove the reverse inclusion, let C ∈ Cl(k). By the definition of α, we
may choose integers b1, . . . , bm−1 such that

m−1∑

t=1

bt(m− gcd(t,m)) = α(m).

By the Prime Ideal Theorem for Classes [6, Corollary 4 to Proposition 7.17],
we may choose distinct v1, . . . , vm−1 ∈ Mf such that [pvt ] = Cbt for 1 ≤ t ≤
m − 1. We may also choose a place w ∈ Mf such that w /∈ {v1, . . . , vm−1}
and [pw] is trivial in Cl(k). Consider the sequence {iv}v∈M in Q/Z given by
iv = 0 if v /∈ {v1, . . . , vm−1, w} ∪M∞, ivt = [t/m] for 1 ≤ t ≤ m− 1, iv = τv
for v ∈ M∞, and

iw =

{
0 if m is odd,

[ε(τ) + 1/2] if m is even.

This sequence satisfies the requirements of Hasse’s theorem and hence there
is a central simple k-algebra A of degree m such that invv(A) = iv for all
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v ∈ M. By Proposition 3.4, we have

St(A) =
∏

v∈Mf

[pv]
m(m−gcd(tv,m))/2 =

m−1∏

t=1

[pvt ]
m(m−gcd(t,m))/2

=
m−1∏

t=1

Cmbt(m−gcd(t,m))/2 = Cmα(m)/2.

This establishes the reverse inclusion. For the last claim, note that the A
with St(A) = Cmα(m)/2 that was just constructed is a division algebra, since
Av1 has index m equal to its degree and is therefore a division algebra.

Corollary 3.6. Let k be a number field , e the exponent of Cl(k), and

m a natural number. Then all maximal orders in central simple k-algebras
of degree m are free O-modules if and only if e divides mα(m)/2.

Proof. Indeed, the condition holds if and only if St(A) is the trivial class
for all such k-algebras A. By Proposition 3.5, this happens if and only if
Cl(k)mα(m)/2 is trivial.

Note that it also follows from Proposition 3.5 that every class in Cl(k) is
representable as the Steinitz class of a quaternion algebra over k and that,
among central simple algebras, quaternion algebras are the only ones that
have this property in general.

4. Asymptotic distribution of Steinitz classes. We wish to refine
Proposition 3.5 by considering how St(A) varies as A varies over algebras of
a given degree m ≥ 2 and compatible infinity type τ , fixed in the ensuing
discussion. Because the most natural analogue of an extension field of k in
this setting is a central division algebra over k, rather than a general central
simple algebra over k, it is most interesting to study this distribution when
A is additionally restricted to be a division algebra.

Let A be a central simple k-algebra of degree m and write the local
invariant of A at a place v in the form invv(A) = [tv/m] with 0 ≤ tv ≤ m−1.
It follows from [8, Theorem 32.19] that the content of A is given by

con(A) = gcd
v∈M

(tv,m).

In particular, A is a division algebra if and only if gcdv∈M(tv) is relatively
prime to m.

With m ≥ 2 and a compatible infinity type τ fixed, we write ε = ε(τ),
β(m) = mα(m)/2, γ(t) = m − gcd(t,m), and Gm = Cl(k)β(m). Let P be
the set of primes that divide m. If S ⊂ P and t is an integer then we shall
write S | t to mean that p | t for all p ∈ S. For any S ⊂ P , let A[S] be the set
of isomorphism classes of central simple k-algebras of degree m and infinity
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type τ such that S | tv for all v ∈ M. Note that A[∅] is the set of all central
simple k-algebras of degree m and infinity type τ and

Â = A[∅] −
⋃

p∈P

A[{p}]

is the subset of A[∅] consisting of the division algebras. It is possible that
A[S] = ∅. This occurs precisely when m is exactly divisible by 2, 2 ∈ S, and
τv 6= 0 for some v ∈ Mr. We shall say that S is incompatible with τ if these
conditions hold, and that S is compatible with τ otherwise.

For χ a character of Gm and S ⊂ P we consider the formal Dirichlet
series

Φ(s, χ;S) =
∑

A∈A[S]

χ(St(A))

N(D(A))s
.

Note that Φ(s, χ;S) = 0 if S is incompatible with τ . In order to reexpress
Φ(s, χ;S) when S is compatible with τ , we introduce the character ψ of
Z/mZ defined by ψ(x) = exp(2πix/m). For each v ∈ Mf and a ∈ Z define

Fv(s, χ, a;S) =
∑

0≤t≤m−1, S|t

ψ(at)χ([pv]
mγ(t)/2)q−mγ(t)s

v ,

F (s, χ, a;S) =
∏

v∈Mf

Fv(s, χ, a;S).

