On non-intersecting arithmetic progressions

by
Régis de la Bretèche (Paris), Kevin Ford (Urbana, IL) and Joseph Vandehey (Urbana, IL)

1. Introduction and statement of results. Consider a set \mathcal{Q} of positive integers, together with an associated family $\left\{a_{q}\right\}_{q \in \mathcal{Q}}$ of integers such that the arithmetic progressions $\left(a_{q} \bmod q\right)$ are pairwise disjoint. The purpose of this paper is to provide sharper bounds for the asymptotic growth of

$$
f(x):=\sup _{\mathcal{Q} \subset \mathbb{N}}|\mathcal{Q} \cap[1, x]| .
$$

Erdős and Stein first conjectured that $f(x)=o(x)$ (see [6]). This was proved by Erdős and Szemerédi [6], who showed that, for a particular constant c and any $\epsilon>0$,

$$
\frac{x}{\exp \left\{(\log x)^{1 / 2+\epsilon}\right\}}<f(x)<\frac{x}{(\log x)^{c}}
$$

for sufficiently large x. Erdős and Szemerédi credited Stein's help in finding this lower bound.

Croot in [2] then showed that as x tends to infinity, we have the following bounds on $f(x)$:

$$
x L(-\sqrt{2}+o(1), x) \leq f(x) \leq x L\left(-\frac{1}{6}+o(1), x\right)
$$

Here we use the notation $L(\alpha, x):=\exp \left\{\alpha \sqrt{\log x \log _{2} x}\right\}, \log _{2} x:=\log \log x$ and $o(1)$ stands for a function that approaches 0 as $x \rightarrow \infty$. Croot further showed that

$$
|\mathcal{Q} \cap[1, x]| \leq x L\left(-\frac{1}{2}+o(1), x\right)
$$

provided that \mathcal{Q} contains only squarefree integers. The same estimate was later proved by Chen in [1] for arbitrary \mathcal{Q}.

We improve these results as follows.

[^0]Theorem 1. As x tends to infinity, we have

$$
x L(-1+o(1), x) \leq f(x) \leq x L\left(-\frac{1}{2} \sqrt{3}+o(1), x\right) .
$$

We further conjecture that $f(x)=x L(-1+o(1), x)$. Our proof of the theorem will depend on investigations of the multiplicative structure of elements of sets $\mathcal{Q} \subset[1, x]$ such that $|\mathcal{Q}|=f(x)$.
2. Proof of the lower bound. To prove the lower bound we shall construct a specific set $\mathcal{Q} \subset[1, x]$ with cardinality $x L(-1+o(1), x)$ and then show the existence of a choice of residues a_{q} for this \mathcal{Q} that ensure all the arithmetic progressions are disjoint.

To begin, let

$$
r:=\left\lfloor 2 \frac{\sqrt{\log x}}{\sqrt{\log _{2} x}}\left(1-\frac{3}{\sqrt{\log _{2} x}}\right)\right\rfloor,
$$

with $\lfloor t\rfloor$ denoting the integer part of t. Then define y_{0} as the solution to the following equation:

$$
\log \left(2 y_{0}\right)=\frac{\log x}{r+1}-\frac{r}{4} \log \left(\frac{\log x}{4}\right) .
$$

This gives asymptotically

$$
\begin{equation*}
\log y_{0} \sim 3 \sqrt{\log x} . \tag{2.1}
\end{equation*}
$$

Now we fix a prime $p_{0} \in\left[y_{0}, 2 y_{0}\right]$. The prime factor p_{0} will divide all $q \in \mathcal{Q}$, in contrast to the construction of Erdős and Szemerédi, and similar to the construction of Croot.

