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Nonreciprocal algebraic numbers of small Mahler’s measure
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1. Introduction. Let d be a positive integer and let α be an algebraic
number of degree d with conjugates α1 = α, α2, . . . , αd over Q. The Mahler
measure of α with minimal polynomial P (x) := ad(x−α1) · · · (x−αd) ∈ Z[x],
ad > 0, is given by

M(α) = M(P ) := ad

d∏
j=1

max(1, |αj |).

Then M(α) ≥ 1 and, by Kronecker’s theorem, M(α) = 1 if and only if α is
either zero or a root of unity.

Let T ≥ 1 be a fixed real number. How many irreducible polynomials in
Z[x] of degree d (or at most d) have their Mahler measures in the interval
[1, T )? This question was first raised by Mignotte [12] (see also [13]) who gave
the first upper bound 2(8d)2d+1 on the number of irreducible polynomials
of degree d whose Mahler measures are smaller than 2. The problem was
further studied in [2], [3] and [4]. In particular, an asymptotical formula
for the number of integer polynomials of degree at most d and of Mahler’s
measure at most T when d is fixed and T →∞ was established by Chern and
Vaaler in [2]. However, the problem is much more difficult when T is small,
say, fixed and d→∞. Although Kronecker’s theorem gives the answer when
the interval is a singleton (the number of integer irreducible polynomials of
degree at most d with Mahler’s measure 1 is equal to the number of solutions
of ϕ(n) ≤ d, where ϕ is Euler’s totient function), Lehmer’s question if for
each T > 1 there is an irreducible polynomial P ∈ Z[x] whose Mahler
measure satisfies 1 < M(P ) < T remains open.

Currently, the best upper bound for the number of irreducible polynomi-
als of degree at most d having Mahler’s measures in [1, T ) follows from [4].
There exist at most T d+16 log d/log log d integer polynomials of degree at most d
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whose Mahler measures belong to the interval [1, T ). However, when T is
fixed and d→∞ this bound seems to be very far from the true bound.

The first nontrivial lower bound was obtained in [3]: for each d ≥ 2 there
are at least (d−3)2/2 irreducible integer polynomials (in fact, nonreciprocal
polynomials) of degree d with Mahler measures smaller than 2. Recall that
a polynomial P is called reciprocal if it satisfies P (x) = ±P ∗(x), where
P ∗(x) = xdegPP (1/x), and nonreciprocal otherwise. The algebraic number
is reciprocal iff its minimal polynomial in Z[x] is reciprocal. Of course, ‘most’
of the algebraic numbers are nonreciprocal, so it is natural to expect that
‘most’ of the irreducible polynomials in Z[x] whose Mahler measures are
small, say less than 2, are nonreciprocal too. However, this is not the case
for Mahler measures smaller than 1.32.

Let
θ := 1.32471 . . . and θ1 := 1.32479 . . .

be the roots of the polynomials

x3 − x− 1 and 4x8 − 5x6 − 2x4 − 5x2 + 4,

respectively. In [17] Smyth showed that the Mahler measure of a nonrecip-
rocal algebraic number α is at least θ. Moreover, in [18] it is shown that
if α is a nonreciprocal algebraic number satisfying 1 ≤ M(α) ≤ θ1 then
α = ±θ±1/n with n ∈ N and so M(α) = θ. In particular, this implies that
the interval [1, θ) contains no nonreciprocal Mahler measures at all and that
the number of irreducible nonreciprocal polynomials of degree at most d
with Mahler measures in the interval [1, θ1] is between c1d and c2d. The
above mentioned result of [3] implies that the number of nonreciprocal ir-
reducible polynomials in Z[x] of degree at most d with Mahler measures in

[1, 2) is at least
∑d

k=2 (k − 3)2/2 = d3/6 +O(d2).
In this paper, we improve this bound:

Theorem 1.1. There is an absolute constant c > 0 such that for each
d ≥ 2 there exist at least cd5 monic irreducible nonreciprocal polynomials
P ∈ Z[x] satisfying degP ≤ d and 1 ≤M(P ) < 2.