Lemma 4.1. If S is compatible with τ then

Φ(s, χ;S) =
1

m

m−1∑

a=0

ψ(amε)F (s, χ, a;S).

Proof. Suppose that S is compatible with τ . By Hasse’s theorem, (1),
and Proposition 3.4, we may express Φ(s, χ;S) in the form

Φ(s, χ;S) =
∑

(tv)

∏

v∈Mf

χ([pv]
mγ(tv)/2)q−mγ(tv)s

v ,

where the sum is over all sequences (tv)v∈Mf
such that tv = 0 for all but

finitely many v, 0 ≤ tv ≤ m− 1 for all v, S | tv for all v, and
∑

v∈Mf

tv +mε ≡ 0 (modm).

This, in turn, may be expressed as

Φ(s, χ;S) =
1

m

m−1∑

a=0

ψ(amε)
∑

(tv)

∏

v∈Mf

ψ(atv)χ([pv]
mγ(tv)/2)q−mγ(tv)s

v ,

where the inner sum is over all sequences (tv)v∈Mf
such that tv = 0 for

all but finitely many v, 0 ≤ tv ≤ m − 1 for all v, and S | tv for all v. By
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the standard argument from unique factorization, the inner sum is precisely
F (s, χ, a;S).

The set of characters of the group Gm may be identified with the set
of characters of Cl(k) that are trivial on Cl(k)[β(m)] = {C ∈ Cl(k) |
Cβ(m) = C0}, where C0 denotes the trivial class. This identification is made
by associating a character χ′ of Cl(k) that is trivial on Cl(k)[β(m)] with
the character χ of Gm defined by χ(C) = χ′(C ′), where C ′ ∈ Cl(k) is any
element such that (C ′)β(m) = C. If χ′ is a character of Cl(k) then the iden-
tification of Cl(k) with A×/(k× · A×

∞ · A×
0 ) allows us to regard χ′ as an

unramified idele class character of k. For any such character we define

L(s, χ′) =
∏

v∈Mf

(1 − χ′
v(̟v)q

−s
v )−1,

where χ′
v is the component of χ′ at v. As is conventional, we write ζk(s) for

L(s, χ′) when χ′ is the trivial character. Denote by ̺0 the residue of ζk(s)
at s = 1.

In the following, we assume that 0 ≤ t ≤ m− 1. Let γ0 < γ1 < · · · < γk

be the distinct values of γ(t). We have γ0 = γ(0) = 0 and γ1 = γ(m/p1) =
m− (m/p1), where p1 is the least prime dividing m. Note that γ(t) = γi if
and only if gcd(t,m) = m − γi, and that t has this property if and only if
t = (m− γi)r with gcd(r,m/(m− γi)) = 1. If S ⊂ P then define

I(S) = {i | γ(t) = γi for some t such that S | t} − {0}.
Note if S | t and γ(t) = γ(t′) then S | t′. Thus if we define

ci(a) =
∑

{t | γ(t)=γi}

ψ(at)

then we may write

(2) Fv(s, χ, a;S) = 1 +
∑

i∈I(S)

ci(a)χ([pv]
β(m))γi/α(m)q−mγis

v .

In fact, the ci(a) are Ramanujan sums [3, Section 16.6] and it is known that
if Ni = m/gcd(m, a(m− γi)) then

ci(a) =
µ(Ni)φ(m/(m− γi))

φ(Ni)
,

where µ and φ are, respectively, the Möbius function and the Euler function
[3, Theorem 272].

Lemma 4.2. Let σ1 =1/(mγ1) and S⊂P. The Dirichlet series F (s,χ, a;S)
converges absolutely in the open half-plane Re(s) > σ1 and has a meromor-

phic continuation to an open set containing the closed half-plane Re(s) ≥ σ1.

Its only possible singularity in this closed half-plane is a pole of order at most
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p1 − 1 at the point s = σ1. If s = σ1 is a singularity of F (s, χ, a;S) then

χγ1/α(m) = 1, p1 | a, 1 ∈ I(S), and we have

lim
s→σ+

1

(s− σ1)
p1−1F (s, χ, a;S)

=

(
̺0σ1

ζk(2)

)p1−1 ∏

v∈Mf

(1 + q−1
v )−(p1−1)

(
1 + (p1 − 1)q−1

v

+
∑

i∈I(S)−{1}

ci(a)χ([pv]
β(m))γi/α(m)q−γi/γ1

v

)
.

