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On the orthogonal symmetry of L-functions of a family
of Hecke Grossencharacters
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1. Introduction. L-functions are fundamental objects in number the-
ory that carry a lot of arithmetic information. Probably the most famous
example is the Birch and Swinnerton-Dyer conjecture that equates the rank
of an elliptic curve with the order of vanishing of its L-function at the cen-
tral point. It is generally believed that the vanishing of an L-function at its
central point indicates some arithmetic-geometric structure. There are many
theorems concerning the first-order vanishing of elliptic curve L-functions
and random matrix theory has been used to model the frequency of second-
order vanishing [CKRS02]. In addition, the Langlands philosophy predicts
that for any L-function arising from an automorphic representation there is
a new L-function associated with the rth symmetric power representation.
Combining these ideas, Barry Mazur asked the following question: Given
the L-function of an elliptic curve E/Q, is it true that the central value
of the L-function of its nth symmetric power vanishes, if ever, for at most
finitely many values of n? He admitted that it would likely be too difficult
to answer this question, but further asked if random matrix theory could
provide a model for this question.

We investigated this interesting question and quickly agreed that it was
much too difficult to answer. At this stage, we cannot even decide whether,
generically, the collection of { L(sym™FE, s)} constitutes a family in the sense
of [KS99] or [CFKT05]. But we did address his question in the interesting
special case that E is an elliptic curve with complex multiplication. In this
situation, L(sym™F,s) is no longer a primitive L-function, i.e. it factors
into other L-functions. Basically L(sym™F,s) is a product of L-functions
associated with cusp forms of increasing weight; see the discussion at equa-
tion . If one of these L-functions happens to vanish at its central point,
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then, since that L-function will show up in the factorizations of infinitely
many of the L(sym™FE,s), we have a somewhat trivial answer to Mazur’s
question. A better question in this case is whether infinitely often the new
primitive part of each of L(sym™FE, s) can vanish at its central point. This is
a question that has received attention from an automorphic and p-adic per-
spective, notably in works of Gross—Zagier [GZ80], Villegas—Zagier [RVZ93]
and Greenberg [Gre83]. In particular it is known in some instances that
when the functional equation has even type, there is never any vanishing.
This is far better than what one could hope for by analytic methods, where
the best one could possibly achieve would be non-vanishing in 100% of the
cases. Nevertheless, in view of the success by algebraic methods, it is inter-
esting to compare what happens with a classical approach.

With this classical method we have had some partial success. In partic-
ular, the primitive parts alluded to above do seem to form an orthogonal
family, and we can model this family using random matrix theory. We can
also take some theoretical steps and in particular can prove an asymptotic
formula, with power savings, for the first moment of the L-functions in this
family. This improves an asymptotic formula with no error term proven by
Greenberg |Gre83| and Villegas—Zagier [RVZ93]. We can also give an upper
bound that is probably too large by only one logarithm for the second mo-
ment of the L-functions in this family. We conclude, by Cauchy’s inequality,
that at least N/log? N of the first N L-functions in this family do not vanish
at their central point. Moreover, if we assume that the Riemann Hypothesis
holds for this family, then we can compute the one-level density for this
family with a restricted class of test functions, from which it follows that
at least 1/4 of the L-functions in this family do not vanish at their central
point.

The family of L-functions we consider are associated with a sequence of
Hecke Grossencharacters. To make things concrete, we deal with one specific
case, the Grossencharacters associated with the field Q(1/—7), following the
paper by Gross and Zagier [GZ80]. Many families of L-functions have been
studied with a view to determining whether they show the unitary, orthog-
onal or symplectic symmetry type of random matrix theory, as proposed by
Katz and Sarnak [KS99]. We investigate the moments at the central point
and the one-level density of the zeros of the Hecke L-functions and find that
these agree with the hypothesis that the symmetry type of this family is
orthogonal.

1.1. Background to Hecke L-functions. The book of Iwaniec and
Kowalski [IK04, Section 3.8] is a good reference for the material in this
section, as is [GZ80], from which much of this material is taken. See also
[RVZ93|. Tt should be noted that we use the analytic normalization which
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places the central point at 1/2. The integers of Q(v/—7) are all numbers of
the form a + by where a and b are integers and

1+V-=7
n=—p—
The norm of a + by is
N(a+bn) = (a+bn)(a+ b7) = a® + ab + 2b°.

The field Q(v/—7) has class number 1 so that the ideals are generated by
the integers a 4 bn. The only units are +1 and —1, so that each ideal has
two generators.

The Dedekind zeta-function of the field K = Q(v/—7) is

1 1
W= Y o ()5 x )
2 N bn)*
(w00 @+ o)
where x_7(n) = (%) is the Legendre symbol.

Note that

1 o
S T =14 S ang" = 14g+ 207+ 3¢ + ¢ +H405 20"+

(a,0)#(0,0) n=1

so that (i (s) is given by

= an 11 1 1 1 1 1 1
2op=\tntEt ) (ts st s e te )
n=1

The Hecke character we are interested in is defined by

x((a+bn)) = €ap(a+bn)

provided that a + by is relatively prime to /—7 (otherwise the value of x
is 0). Here the choice of € = £1 is determined by

(a+bn)* = eup mod V7.

This amounts to whether a® — 2a?b — ab?® + b? is congruent to 1 modulo 7.
Thus,

<a3 —2a%b — ab® + b3>

€ah = .
7

The Hecke L-function is

1 3 x((a + b))
L(S7X) =5 2 2\s+1/27
s+1/2

2 (@B20.0) (a? 4 ab+ 2b?)

which can be more simply written as

a®—2a2b—ab’+b3

1 (a+ bn)( Z )
L<S7X) =35 E : 9 2\s+1 .
s+1/2
2 (0 D120.0) (a? + ab + 2b?)
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This is the L-function of a cusp form of level 49 and weight 2 and is the
L-function of the elliptic curve y? + zy = 23 — 22 — 2z — 1, a rank 0 CM
elliptic curve of conductor 49. The L-function Lg(s) = L(s, x) satisfies the
functional equation

<277r>sr(s +1/2)L(s, x) = P(s) = P(1 — s).