In fact, we prove the following more general result:

Theorem 1.2. For each ε > 0 and each integer k ≥ 2 there exist two
positive numbers c0 := c(ε, k) and d(ε, k) such that for every integer d ≥
d(ε, k) there exist at least c0d

k monic irreducible nonreciprocal polynomials
in Z[x] of degree at most d whose Mahler measures belong to the interval
[θ, λk + ε), where λk := M(1 + x1 + · · ·+ xk).

Recall that

logM(P (x1, . . . , xk)) =

1�

0

· · ·
1�

0

log |P (e2πit1 , . . . , e2πitk)| dt1 · · · dtk
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for P ∈ C[x1, . . . , xk]. In the table below we give the first five values of
λk (starting with k = 2) with three correct decimal digits. Since λ5 < 2,
the table shows that Theorem 1.1 is a special case of Theorem 1.2 with
k = 5 and, for instance, ε = 1/8 = 0.125. (The interval for the degree
2 ≤ d ≤ d(1/8, 5) is covered by reducing the constant c0 = c(1/8, 5) to c, if
necessary.)

k 2 3 4 5 6

λk = M(1 + x1 + · · ·+ xk) 1.381 1.531 1.723 1.872 2.019

The values

λ2 = exp(logM(1 + x1 + x2)) = exp

(
3
√

3

4π

∞∑
n=1

χ−3(n)

n2

)
,

λ3 = exp(logM(1 + x1 + x2 + x3)) = exp(7ζ(3)/2π2)

have been evaluated by Smyth (see [19] and Appendix 1 in [1]). In the next
section we shall explain how the numerical values given in the above table
have been found.

For the proof of Theorem 1.2 we will construct monic irreducible non-
reciprocal polynomials as divisors of some Newman hexanomials 1 + xr1 +
· · · + xrk , where the integers 1 ≤ r1 < · · · < rk ≤ d satisfy some additional
restrictions including 2rj < rj+1 for j = 1, . . . , k − 1.

2. Computation of Mahler measures. The Mahler measures in the
above table have been calculated by evaluating the integral

logM(1 + x1 + · · ·+ xk) =
�

Ik

log |Fk(t1, . . . , tk)| dt1 · · · dtk

of the function

Fk(t1, . . . , tk) := 1 + e2πit1 + · · ·+ e2πitk

over the k-dimensional hypercube Ik := [0, 1]k.

Firstly, Jensen’s formula was applied to the integral�

Ik

log |Fk(t1, . . . , tk)| dt1 · · · dtk =
�

Ik−1

log+ |Fk−1(t1, . . . , tk−1)| dt1 · · · dtk−1,

where log+ denotes the positive part of the logarithmic function, given by
the identity

log+ |z| := log max {1, |z|}, z ∈ C.

This transformation resolves the problem of singularities at points where the
function Fk vanishes. In addition, it reduces the dimension of the integration
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domain. Secondly, calculations with complex numbers have been replaced
by calculations with real numbers using the identities

log+ |Fk−1(t1, . . . , tk−1)| =
1

2
log+ |Fk−1(t1, . . . , tk−1)|2,

|Fk−1(t1, . . . , tk−1)|2 = (1 + cos 2πt1 + · · ·+ cos 2πtk−1)
2

+ (sin 2πt1 + · · ·+ sin 2πtk−1)
2.

Finally, the resulting integral was evaluated numerically using the Cuba li-
brary [8] for the multidimensional integration through Mathematica inter-
face.

The integration was performed using the global adaptive subdivision
algorithm Cuhre for dimensions k ≤ 5. For k = 6 the rate of convergence
was quite slow and the reported error was considerable, hence we applied
the stratified sampling algorithm Divonne in nondeterministic quasi-random
mode; the resulting value 2.019 was subsequently also tested in Divonne

in deterministic mode. Other algorithms (such as Suave or NIntegrate,
available in Mathematica) were used to cross-check the results.