Proof. The coefficient of q−mγis
v in (2) is uniformly bounded in terms

of m. In light of this, comparison with a suitable power of the series

ζk(mγ1s)

ζk(2mγ1s)
=

∏

v∈Mf

(1 + q−mγ1s
v )

establishes that F (s, χ, a;S) converges absolutely for Re(s) > σ1. If 1 /∈ I(S)
then a similar argument shows that F (s, χ, a;S) in fact converges absolutely
for Re(s) > 1/(mγ2) and so all the other claims are immediate. We shall
assume henceforth that 1 ∈ I(S).

Let χ′ be the character of Cl(k) corresponding to the character χ of Gm

as explained above, so that χ([pv]
β(m)) = χ′([pv]). Define the Dirichlet series

Ψ(s, χ, a;S) by

Ψ(s, χ, a;S) =

(
L(mγ1s, (χ

′)γ1/α(m))

L(2mγ1s, (χ′)2γ1/α(m))

)−c1(a)

F (s, χ, a;S).

This Dirichlet series may be analyzed for convergence by the method just
used for F (s, χ, a;S) and the result is that there is some σ2 < σ1 such that
Ψ(s, χ, a;S) is absolutely convergent in the half-plane Re(s) > σ2. We have

F (s, χ, a;S) =

(
L(mγ1s, (χ

′)γ1/α(m))

L(2mγ1s, (χ′)2γ1/α(m))

)c1(a)

Ψ(s, χ, a;S)

and so the analytic behavior of F (s, χ, a;S) in Re(s) ≥ σ1 is controlled by
that of the first factor on the right-hand side.

If p1 does not divide a then c1(a) = −1. This, and the standard an-
alytic properties of the L-functions (as described in [6, Section 7.1]), im-
ply that the first factor is regular on an open set containing Re(s) ≥ σ1.
Now suppose that p1 does divide a, so that c1(a) = p1 − 1. The function
L(2mγ1s, (χ

′)2γ1/α(m))−1 is regular in the half-plane Re(s) > σ1/2. The
function L(mγ1s, (χ

′)γ1/α(m)) is regular in the half-plane Re(s) ≥ σ1 unless
(χ′)γ1/α(m) is the trivial character. In this latter case, L(mγ1s, (χ

′)γ1/α(m)) =
ζk(mγ1s) has a simple pole at s = σ1 with residue ̺0σ1 and no other singu-
larities in the half-plane Re(s) ≥ σ1. Under the assumption that χγ1/α(m) is
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trivial and p1 divides a, we obtain

lim
s→σ+

1

(s− σ1)
p1−1F (s, χ, a;S) =

(
̺0σ1

ζk(2)

)p1−1

Ψ(σ1, χ, a;S).

The formula given in the statement follows on expressing Ψ(σ1, χ, a;S) as a
convergent Euler product.

When χγ1/α(m) is trivial and p1 divides a, let us define

R(χ, a;S) = lim
s→σ+

1

(s− σ1)
p1−1F (s, χ, a;S).

The statement of Lemma 4.2 gives an explicit expression for R(χ, a;S). Note
that R(χ, a;S) = 0 unless 1 ∈ I(S).

Lemma 4.3. Let σ1 = 1/(mγ1) and S ⊂ P be compatible with τ . The

Dirichlet series Φ(s, χ;S) converges absolutely in the open half-plane Re(s)
> σ1 and has a meromorphic continuation to an open set containing the

closed half-plane Re(s) ≥ σ1. Its only possible singularity in this closed half-

plane is a pole of order at most p1 − 1 at the point s = σ1. If s = σ1 is a

singularity of Φ(s, χ;S) then χγ1/α(m) = 1 and we have

lim
s→σ+

1

(s− σ1)
p1−1Φ(s, χ;S) =

1

m

∑

0≤a≤m−1
p1|a

R(χ, a;S).

Proof. If m is odd then ε = 0. If m is even then p1 = 2 and ε is either
an integer or a half-integer. In either case, ψ(amε) = 1 when p1 | a. All the
claims follow from this observation and the expression for Φ(s, χ;S) given
in Lemma 4.1.

Now define

Φ̂(s, χ) =
∑

A∈Â

χ(St(A))

N(D(A))s
.