We are interested in the primitive parts of the L-functions of the
symmetric powers of L(s,x). This amounts to looking at a sequence of
Hecke Grossencharacters, denoted by x?"~!, n = 1,2,.... The series for
L(s,x*" 1) is

(a + bn)anl (a3—2a2b7—ab2+b3)
(CL2 _|_ab_|_ 2b2)s+n71/2

1
L(57X2 1) = 5 Z

(a,0)7#(0,0)

(Note that L(s, x?") is identically zero.) The Euler product for L(s, x>~ 1) is

(L1 L(s.x*"™)

— H 1— €apla+ bn)*" ! - 1— €ap(a+ om)*" ! -
B s+n+1/2 s+n+1/2 ’
p=a2+ab+2b2 p p

In general, if

with |ay,| = 1, then the symmetric kth power is (up to some bad factors)
k
L(s,sym”)
kN —1 k=2 —1 k=2 -1 P AN
:H<1—a”> (1—% ) ...(1—0"’ ) (1—%> _
S S S S
p p p p p

Thus we see in our situation for the symmetric powers of the L-function of
a CM elliptic curve that

L(Sv X5 Smenil) = L(87 X2n71)L(87 X2n73)L(Sa X2n75> e L(37 X)

See [RS08|, Section 4] for more explicit details.

It is convenient to define the function (2”1 at positive rational integers
m by
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_ 1 e
X m)y=s > X H(a+bn)).
a?+ab+2b2=m

Then

2n 1 Z X(Qn Y (m)
ms+n— o stn—1/2 °

The functional equation for L(s, x?"~!) is

7\° _ n—
<27r> I(s+n—1/2)L(s, x> 1) = ®9p_1(s) = (=1)" 1Py, _1(1 — s)
and in asymmetric form

L(s,x*" ™) = (=1)" " Xan-1(s)L(1 — s, 7")

where

7\ (1 —s+n—1/2
A /2)

27 I'(s+n-1/2)
Here the center of the critical strip is at s = 1/2.

Using Hecke’s standard method, if L(s) = Y o | amm™* is entire then

the functional equation

QI'(s+a)L(s) = Q' *I'(1 — s+ a)L(1—s)
is equivalent (via Mellin transforms) to

o0

F) = 3 mame ™/ = y 21 p(1 /).
m=1
Therefore,
QI(s+a)L(s) = Q" | fluy* 2
0
aoo s+a —s—a dy
=Q | (f( + /)y —
1 Y
whence
2Qfa71/2 o0 dy
L(1)2) = atl/2 2
/2 = [igra ) IO
2 = a T d
— m —y,at1/2 %Y
F(1/2+a)mzz:1ml/2 §Q€ Y v

We apply this formula with a = n —1/2 and Q = 7/27 and use the formula
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for the incomplete gamma function:
I(b,z) =\ yle v —=.
Ve

z

In this way, if n is odd, we obtain

2 > X(Q"_l)(m)F<n 27rm>'

(n—1)! — mn 7

L(1/2,x*"7") =

2. Moments of the L-function at the central point. One way to
test the symmetry type of a family of L-functions is to compute average val-
ues of the L-functions evaluated at the central point. In families displaying
orthogonal symmetry the average of the kth power of the central value of
the L-function grows like the k(k — 1)/2 power of the asymptotic variable,
where as for unitary symmetry the growth is like the k? power and sym-
plectic symmetry shows k(k + 1)/2 power growth. In the case of our family
of Hecke characters, the asymptotic parameter is log IV, so to agree with
the predictions of orthogonal symmetry we expect the first moment to be
asymptotically constant and the second moment to grow like log V.

2.1. The first moment. We wish to compute

| N
Mo = 5 DD L1/200
asymptotically when r = 1 and to give an upper bound when r = 2.

We note that Greenberg (see [Gre83|, p. 258]) states that such an asymp-
totic formula for this first moment (with no explicit error term) would follow
from a formula of his, provided it were known that L(1/2,x*=3) > 0. Ville-
gas and Zagier [RVZ93|] prove this non-negativity. It is instructive to give a
direct treatment from first principles. In addition we have an explicit error
term.

THEOREM 2.1. As N — 00, we have

1 al nogy 2w log N
M1(N)—N;L(1/2,X4 3)_ﬁ+0<\/ﬁ>'

Proof. We have

2 1 L r@n—1,2mm/7) 43 (m
Ml(N): Z\/mz (F(Qn_l)/)Xan—S(/Q)'

3 2 2 3
(4n—3) (m) _ 1 <CL —2ab—ab” +b )(a + bn)4n73
7
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so that
Mi(N)
1 5 (=202 ab? b2y N gy L, 2m(a’ +ab + 20°)/7) o4y
N a0 Vi ab+20 o Tien=1) "
where

a+bn

5a,b = /—a2 T ab 1 202 - e(ga,b)a
say, where e(z) = exp(2mix). Now suppose that f(z) is a positive, smooth,
increasing function on [0, 00). Then for any real number 6,

N N N

Y f)end) = | f(w)dE(w) = f(N)Z(N) = | f(w)E(u) du

n=1 1- 1
where

e2mi(l+[u])0 _ ,2mi0 e2mi(1/2+[u])0 _ ,mif

Y(u) = Z e(nb) = 1 _ o2nmif = o—mif _ omif

n<u

It follows that

1

) < —.

¥ ()] < |sin 70|
Thus,

N

Z f(n)e(nd) <«

n=1

[f (V)

|sin 70|

Now ) )
I'(2n —1,27(a* + ab + 2b%) /7
=" F((2n— ) =
does have the properties described above, and
I'2n—1,z)
I'2n—1)

< e—z/n.

Thus,
My (N)

1 (2=202bab® 0%y N pop 1,27 (a? + ab + 26%)/7) sin
N apFog Vo +ab+2? F@n—1) "
4’9(%1762

+O<;f >

404 v ¢ 7

n=1

e—(a2+ab+2b2)/N 1 )

Va2 + ab + 2b2 [sin4m6, |
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Now
.. a+bn
Syp = 0820, p +isin2ml,p = ——r— = ¢(0
a,b a,b a,b T ab 1 ( a,b)
so that
b/2)b\/ T
i, = 2sin 2 cos 2t = 4DV

If 46, ¢ Z then

1 < a® + ab + 2v?
|sin 476 p| la +b/2| |b]

< Va?+ ab+ 2b?> max{1/|a + b/2|,1/|b|}
since a? + ab + 2b? = (a + b/2)? + 7b? /4. Thus, the O-term above is

1 2 2 1 1
- —(a*+ab+2b%)/N s
S PR ma"{mb/zr’\br}

(2.1)

b£0
2a#—b
1 2 2 1 1
<~ ¢ (@ Fab+ 2 /N ( + ) < N"2log N.
N bz a+b/2] " || &
#0
2a#—b

If 40,4 € Z then either b =0, or a = —b/2 and 5;1 » = 1. In the situation

that @ = —b/2 we see that 6, = a\/—7 is not coprime to /—7. So these
terms do not contribute anything. Thus, we have