3. Auxiliary lemmas. The next result was conjectured by Boyd [1]
and proved by Lawton [9]. One can also find its proof in Schinzel’s book [16,
pp. 237–243].

Lemma 3.1. Let r be a vector in Zk, P ∈ C[x1, . . . , xk], and let

µ(r) := min{‖s‖ : s ∈ Zk and r · s = 0},
where ‖s‖ = ‖(s1, . . . , sk)‖ = max1≤i≤k |si|. Then

lim
µ(r)→∞

M(P (xr1 , . . . , xrk)) = M(P (x1, . . . , xk)).

In order to apply Lemma 3.1 we shall need the following observation.

Lemma 3.2. Let s be a nonzero vector in Zk. Then the number of vectors
r = (r1, . . . , rk) ∈ Zk satisfying 1 ≤ r1 < · · · < rk ≤ d and r · s = 0 is less
than

(
d

k−1
)
.

Proof. The result is trivial for k = 1. Assume that k ≥ 2. Since s =
(s1, . . . , sk) is nonzero, we must have si 6= 0 for some index i. Denote
by r′ an arbitrary vector r′ := (r1, . . . , ri−1, ri+1, . . . , rk) with strictly in-
creasing positive integer coordinates, the largest of which does not exceed
d. Clearly, there are at most

(
d

k−1
)

such vectors r′. Consider any vector

r = (r1, . . . , rk) ∈ Zk satisfying 1 ≤ r1 < · · · < rk ≤ d and r · s = 0
corresponding to the vector r′. Note that such a vector r does not exist if
ri+1− ri−1 = 1 for 1 < i < k (resp. r2 = 1 for i = 1 and rk−1 = d for i = k).
Since siri = −

∑
j 6=i sjrj , to each such vector r′ corresponds at most one
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value for the remaining component ri of the vector r. Therefore, there are
less than

(
d

k−1
)

such vectors r.

Every monic polynomial P ∈ Z[x] can be written in the form P (x) =
Q(x)R(x), where Q(x) is the product of all nonreciprocal monic polynomials
dividing P (x) (with respective multiplicities) and, similarly, R(x) is the
product of all reciprocal polynomials dividing P (x). (The polynomials Q and
R can be equal to 1.) We refer to the polynomial Q(x) as the nonreciprocal
part of P (x). Results on reducibility of Newman polynomials (those with
coefficients 0, 1) are given in [6], [7], [10], [11], [14], [15]. Some of these
results are more precise for small k than the lemma given below. However,
we prefer to give this result of Filaseta [5], since it can be used for every
k ≥ 2.

Lemma 3.3. Let P (x) = 1+xr1 + · · ·+xrk ∈Z[x], where 1≤ r1< · · ·< rk
and rj+1 >

1+
√
5

2 rj for each j = 1, . . . , k− 1. Then the nonreciprocal part of
P (x) is either irreducible or identically 1.

4. Putting things together: proof of Theorem 1.2. Let k ≥ 2 and
d ≥ 2k − 1 be two integers, and let Sk be the set of k-nomials of the form

1 + xr1 + · · ·+ xrk−1 + xrk ,

where rj are positive integers lying in the intervals

(2j − 2)M + 1 ≤ rj ≤ (2j − 1)M

for j = 1, . . . , k with M := [d/(2k − 1)]. Then 1 ≤ r1 < · · · < rk ≤ d and
2rj < rj+1 for each j = 1, . . . , k − 1. Clearly, |Sk| = Mk.

Observe that each polynomial in Sk is nonreciprocal in view of rk−1 + r1
≤ 2rk−1 < rk. By Lemma 3.3, each P ∈ Sk has a unique monic irreducible
nonreciprocal factor Q ∈ Z[x] of degree at least 2 and at most d. We claim
that all these Q are distinct.