Since the sum here is restricted to division algebras, the inclusion-exclusion
principle implies that

(3) Φ̂(s, χ) =
∑

S⊂P

(−1)|S|Φ(s, χ;S).

By Lemma 4.3, this series converges absolutely in the open half-plane Re(s)
> σ1 and has a meromorphic continuation to an open set containing the
closed half-plane Re(s) ≥ σ1. The only possible singularity of Φ̂(s, χ) in this
closed half-plane is a pole of order at most p1 − 1 at s = σ1. If s = σ1 is a
singularity of Φ̂(s, χ) then χγ1/α(m) is the trivial character and we have

lim
s→σ+

1

(s− σ1)
p1−1Φ̂(s, χ) = R(χ),
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where

(4) R(χ) =
1

m

∑

S⊂P

∑

0≤a≤m−1
p1|a

(−1)|S|R(χ, a;S).

In connection with this formula, it might be worth pointing out that if S
is incompatible with τ then 1 /∈ I(S) and so R(χ, a;S) = 0. Thus the zero
terms in (3) are matched by zero terms in (4).

Lemma 4.4. We have R(1) 6= 0.

Proof. The claim is equivalent to the claim that Φ̂(s, 1) has a pole of
order p1 − 1 at s = σ1. Choose distinct finite places v1 and v2 and consider
the set A′ consisting of isomorphism classes of central simple k-algebras A
of degree m and infinity type τ such that invv1(A) = [1/m], invv2(A) =
[(m− 1)/m], and if v ∈ Mf − {v1, v2} then either invv(A) = 0 or invv(A) =
[tv/m] with γ(tv) = γ1. Since Av1 is a division algebra for any such A, we

have A′ ⊂ Â and so

Φ̃(s) =
∑

A∈A′

N(D(A))−s

is a subseries of Φ̂(s, 1). Since the coefficients in the Dirichlet series Φ̂(s, 1)
are all positive and it is known that this series has a pole of order at most
p1 − 1 at s = σ1, it suffices to show that Φ̃(s) has a pole of order p1 − 1 at
s = σ1.

To do this, we repeat the analysis that was applied to Φ(s, 1;S) above

for Φ̃(s). Note that because invv1(A) + invv2(A) = 0, the condition on the
invariants in Hasse’s theorem is

∑

v∈Mf−{v1,v2}

tv +mε ≡ 0 (modm).

This observation is necessary to obtain the analogue of Lemma 4.1. Also,
the Euler factors at v1 and v2 are fixed, and the Euler factors at the other
finite places do not contain the terms coming from γi with i ≥ 2. This makes
the analysis somewhat simpler. The result is that

lim
s→σ+

1

(s− σ1)
p1−1Φ̃(s) =

1

p1

(
̺0σ1

ζk(2)

)p1−1 2∏

j=1

(1 + q−(m−1)/γ1
vj

)

×
∏

v∈Mf−{v1,v2}

(1 + q−1
v )−(p1−1)(1 + (p1 − 1)q−1

v )

and this quantity is visibly positive.
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Theorem 4.5. Let m ≥ 2 and τ be a compatible infinity type. If C ∈
Cl(k)β(m) then

lim
X→∞

|{A | τ(A) = τ, St(A) = C, N(D(A)) ≤ X}|
|{A | τ(A) = τ, N(D(A)) ≤ X}|

=
1

|Cl(k)β(m)|
∑

χγ1/α(m)=1

χ−1(C)
R(χ)

R(1)
,

where A runs over isomorphism classes of central division algebras over k
of degree m, and the sum on the right-hand side is over all characters of

Cl(k)β(m) that satisfy the indicated condition.

Proof. Throughout the proof, let A stand for a division algebra with the
properties enunciated in the statement. We have described the analytic prop-
erties of the Dirichlet series Φ̂(s, 1) above. Given these properties, Ikehara’s
Tauberian theorem implies that there is a non-zero constant κ depending
only on k, m, σ1 and p1 such that

|{A | τ(A) = τ, N(D(A)) ≤ X}| ∼ κR(1)Xσ1(log(X))p1−2

as X → ∞. Let C ∈ Cl(k)β(m). In the half-plane Re(s) > σ1 we have
∑

A, St(A)=C

1

N(D(A))s
=

1

|Cl(k)β(m)|
∑

χ

χ−1(C)Φ̂(s, χ),

where the sum is over all characters of Cl(k)β(m). The analytic properties

of this function follow from those of Φ̂(s, χ) described above, and another
application of Ikehara’s Tauberian theorem gives

|{A | τ(A) = τ, St(A) = C, N(D(A)) ≤ X}|
∼ κ

|Cl(k)β(m)|
( ∑

χγ1/α(m)=1

χ−1(C)R(χ)
)
Xσ1(log(X))p1−2 as X → ∞.