M1 (N)

a®—2a2b—ab%+b3 N

1 ( 7 ) s < 27r(a2+ab+262)>
= — 0 I'i2n—1, I'2n—1
Nb; VaZ+ ab+ 262 “’bnzl 7 /T )

a#0
+O(N~Y210g N).
LEMMA 2.2 (Tricomi [Tri50])). Suppose that b > 0 and n > 0. Let
b

dx
b) =\e “z" —.
v(n,b) (S)e " —
Then, as n — oo,
y(n+1,n—yv2n) 1 V2 o\ o2 1
= —erf — 1 Y+0(1-).
I'n+1) y erfely) = 5o (L+ye” +0( 0
Here y is any real number and
2 T e
erfe(y) = — S e ¥ dt.
NG
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Fory >0,
2
e Y 1 3
fo(y) = — (1 - — + 2 +...
erfe(y) ﬁy< 22 Tyt T )

erfe(—y) = 1 — erfe(y).
We have, recalling (%) = —1 and 6,0 = a/|al,

while

2 (%) nI'(2n — 1,2ma2/7)
a I'(2n—1)

+ O(N~21log N).
a=1 n=1
We split the sum into four pieces: (X} + Xy + X5 + X4) /N where

N a
2= QZ Z (3) L@n—1, 27”12/7),

a I'2n—1)
n=14¢2<Cin—Caoy/n

N a
22:22 Z @F(Qn—l,%’cﬁ/?)’

I'2n—1)
n=1Cyn—Cay/n<a2<Cin+Coy/n

N a
23:22 Z @F(Qn—lﬂmﬁ/?)’

I'2n—1)
n=1 Cln+02f<a2<2n

(2n — 1,2mwa® /7
24_222 2n—1)/)’

n=1a2>2n

S

here C; = 7/m and Cy is a large constant. C; is chosen so that the two
arguments in the incomplete gamma function are approximately equal; see
Lemma which describes this transition range.

We now have

Elzzi > f)—zm

n=1 a2SC1TL—CQ\/ﬁ

where
N
B (%) v(2n — 1,2ma?/7)
Dla=2) ) «  I'en—1)
n=1a2§01n—02\/ﬁ
Now
(%) i (%) ( 1 )
> = +0(—=
a2§01n702\/’ﬁ a a=1 a \/ﬁ
so that

21 =2L(1,x—7)N + O(V'N) — X1 4.
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Using the lemma, we have

N
DY) Y aNerfe(y) + e v n Y2+ 0(1/n))
n=1 a2gcln—02\/ﬁ

where y = (2n — 2 — 27a?/7)//4n — 4. We illustrate how to estimate this
sum with a simplified version that omits the constants:

5 Z f(

o—(n—a?)2/n

><<Z D G

n=1g2<n— n=1g2<n
< i nx\/ﬁul e ( )2 /n "
PO N NG
B ingl eV dy
S v/\/n n—wv

:Z\/ﬁ S etn—t\/ﬁ'

Now split the integral into 1 < ¢ < /n/2 and y/n/2 <t < /n—1/y/n to
see that this sample sum is < S 1/y/n < v/N. We can treat the part

with y2e=¥"/\/n in a similar way and the 1/n part trivially. In this way we
have

El,a < \/N

The inner sum over a of X5 has a bounded number of terms, each of
which is < 1/a < 1/y/n. Thus Yy < v/N. We can treat X3 exactly as we
did Y 4. Finally, the estimation of Xy is like the estimation of

N oo
Z Z a”t S e "L dt/I(n)

n=1qa2>2n a?
00 1
—tyn—1 -
S e 't E - dt/I'(n)
12n a</t

M) =

<

3
Il

A
Mz

27(2n)"(log 2n) /I'(n <<Z "< 1

3
Il
—

Thus, we conclude that

My (N) = 2L(1, x 1) + o(k’jﬁ - +o(1°j§v). .
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2.2. The second moment. We can give an upper bound for the second
moment My (V).

THEOREM 2.3. We have
Ms(N) < log? N.
Note that this result implies the convexity bound
L(1/2,x*" %) < n'/?logn,

addressing Greenberg’s question on the size of these L-functions (see [Gre83|,
p. 258]).

Proof of Theorem 2.3. The proof follows exactly along the lines above.
The only thing extra that we need is a bound for summing the inverse of a
quadratic form.

LEMMA 2.4. Let QQ be a non-degenerate quadratic form in four variables
with integer coefficients. Then

1
P X?%1oe? X.
2 (o am) <X s

a,b,A,B<X
Q(a7b7AvB)?é0

For example,

< X?log? X.

> 1
b aD<x [(@a=0)(A-B)|
ab, AZB
We leave the proof as an interesting exercise for the reader.
Here is a sketch of the proof of the theorem. Take the square of the

formula for the central value and average over n:

1 (a3—2a2b—ab2+b3) (A3—2A2B—AB2+B3)
Ma(N) = + > T

7
(@hz00 V@ +ab+26® VA2 4+ AB 4285
(A,B)#(0,0)

N I'@2n — 1,27 (a? + ab + 26%)/7)
x>
I'2n—1)
y I'(2n —1,2m(A? + AB + 2B?)/7)
I'2n—1)

n=1

(6ap0a.8) 3.

The inner sum is a geometric series with a smooth weight, as in the proof
of Theorem Now, with n = (1 +v/—7)/2,
a+by A+Bn  (aA—2bB)+ (Ab+aB+ bB)y

a+bn| [A+Bn|l  Va®+ab+ 202 VA2 + AB + 2B?
= dqA—26B,Ab+aB+bB = €(0aA—2bB, Ab+aB+bB)-

0a,p0A,B = |



334 J. B. Conrey and N. C. Snaith

Just as above, we have
1

|sin4m0,4— 268, Ab+aB+bB]
« max{1/|2aA — 4bB + Ab + aB + bB|,1/|Ab + aB + bB|}.

Thus, by Lemma the terms with 476,428, Ab+eB+bB ¢ Z contribute
an amount which is < N log? N. If 4704 A—2bB,Ab+aB+bB € Z, then it must
be the case that either Ab+aB +bB = 0 or else 2aA —4bB + Ab+aB +bB
= 0. As before, in the second case the coefficient of this term is 0. Thus,
Ab+aB +bB = 0. If (a,b) = 1 = (A, B), then we have B(a +b) = —Ab
and b(A + B) = —aB so that b| B and B|b. If B =0, then b = 0 and vice
versa. If B=—bthen A=a+b, and if B=5b%# 0then A= —a —b. In any
of these events we have

> ! < log? X.
b oy Va?+ab+202V A2+ AB+2B?

Ab+aB+bB=0

< Va2 +ab+202\/ A2+ AB +2B?

We conclude that, in this diagonal case, the sum over n is N and the sum
over a, A,b, B is < log? N. Thus, we have shown that Ma(N) < log? N as
desired. m

COROLLARY 2.5. For at least N/log? N wvalues of n < N we have
L(2n —1,x""73) £0.