Indeed, for a contradiction assume that there are P1(x) := 1 + xr1 + · · ·
· · ·+ xrn and P2(x) := 1 + xu1 + · · ·+ xun in Sk whose nonreciprocal parts
are the same. Then P1(x) = Q(x)R1(x) and P2(x) = Q(x)R2(x) with some
nonreciprocal polynomial Q and some two distinct reciprocal polynomials
R1, R2 ∈ Z[x]. Notice that the polynomial

P1(x)P ∗2 (x) = Q(x)R1(x)Q∗(x)R∗2(x) = ±Q(x)Q∗(x)R1(x)R2(x)

is reciprocal, since so are R1, R2 and QQ∗. Since

P ∗2 (x) = 1 + xun−un−1 + · · ·+ xun−u1 + xun ,

using

un − un−1 ≥ (2n − 2)M + 1− (2n−1 − 1)M = (2n−1 − 1)M + 1 > rn−1,
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we see that the first (lowest) n terms of the polynomial P1(x)P ∗2 (x) are

1 + xr1 + · · ·+ xrn−1 .

Analogously, by the inequality rn−1 + un < rn + un − un−1, we see that the
last (highest) n terms of this polynomial are

xrn+un−un−1 + · · ·+ xrn+un−u1 + xrn+un .

Since the degree of the reciprocal polynomial P1(x)P ∗2 (x) is rn + un, by
considering the first n and the last n terms, we must have

ri = (rn + un)− (rn + un − ui) = ui

for i = 1, . . . , n− 1. Hence the nonzero difference

Q(x)(R1(x)−R2(x))

= P1(x)− P2(x) = 1 + xr1 + · · ·+ xrn − 1− xu1 − · · · − xun = xrn − xun

is the product of a power of x and some cyclotomic polynomials, so it cannot
be divisible by Q(x), a contradiction. This proves our claim.

The claim implies that there exist L := Mk distinct monic irreducible
nonreciprocal polynomials Qi(x), i = 1, . . . , L, which divide L distinct poly-
nomials of the set Sk. It remains to show that ‘most’ of them have small
Mahler’s measure.

Fix ε > 0 and fix an integer k ≥ 2. By Lemma 3.1 applied to the
polynomial in k variables P (x1, . . . , xk) := 1 + x1 + · · ·+ xk, for each ε > 0
there is a constant C(ε, k) such that

|M(1 + x1 + · · ·+ xk)−M(1 + xr1 + · · ·+ xrk)| < ε

whenever µ(r) > C(ε, k). Obviously, there only finitely many, say B :=
B(ε, k), vectors s ∈ Zk satisfying ‖s‖ ≤ C(ε, k). To each of those B vectors
we may apply Lemma 3.2. This gives at most B

(
d

k−1
)
≤ Bdk−1 vectors

r = (r1, . . . , rk), 1 ≤ r1 < · · · < rk ≤ d with µ(r) ≤ C(ε, k) for which
the modulus of the difference between Mahler measures of the polynomials
1 +x1 + · · ·+xk and P (x) = 1 +xr1 + · · ·+xrk can be greater than or equal
to ε. Therefore, the inequality

λk − ε < M(P ) < λk + ε

holds for each P ∈ Sk with at most Bdk−1 exceptions.

It follows that there is a subset S∗k of Sk with cardinality

L−Bdk−1 = Mk −Bdk−1 = [d/(2k − 1)]k −Bdk−1 � dk

(where the last inequality holds for d large enough, say d ≥ d(ε, k)) such
that M(Pi) < λk + ε for each Pi ∈ S∗k . Since the nonreciprocal parts Qi of
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those Pi(x) = Qi(x)Ri(x) are all distinct and

λk + ε > M(Pi) = M(Qi)M(Ri) ≥M(Qi) ≥ θ,

where the last inequality holds by Smyth’s result [17], there exist at least
|S∗k | � dk distinct monic irreducible nonreciprocal polynomials Qi of de-
gree at most d with Mahler measures lying in the interval [θ, λk + ε). This
completes the proof of Theorem 1.2.
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