These two asymptotic evaluations combine to give the required limit.

For a given choice of m, τ and k, we shall say that the Steinitz class is
asymptotically uniformly distributed in Cl(k)β(m) with respect to N(D(A))
if the limit that is evaluated in Theorem 4.5 is independent of the class
C ∈ Cl(k)β(m).

Corollary 4.6. Let m ≥ 2 and τ be a compatible infinity type. Suppose

that |Cl(k)β(m)| and γ1/α(m) are relatively prime. Then the Steinitz class of

central division algebras over k of degree m with τ(A) = τ is asymptotically

uniformly distributed in Cl(k)β(m) with respect to N(D(A)).

Proof. Under these assumptions, the only character of Cl(k)β(m) whose
γ1/α(m) power is trivial is the trivial character. Thus the sum over χ in
Theorem 4.5 has only one term and the limit is independent of C.
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Corollary 4.7. Let m ≥ 2 be a prime and τ be a compatible infinity

type. Then the Steinitz class of central division algebras over k of degree m
with τ(A) = τ is asymptotically uniformly distributed in Cl(k)β(m) with

respect to N(D(A)).

Proof. Since m is prime, we have α(m) = m− 1 and γ1 = m− 1. Thus
γ1/α(m) = 1 and so the statement follows from the previous corollary.

5. An example of non-uniform distribution. The results described
so far leave open the possibility that the Steinitz class is always asymptot-
ically uniformly distributed, because the right-hand side of the formula in
Theorem 4.5 is in fact always independent of C. We show that this is not
the case by sketching an example.

Let m = 4 and take k = Q(
√
−14). This number field has no real places,

so only one infinity type is possible, and Cl(k) is cyclic of order 4. We write

Cl(k) = {C0, C1, C2, C3} with Cj = Cj
1 . For m = 4 we have α(4) = 1,

β(4) = 2, p1 = 2, γ1 = 2, γ2 = 3, σ1 = 1/8, c2(0) = 2, c2(2) = −2,
I(∅) = {1, 2}, and I({2}) = {1}. Thus G4 = Cl(k)2 = {C0, C2}. We let χ1

denote the trivial character of G4 and χ2 the non-trivial character. Also, set
̺ = ̺0/(8ζk(2)).

The Steinitz class of a central division algebra of degree 4 over k may
be either C0 or C2, and these classes occur, respectively, with asymptotic
frequencies

φ1 =
R(χ1) +R(χ2)

2R(χ1)
, φ2 =

R(χ1) −R(χ2)

2R(χ1)
.

By definition,

R(χ) =
1

4
(R(χ, 0; ∅) +R(χ, 2; ∅) −R(χ, 0; {2}) −R(χ, 2; {2}))

with

R(χ, 0; ∅) = ̺
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v + 2χ([pv]
2)3q−3/2

v ),

R(χ, 2; ∅) = ̺
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v − 2χ([pv]
2)3q−3/2

v )

and

R(χ, 0; {2}) = R(χ, 2; {2}) = ̺
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v ) = ̺.
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We define the numbers

ξ1 =
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v + 2q−3/2
v ),

ξ2 =
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v − 2q−3/2
v ),

ξ3 =
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v + 2χ2([pv]
2)q−3/2

v ),

ξ4 =
∏

v∈Mf

(1 + q−1
v )−1(1 + q−1

v − 2χ2([pv]
2)q−3/2

v ).

In terms of these numbers, we have

φ1 =
ξ1 + ξ2 + ξ3 + ξ4 − 4

2(ξ1 + ξ2 − 2)
, φ2 =

ξ1 + ξ2 − ξ3 − ξ4
2(ξ1 + ξ2 − 2)

.

A numerical calculation making use of the PARI package shows that φ1 ≈
0.4430 and φ2 ≈ 0.5570. Thus the Steinitz class of a central division algebra
of degree 4 over k = Q(

√
−14) is not uniformly distributed with respect to

the norm of the discriminant. Loosely speaking, the probability that such an
algebra chosen at random will have maximal orders that are free as modules
over O = Z[

√
−14] is about 44.3%. It is interesting to note that, in this

example, non-free maximal orders predominate over free ones.
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