This follows from a standard use of Cauchy’s inequality:

\i Lt < (Y ) (i L(1/2, "))

n<N
L(1/2,x4"=3)#0

whence

> > .
~— NMs(N) Nlog?N = log’N

Z - (NM1(N))? N? N

n<N
L(1/2,04m3)£0

3. Moment conjectures. In this section we use the moment conjec-
tures described in [CFKT05| to calculate the first and second moments of
our family of L-functions. The first moment agrees with the previous section
and both of the first two moments support the hypothesis that the family
has orthogonal symmetry.

3.1. The first moment. We want to use the moment conjecture recipe
to find the first moment at the central point of the family of L-functions
L(s,x*=3) as we vary n. We want to calculate
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N
1 _
=S L2+ ).

n=1
The functional equation for L(s,x*"~3) looks like
7\° _
(27r> (5420 —3/2)L(s, X 3) = &y _3(5) = Pan_3(1 — 5),
defining

Xuna(s) i= T\'"E 01— s+ 2n—3/2)
=3 2 I'(s+2n—3/2) '
and so the main two terms in the approximate functional equation give us

N
1 o

n=1
4n3()

X(4n 3)( )
NZ( m2n—1+a + Xan— 3(1/2—1—0& Z m2n—1—a )

The recipe instructs us to perform the average over n over the characters
and the X factor from the functional equation. The quantity we need to
understand is

X(4n—3) (m) N X(4n—3) (m)

. 1
(3.1) (5(m> = < m2n—3/2 > = ]\}gnooﬁ Zl m2n—3/2

We claim that § is multiplicative. To prove this claim it suffices to show that
P L i (a + by)(c + dn) \ ™"
N—oo N la + bn||c + dn)|
I 1%: a+bn \*" . 1 & c+dn \*"
= Jim — m —
N—voo N £~ la + bn| N—voo N £~ |c + dn|
whenever (N (a + bn), N(c+ dn)) = 1. The only time that

) A+ Bn
]
NTOONZ<\A+Bny>

A+ Bn 4 _1
(IA + Bnl) -
or, equivalently, when (A + Bn)?* is real and positive, i.e. A + Bn is either
real or purely imaginary, which translates to either B = 0 or A = —B/2.
Thus, under the assumption that (N(a + bn), N(c+ dn)) = 1, it suffices to

prove the assertion that (a + bn)(c + dn) is either real or purely imaginary
if and only if each of a + bn and ¢ + dn is either real or purely imaginary.

is not zero is when
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One direction is clear. In the other direction, we consider two cases. In the
first case suppose that (a + bn)(c+ dn) = A+ Bn with B = 0. Then
(3.2) add+cdb=0
where o' = 2a + b and ¢ = 2¢ + d (note that da’,b,¢,d are all integers).
Write o' = gA” and b = gB with g = (d/,b). Then equation (3.2)) becomes
A'd+ B = 0. Since (A, B) = 1 it must be the case that B|d and A" |/,
say d = tB and ¢ = —tA’. Substituting back we have
a=g(A -B)/2, b=gB, c¢=-t(A+B)/2, d=Bt.
Then
N(a+bn) = a®+ ab + 2b* = (A? + 7B?)g* /4,
N(c+dn) =+ cd +2d* = (A? + 7B*)t? /4.
If B # 0 then clearly (N(a+ bn), N(c+dn)) > 1. Therefore B = 0, which
implies that b = d = 0. Similar sorts of arguments work in the case that
(a+bn)(c+dn) = A+ Bn with A = —B/2.
Thus, ¢ is multiplicative. Now we need to evaluate it at prime power

arguments. It is not hard to show that ¢ vanishes at non-square arguments
and that

0 ifp="1,
5(p?) =4 +1 if (B) =1,
-1 if (&) = -1,
and that
3(p™) = 6(p*)*.
That is,

0 if m #£ 0,
O(m) = { () it =00,

So, by the recipe we have

N
1 —
= S /24 a )

n=1
1 Y o(m o(m
~ 3 3 (X i+ Canal1/2+.0) 5 S5

n=1
N m2 m?

- %Z <ZM + (Xan—3(1/2+ ) Y M)
n=1 m m

N m m
_ % 3 (Z m(lila + (Xans(1/2+a) Y mff_ga)

n=1 m m
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So, the moment conjecture in this case would be

N
1 L
N E L(1/24 o, x*3) = L(1 + 20, x_7)

n=1
7\ "1 <~ I(2n—1-a) e
+ () N E F—L(l —2a,X-7) + O(N /2t )-

When a =0,

N

1

N D7 L1/2,x" ) = 2L(1, x7) + O(NV/2+e),
n=1

Thus we have

CONJECTURE 3.1. By the moment conjecture recipe from |[CFKT05],

N
1 e 2m 1/94e
~ Y L(/2, )P = 7 + O(N~V2Hey,
n=1

3.2. The second moment. Now we calculate the second moment using
the moment conjecture:

N
S L(/24 a, X" H)L(/2 4 8,x" )

n=1

X(4n 3

(4n—3) /
(T stz Y )
(4n— (4n—3)
<ZX o= 1+n,; +Xan—3(1/2+6) ZW)

3 m) 5(t,m)
Z (Z e1/2+am1/2+ﬁ + (Xan—3(1/2 + a)) Z gl/2—a;n1/2+ﬁ

n=1 &m
o(¢,m)
+ (Xans(1/24 8) D fimran i

lm
+ (Xan-3(1/2 + @) Xan—3(1/2+ B)) > 51/26_(5’”%>

)

Here we define

(4n—3) (4n—3)
: X! (0) x (m)
a(€,m) = am Z 2n—3]2 -3/




338 J. B. Conrey and N. C. Snaith

We find that § is multiplicative. That is, if (¢1€2, mimgy) = 1, then
(3.3) 5(€1m1,£277’LQ) = 5((1,€2)5(m1,m2).

We leave the proof to the reader; basically it is an elaboration of the proof
for the one-variable § given immediately after (3.1). The behavior of § is
summarized as (for a < b)

0 ifa+bisodd, p=1,2,4 mod 7,
a+1 if a+biseven, p=1,2,4 mod 7,

(5(]3(1 pb):
’ 0 if a or b is odd, p = 3,5,6 mod 7,

(—1)(@+b)/2 if g and b are even, p = 3,5,6 mod 7.

The practical use of being multiplicative is that we can write the sum over ¢
as an Euler product:

“,p")
(3.4) Zg1/2+am1/2+,8 HZ 1/2+aa (1/2+8)b"

lm p abp

For primes p =1,2,4 mod 7,

(35) Z 5]7 p a+1/2)a —(B+1/2)b
a,b=0

— Z Z (b + 1)p~(et1/2)ap=(B+1/2)b
a=0 =

a+b even

—(a1/2)a))—(5+1/2
+ZZ (a + 1)p~(@t1/Dap=(F+1/2)b
b=0

a=0
a+beven

— Z a + 1)p~(at1/2)ay=(F+1/2)b

(1- ﬁ)”(l— pre) (L= o)
(1 + 1+a+6)71

Note that if all the primes contributed an expression of this form, the Euler
product would yield

C(1+2a)¢(1+a+ B)%¢(1+2p)
C(2 4+ 2a +2p) ’

which has a fourth order pole as a and 8 approach zero.
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For primes p = 3,5,6 mod 7,

(3.6) Y a(pe,pyp et/ Dap= (120
a,b=0
— (_1)a+bp—2a(a+1/2)p_2b(5+1/2)

a,b=0

1\ 1\ (- pte) (- )
L+ 1+2a L+ p1+2,8 - 1 1 ’

(1- W)_l(l - W)_l
If all the primes had this contribution the resulting product would be
C(2+4a)C(2+ 4P)
C(1+2a)¢(1+2P) ’
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which has a second order zero. Thus, half the primes lead to a fourth order
pole and the other half to a second order zero; taken together over all the
primes we have a pole of order = — £ =1, which is what we expect from an

orthogonal family second moment

Combining (3.5)) and (3.6)) we find that (3.4)) is equal to
L(1+ 20, x—7)L(1 + 28, x-7)¢r(1 + a + B)L(1 + a + B, x-7)

¢7(2 + 200+ 28) :
where
1\ !
G =TI (1-) -
p#T P
Thus the second moment would be
N
(3.7) NZ:: (1/2 4+ a, X4n 3) (1/2+ 8, x dn— 3)
N
= NZ (C (1+a+B)F(a, B)
T\ 22'2n—1-q)
- <27r> I'(2n—1+ )C(l —a+f)F(-a,p)
7\ ¥ ren—1-5)
! (27T> ren—13 5t to-AF@=h)
T\ r@2n—1-0a) I2n—1- )
+<27T> I'(2n—1+a) F(2n—1+ﬁ)<<1_a_5)F(_o‘?—5)>
+O(NT12e),
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(3.8)  F(a,p)
L(1+2a,x-7)L(1+ 28, x—7)L(1 + a4 B,x-7) (1 — =r777)
C2+2a+28)(1 — =rabras) '

Now we want to let o, 3 — 0. We group the first and fourth terms in
the numerator of and in the second and third term send @ — —«
(allowable because we are going to take the limit o — 0) and then factor
out the exponential and gamma factors

to leave exactly the first and fourth terms again. The expression (3.8) tends
to 1 as a, 8 — 0. Thus we expect that the second moment evaluated at the
central point is

My(N) := lim —ZL (1/2 + o, X 3)L(1/2 4 B, ")

a,6—0 N
I 7\**T(2n -1+ a)
= m an::l <1 + (27r) F(2n—1—a)> (C(l +a+ B)F(a,B)
7 7204725[‘(211 —1—a) I'2n—1-p)
! <27T> I'2n—14a) I'(2n—1+ 5)“ —a=pB)F(-a —B))
+ O(N~1/2te)
_4<f07+f1 folog +f0N—|—1 F22;l:11;>

+ O(N_1/2+6),
where we expand F'(a,b) around a =0, b =0 as

F(a,b) = fo+ frat fib+

with
gy HLxn)? 7 _ <W>36 T_ 3w
T 8T V) M8 4T
and
o _ L ¢! log 7
%F(a,ﬁ)aﬁzo—ﬁ fo( —(1,x- 7)_2C()+ < >
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So, our conjecture is that

log7_lo 2r
8 &7

(39 Ma(N) = f/7;<v+3LL/(1X7) 2£(2) +
N

I''2n—-1)
0 N71/2+e )
N2 Ty ) HON)
It can be shown that this reduces to

CONJECTURE 3.2.

Ma(N) = ?j;OogN +C) + 0NV
where
B r(/7nre/nra)n o log 7
O=dr=3los memrGmrem ¢ @t g

+log 77? + 3log 2 — 1.

With N = 469, computing L-values and evaluating My (N) numerically
gives 28.37. The main term of equation (3.9)) gives 28.35.

4. One-level density. In this section we assume the Riemann Hypoth-
esis for the family of L(s, x*"~3) and calculate the one-level density for this
family, valid for test functions whose Fourier transforms are supported in
[—a, a] where a < 1. As a consequence of our calculation we can show

THEOREM 4.1. If the Riemann Hypothesis for the family {L(s, x*" )}
is true, then L(1/2,x*"73) # 0 for at least (1/4 — €)N walues of n < N.

Let ¢(t) = F(1/24it) be an even test function whose Fourier transform
has compact support. Then F' is entire and decays quickly with |¢|. We derive
an explicit formula. Defining

I dn— 3 o A
(41) (S X4 Z 4dn— 3
~ L(s, x™~ 3 —

we write

(12) S | Pt P ds = - 30 Ausa(b) o | Pk ds
2

)L = 2m(2>0
1
— An— B —— t 71t10gkdt
> An-a®z 2 | 800

B 1 > A4n,3(/€)A logk‘
ST D ¢< 2w>'
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Here we use the definition
[o@)

f) =" flu)e(-ut) du
—0o0
On the left side of (4.2) we move the contour to the vertical line with
real part 1/4 (note we have assumed RH and so have encircled all the zeros).
Thus we get, with p, = 1/2 + ~,, a generic @ Zero,
1 r
| f<s,x4”*3>F<s> ds

= ZF(pn m S Lf X3 F(s) ds
n (1/4)

_ el X4n 3 E _ 4n—3
—;¢<vn>+2m(l§4)(x4n3<> L) )P s

o0

X!
= Z¢ (") 27T S Xiz §(1/2+zt)¢()dt

1 r
_757

7 (s, X 3 F(1 — s)ds.

27
(3/4)
In the last integral the contour can be moved to the vertical line with real

part 2:

_lsi’( In=HE(1 - s) ds—Z/ng SF(l—s)k ds

21
2) (2)

=" Auns(k) 2% | F(s)k*"ds
k=1 (1/2)
N 17 e
1 = Agp_3(k) - [logk
- (5 )

k' dt

Z¢(7):—217T_§DOX/(1/2+11€ dt_iz/lﬁxn?) (102ik>

(*) The subscript n on p, merely means that it is a zero of L(s,x*" %) and should
not be mistaken for the nth zero.
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We really want to work with scaled zeros in the explicit formula, so now
we define a set of zeros 7, that have average consecutive spacing of 1. We
need to know how many zeros L(s,x*"~3) has in the interval 0 < t < T,
where T is large but bounded. We calculate the change in argument of

66" = (52 ) Tlo+ 20— 3/2)25.)

around a contour enclosing these zeros.
We have, with the contour C' defined as the rectangle with corners 2,
2 +4T, —1 44T and —1,

#{m < T L(1/2 +iv,x" %) = 0}

_ %Ac arg(€ (s, " %))

_ iAarg((Jﬁ) Tls+ 20— 3/2))

T log 2
= —log2n+ 0O _ 08 )
m log log 3n

s=1/2+4T Lo log 2n
loglog 3n

s=1/2

In the third line we consider just half the contour C' (from s = 1/2, through
s=2and s =2+ 4T, to s = 1/2+ iT) because the functional equation
gives {(o +it) = {(1 — o —it) = £(1 — o + it). The change in argument of
L(s,x*=3) is contained in the error term and follows by standard methods
on assuming the Riemann Hypothesis for this L-function. For the final line
we use Stirling’s formula and so we see that the zeros, 7y, of L(s,x*"~3)

need to be scaled as
~ log 2n
Yn =

Tn
™

in order to have approximate unit mean spacing.
We now define a new test function @

o) = 1B,

™

We note that

b(z) = S d(u)e(—uz) du = S f<UIOgN>e(—u:r)du

™

T T uTT A T T
N logN_iof(u)e<_logN> du = f(logN)logN'

With the support of f restricted, supp f C [—a,a], @ < 1, we have a
scaled explicit formulas:

(?) For convenience we scale up by log N instead of the asymptotically equal log 2n.
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N
) y ()
n=1 n

o0

N
B 1 Xin_s , tlog N
_ Z(‘sz g X4n_3(1/2+zt)f< 55 ) ar

Z A4n 3 log k
N log N 2logN ) )

To evaluate the right side of this formula we start with

N /
> X 2(1/2 + it)

N

I’ I , 7

= ;(—F(Zn— L—it) = (20 — 1 +it) - 2log2w)
N

= — ZZ(log 2n+ O(1)) = —2Nlog N + O(N)

n=1
for bounded t. So we have

<logN+O( )> °S°f<tlogN> g

™
—0o0

Next we address the sum in (4.3)) containing Ayg,—3(k). With n = (1 +
V—T7)/2, we recall

0 4n 3 4n—3
(5, X473 Z ) (k _ Z S (a+bn)
Lst+2n— 3/2 @b stan—3/2
k=1 k 1 a24ab+2b2=k

The Euler product is
(4n—3) 4n—3
an—3y _ X (p) P
L(s,x™") = H(l a pst2n—3/2 + p2s )
p

- )
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where the «;, have the properties

lan(p)| =1,
(4n—3) bn)4n—3
X (p) _ o 1 Za2+ab+2b2:p Ea,b(a+ 77)
P32 an(p) + an(p) = 9 p2—3/2 ,
(4n—3) (1,2
X p 2
o = P+ 1+ )
Thus,
L/
f(s,X4n %) ( Zlog( on(p )>+log(1—apip)>)
p#£T
ZZ@"T7M3
p7£7r - 75 rp’s
an "4 an "
— _ Zlogpz ( ) )7
p#£T r=1

and so by (4.1) we have Ay,—3(k) =0 if k is not a prime power and

Agn—3(p") =logp (an(p)” + an(p) ).

For all k = p", with r > 3, the sum over the coefficients A4,—3(k) in (4.3))
is, with the sum over p running over primes,

logp (an(p —|—an( ) ) +f rlogp
NlogNZZZ pr/2 / 2log N

n=1 p r>3

< 1 logp<< 1
log N > p3/2 log N’

Here the first “<” follows because f and ay,(p) are bounded and once re-
moved leave a geometric series in r and no dependence on n.
When k=pisa prime we have the sum

logp '\ logp
(1.4 QNIOgNZ S (GEE ) Y ),

p< N2 a?+ab+2b2=p
where
a+ by
Cap = Cape(=30ap) and eflop) = = o

In this case 40, ¢ Z because e(0,3) # 1,—1,1, —i:if b = 0 then e(f, ) = *1
but then a?+0+0 # p for any prime p and if a+b/2 = 0 then e(6, ) is purely
imaginary, but a? — 2a? + 2(2a)? = Ta? # p for any prime p. Consequently,
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as in the proof of the first moment (see (2.1))), we have

(4.5) ‘Z (4n0) ‘ -

We then have the estimate
1

sin 40, p

So, we approximate (4.4]) with

1 11 1
- - Sl 1 NolgN.
2NlogNabg]:Va max{|a+b/2|’ |b|} S Nlogn'' %8

N+ 1)9) - e(49)‘ o1

40) — 1 ~ |sindnd|

1 1
(46) <Vt by 2 ma b

la+0/2]" [0

In the line above we have discarded the bounded quant1t1es f (5 Og’;\,) and
&a b, replaced the sum over n of e(4nfq ) using and ( ., and removed
the requirement that a? +2ab+ 2b? be a prime; we allow it to be any integer
but drop the log p from the equation. The final line comes from the sum over
a and b. The 1/[b| sum can be evaluated as S22 1 times S5, 1/b, and the

1/la + b/2| sum is Zf’g? (n)/(n/2), where f(n), the number of ways to
obtain a + b/2 = n, is certainly less than N, giving a result of N®log N.

The final case is k = p? for all primes p. Recall that

N (4n—3)(,,2
Aun-s(p?) = log plon(p)’ + au(p) ) = logp <Xp4n—gm - 1>

So, the relevant term from the explicit formula is

logp \logp (1
(4 N]O N Z Z <10gN> P <2 Z ga,be(4n9a7b) — 1> .

=1p<N« a’+ab+2b2=p?

If we consider first just the term with the —1 in the final bracket we get,
using the Prime Number Theorem, and remembering that f is even and has
compact support in [—a, o],

1 ~( logp logp p log U d
oy 2 ! ¥
log N o logN /) p log N ; log NJ) u

1

| f(8)dB.

-1

l\.’)\t—l

=\ f(B)dB =
0
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The remaining part of (4.7)) is

N
-1 ~( logp \ logp
4.8 [ — And
(4.8) 2N log N Z f<1og N) P Z ga,be( n a,b)
n=1p<N« a2+ab+2b2=p>2
-1 ~( logp \ logp
= oviogw = 4 (i)
p<N@ p
e(4(N+1)0,5)—e(400,5) -
a?+ab+2b2=p? N if 490,17 € Z.

For 46, ¢ Z, the contribution is

1 1 1 1
« 1t $ max{ Gy <1 $ farb/2 T ol
Nlog N wine Va?+ab+202 T Nlog N wine Va2 +ab+ 20
1 1 1
<y X e
Nlog N wie la +b/2] |b]
because a® + ab+ 2b* = (a + b/2)? + 7b?/4. So the 460, ¢ Z contribution is
1
— N%
< Nlog N

When 46, € Z, then b = 0, arguing as after (4.6). The contribution
to (4.8) is
1 ~( logp \logp
4.9 — .
(1.9) oy 2 1 (o) 5E X fuo
p<

a==+p

We see that
— +p? +
Eap,0 = €xp0 €(—301p0) = (f) X+l = i(7p> = (17)),

because (_71) = —1. Thus 1} becomes

1 i~ —tlogp p\ logp
gV 2 ) Me( log N )dt (7> p

p<N® —00

o0

1 B)logp
<<m \ f(t)zmwdt

—00 D p1+10gN

17 r ot 1
D=1+ ) dt <« ——
SlogN ) f()L< T log N X 7> Slog N’

where the final approximation follows because L'/L grows slowly on the
1-line and f(t) decays fast enough to keep the integral bounded.
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Thus, for large N, (4.3) becomes

N 1
v 27 (M) = o)+ 5 § f@ras o)

n=1 vn -1
= S f(ﬁ) (5(5) + %I[—l,l] (ﬁ)) dg +o(1)
oo sin 27y
:if@0+ %y>@+dm

where [_; ;] is the characteristic function of the interval [—1,1]. This is
consistent with even orthogonal symmetry for this family of L-functions:
recall that for the group SO(2N) the limiting form of the one-level den-
sity is

sin 27y

2my

and its Fourier transform is
1
5(u) + 5[[_1’1} (’LL)

To derive the theorem we argue as in [ILS00]. Suppose that our test
function f is non-negative, that f(0) = 1 and that the Fourier transform f
is supported in [—1,1]. We write the above equation as

LSy () oy

n=1 vn
Let
1
Pm(N) = N #{n < N : the order of the zero of
L(s, X ™3) at s = 1/2 is m}.
Then

0o N
Zmpm(N) < ;IZZJP(%LI:?N) =v+o(l).
m=1

n=1 n

Clearly,
oo
Z pm(N ) =1
m=0

Also, since all of the L(s,x**™3) have even functional equations it follows

that p,,(N) = 0 if m is odd. Therefore,
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Z mpm(N) = 2p2(N) +4p4(N) +6p6(N) 4 ..
m=1

> 2pa(N) + 2ps(N) + 2pg(N) + - = 2 — 2po(N).
Thus,
2—w

li N) > .
Ngnoopo( )7 2

s = ()

f(z) = max{0,1 — |z|}

so that v = 3/2. It follows that po(N) > 1/4—e. In words, at least one-fourth
of the L-functions in our family do not vanish at their central points.

With the choice

we have

5. One-level density from the ratios conjecture. The previous sec-
tion demonstrated a rigorous calculation of the one-level density for the fam-
ily of L-functions. The limitation of this technique is always the restricted
support of the Fourier transform of the test function f(y). In the following
we remove the restriction on the support, but the result is conditional on a
ratios conjecture of the type introduced by Conrey, Farmer and Zirnbauer
[CEZ08|. We are interested in a conjecture for the quantity

i L(1/2 4 a, x*=3)
L(1/2 47, " 3)

n=1

We use the notation

o[- (1) St

p#T m=1
1 Oén(p)> ( Oén(p)) o~ Hn(m)
4n—3 :H<1_ S 1- S :Z s
L{s,x™=5) 4 p p = m
SO
1 if ¢ =0,
0N _an(p) if £ = 17
pa(P') 1 if 0 =2,
0 if £ > 3.

Note that a,(m) = x**=3)(m)/m?"~3/2 in our previous notation. We are
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interested in averages of the form

Su(p™,p") = (an(P™)in(p")) = ngnooﬁzan )it (p
It can be shown that

0 if mis odd, £=0,2,
1 if miseven, £ =0,2, p=1,2,4 mod 7,
(—l)m/2 if miseven, £=0,2, p=3,5,6 mod 7,

5u(pm,p£)= -2 %fm?s odd,ﬁzl,pil,2,4 mod 7,
0 ifmiseven, /=1,p=1,2,4 mod 7,
0 if{=1,p=3,56mod 7,
0 if £ > 3,
0 ifp="1.

Following the ratios conjecture recipe, we take the contribution to the L-
function in the numerator from the first term in the approximate functional
equation:

L(S7X4n73) = Z aT;(ls ) + Xan— 3( ) Z C;’;YZ)
m<zx m<y

Thus we are interested in the sum

N
ap(m n 14
(5.1) Z [Z m1§2+)a ; 5/2(+”

n=1

N

1 1
=2 l/2ta g2ty > an(m)pn(f)
L

R n=1

- HZ D 1/2+a mp 1/Z+w)

P myl

o0 e}

2 1 1 1
- 1 (- o (14 g5 ) 2 e
o Y s+ (1w ) X )
p51,2,4mod7( pe ’Ym:Op( o P m:Op( m
1\ = (-p"
< T ((1450m) X oo )
p=3,5,6 mod 7 m=0

Now we want to extract from (5.1]) all the factors that do not converge
like 1/p?. Thus, the limit as N — oo of the expression in (5.1)) divided by
N equals

C(1+2y)L(1 + 20, x—7)
CA+a+y)L(1+a+v,x-7)

A, ),
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with the convergent Euler product A(«,~y) given by

1 -~
(5.2) A(a,y) = H ﬁ
D pltaty
1- ﬁ 2 > 1
p
x H _ 1 (_p1+a+v Z (1+2a)m

p=1,2,4mod 7 1 pltaty m=o P

1 — 1
+ (1 + 1+2’y> Z p(1+2a)m>

m=

1+ 1+2a 1 > ( 1)
X H 1 <<1 + p1+2’7) Z (1+2a)m>

p=356mod7 L T piFeTs m=0 P

Using the second sum in the approximate functional equation merely
exchanges —a for a and introduces a factor Xy4,—3(1/2+ ). Thus we arrive
at the conjecture, making the usual assumptions about the error term and
applying the usual restrictions on the parameters o and ~:

CONJECTURE 5.1. Let —1/4 < Ra < 1/4, 1/logN < Ry < 1/4 and
Sa, Iy < N17¢. Then following the ratios conjecture recipe [CFZ08] we
have

Z 1/2+Oé X4n 3)
L(1/2 4, x"73)

N
- ¢(1+27)L(1 + 2a, x_7)
- Z(C(l+OJ+’}/)L(1—|—(){+7,X_7)A(&)’Y)

<7>2ar(2n “loa) (UL -200x-1) 0 )>
2 I'en—14a)(l—a+v)L(1l—-a+vy,x-7) E
+O(N1/2+6).

with A(a,~y) defined at (5.2]).

We note that in arriving at this conjecture we have used the ratios con-
jecture method exactly as was done for ratios of quadratic twists of the
L-function associated with Ramanujan’s tau-function, La(s, xq), Conjec-
ture 2.9 of [CSOT7]. That conjecture and Conjecture have exactly the
same structure and in a straightforward analogy with the lines leading up
to Theorem 2.10 in [CS07] and Theorem 3.2 in that paper we see without
need to include further workings that the form of the one-level density that
follows from the ratios Conjecture [5.1] has the following form:

n=1

THEOREM 5.2. Assuming Conjecture and assuming for simplicity
that f(z) is even, holomorphic in the strip |Sz| < 2, real on the real line,
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and that f(xr) < 1/(1 4 2?) as 2 — oo,

1 N

[e.9]

N !
ZQWNSOO Z( F(2n—1+zt) %(Zn—l—it)

n=1
¢'(1 4 2it) L’(l + 2it, x—7)
<_ C(1+2it) ' L(1+ 2it,x_7)

7\ " r(2n —1—it) ¢(1+ 2it)L(1 — 2it, x_7) o
- (%) I(2n—1+1t) L1, x_7) Al=it, Zt))) a

+O(N~12Te),
where A'(r,r) is defined as

+ A'(it, it)

d

70 e, 7)

a=~vy=r
If the zeros are scaled by (1/7)log N so as to have, asymptotically, unit
density, then we see as in [CS07] that

. 1Y v log N T sin 27y
J\}gnooNZ::Zf< T )Z S f(y)<1+ 21y >d

—00

Here there is no restriction on the support of the Fourier transform of the
test function, but the result relies on the correct form of the main terms in
Conjecture

6. Discretization. Our family of L-functions seems to have orthogonal
symmetry type, which means that it is potentially possible to have lots of
small values or zeros of these L-functions at the critical point. For modeling
this family with random matrix theory we need to know how the family is
“discretized”. In practice, the central values of the L-functions of an orthog-
onal family can be given by a nice conjectural formula which expresses the
value in terms of the arithmetic, or geometry, of the family. For example, if d
is a fundamental discriminant, and x4(n) the associated quadratic Dirichlet
character, then the central value of the dth quadratic twist of an elliptic
curve L-function is

(e(ld))’

LE(1/27Xd) = \/@

where ¢(|d|) is an integer. Thus, we know that if the L-function has a value
smaller than x/4/|d| then it must be 0. This is what we mean by the dis-
cretization. In this situation, it appears that the ¢(|d|) may take any integral
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values subject to some mild conditions arising from consideration of Tama-
gawa factors that lead to some powers of 2 that must divide ¢(|d|), depending
on the primes that divide d.

Our situation here is different. If we try to discretize in a similar way, we
need a formula for the central values and we need to know just how small our
values L(1/2,x*"~3) can be without being 0. In this case, Rodriguez-Villegas
and Zagier [RVZ93] have proven a formula, conjectured by Gross and Zagier
[GZ80], for the central value of the L(s, x*"~!), namely

21 [/ T)2°" L A(n)
(n—1)!

L(1/2, XQn—l) — 2(

where
I'(1/7)I(2/7)I'(4/7)
472

By the functional equation, A(n) = 0 whenever n is even. For odd n, Gross
and Zagier [GZ80] conjectured that A(n) is a square and gave the following
table (in the later notation of Rodriguez-Villegas and Zagier):

N = = (0.81408739831.. ..

n A(n) L(1/2,x*"7)
1 1/4 0.9666
3 1 4.7890
5 1 0.9885
7 32 0.7346
9 7 0.1769

11 (3%-5.7)2 9.8609

13 (3-7-29)? 0.6916

15 (3-7-103)3 0.1187

17 (3-5-7-607)? 1.0642

19 (3% - 7-4793)* 1.7403

21 (3%-5-7-29-2399)? 6.6396

23 (3%-5-7%.10091)> 0.3302

25 (3%-7%.29-61717)° 0.2072

27 (3%-5%.7%.13-53%.79)2 1.2823

29 (3*-5%.7%.113-127033)2 8.4268

31 (3°-5-7%.71-1690651)> 0.6039

33 (3*-5-7%.1291 - 1747169)2 0.0591

Rodriguez-Villegas and Zagier [RVZ93|] proved that A(n) = B(n)? where
B(1) =1/2 and B(n) is an integer for n > 1. In fact they prove a remarkable
recursion formula:
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Define sequences of polynomials ag(x), bi(z) by the recursions

2
apn () = VA + )1 - 272) (:c;; _ 2k 1>ak(x) =R s ae ()

3 9

and

by (2) = ((321@ 56k + 42) — (2 — T)(64z — 7)6;‘;)@(95)
~ 9k(2k — 1)(112 + T)bg_1 (2)

with initial conditions ag(z) = 1, a1(z) = —3/(1 — z)(1 + 272), bo(z) =

1/2, and by (x) = 1. Then, with A and B defined as above,
agn(—l)

A(2n+1) = and B(2n+1) = b,(0).

Equation (6) of [RVZ93] states that for odd n,
B(n) = —n mod 4,

a result that in one fell swoop proves the non-vanishing of L(1/2, x?"~!) for
all odd n.

It would be interesting to use these recursion formulae to try to under-
stand a discretization of the values of this family of L-functions, from which
one might profitably apply a random matrix model to infer more detailed
statistical behavior of these values. The integers B(n) that appear in the
formula of Villegas—Zagier are growing quickly, presumably to counteract,
by virtue of the expected Lindel6f Hypothesis, the C"(n — 1)! growth in the
denominator. The question of just how small these L-values can be is an
interesting one.

7. Conclusion. With a mind toward modeling the symmetric powers
of the L-function of a general elliptic curve, and to consider whether their
central values vanish, we have taken a few steps toward the much simpler
problem of modeling the family of L-functions associated with the symmetric
powers of the L-function of an elliptic curve with complex multiplication.
We have used generally applicable methods from analytic number theory
even though for our particular family there are powerful algebraic meth-
ods available. We have given some evidence that the family has orthogonal
symmetry type. Some unresolved questions are to:

(1) Try to determine if the symmetric power L-functions in the non-CM
case form a family. This seemed very nebulous to us, but see the letter
[Sar07] of Sarnak to Mazur for some interesting calculations relevant to this
issue.

(2) Try to determine a discretization for the central values of an L-
function associated with a weight & newform. This seems to be a whole new
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direction that has not been considered. In particular, for the Gross—Zagier
family we consider, explaining the genesis of the large values of the integers
A(n) that appear as factors in the central values is a challenge.
(3) Try to obtain an asymptotic formula for the second moment of our
family. Our upper bound fell just short of achieving an asymptotic formula.
(4) Prove a bound of the form L(1/2,x**3) <« n'/?>=* for some A > 0
(i.e. a subconvexity bound) for this family.
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