Let $y_{k}:=y_{0}\left(\frac{1}{4} \log x\right)^{k / 2}$ for $k \in \mathbb{N}$, so that for x sufficiently large and all $k \geq 1$ we have

$$
\begin{equation*}
\pi\left(2 y_{k+1}\right) \leq y_{k} \frac{\sqrt{\log x}}{\log y_{k}} \leq y_{k} \frac{\sqrt{\log x}}{\log y_{0}}<y_{k} . \tag{2.2}
\end{equation*}
$$

Now we define our set \mathcal{Q} by

$$
\mathcal{Q}:=\left\{p_{0} p_{1} \cdots p_{r}: \forall k \in[1, r], p_{k} \in\left(y_{k}, 2 y_{k}\right]\right\} .
$$

We have

$$
\mathcal{Q} \subset\left[\prod_{k=0}^{r} y_{k}, 2^{r+1} \prod_{k=0}^{r} y_{k}\right]
$$

Moreover, $\mathcal{Q} \subset[1, x]$, since, by the definition of y_{0} and y_{k}, we have

$$
2^{r+1} \prod_{k=0}^{r} y_{k}=\left(2 y_{0}\right)^{r+1}\left(\frac{1}{4} \log x\right)^{r(r+1) / 4}=x .
$$

It remains to estimate $|\mathcal{Q}|$. By the previous line, $y_{1} \cdots y_{r}=\mathrm{e}^{O(r)} x / y_{0}$, and, by (2.1),

$$
2 \sqrt{\log x} \leq \log y_{0} \leq \log y_{k} \leq \log y_{0}+\frac{r}{2} \log \left(\frac{\log x}{4}\right) \leq 3 \sqrt{\log x \log _{2} x}
$$

for sufficiently large x and for $0 \leq k \leq r$. Therefore

$$
\begin{aligned}
|\mathcal{Q}| & =\prod_{k=1}^{r}\left(\pi\left(2 y_{k}\right)-\pi\left(y_{k}\right)\right)=\mathrm{e}^{O(r)} \prod_{k=1}^{r} \frac{y_{k}}{\log y_{k}} \\
& =\frac{x}{(\log x)^{r(1+o(1)) / 2}}=x L(-1+o(1), x)
\end{aligned}
$$

Now we construct the a_{q} with $a_{q} \in[1, q]$. Each $q \in \mathcal{Q}$ can be written as $q=p_{0} p_{1} \cdots p_{r}$ with $p_{k} \in\left[y_{k}, 2 y_{k}\right]$. Using the Chinese Remainder Theorem, we may define a_{q} entirely by its residues modulo p_{k}. Let $r_{k}:=\pi\left(p_{k}\right)$, and note $r_{k+1}<p_{k}$ by 2.2). Then define a_{q} by

$$
a_{q} \equiv r_{k+1}\left(\bmod p_{k}\right) \quad(0 \leq k \leq r-1), \quad a_{q} \equiv 0\left(\bmod p_{r}\right)
$$

It only remains to show that the arithmetic progressions so formed are disjoint. Let $n \in \mathbb{N}$ and suppose there exists $q \in \mathcal{Q}$ such that $n \equiv a_{q}(\bmod q)$. We will show that q is unique. First, let m_{1} be the representative of the residue class $n\left(\bmod p_{0}\right)$ in $\left[1, p_{0}\right]$. If we let $p(m)$ denote the m th prime number, then we have $p_{1}=p\left(m_{1}\right)$. Iterating this procedure, we obtain $p_{k}=$ $p\left(m_{k}\right)$ where m_{k} is the representative of the residue class $n\left(\bmod p_{k-1}\right)$ in $\left[1, p_{k-1}\right]$, and

$$
q=p_{0} \prod_{k=1}^{r} p\left(m_{k}\right)
$$

This completes the proof of the lower bound.

3. Preliminary lemmas for the upper bound

3.1. Some auxiliary upper bounds. We begin with three lemmas that show that moduli q with certain bad properties are so rare that they may be excluded from consideration in the upper bound without affecting the main term. The first lemma will imply that we only need to consider moduli q with a "small" number of prime factors.

Lemma 3.1. Let $A>0$. As x tends to infinity, we have, uniformly in $2 \leq y \leq x, \alpha \in[0, A]$,

$$
\left|\left\{n \leq y: \omega(n) \geq \alpha \sqrt{\log x / \log _{2} x}\right\}\right| \leq y L\left(-\frac{1}{2} \alpha+o(1), x\right)
$$

Here, we use the usual definitions of the distinct prime divisor counting function, $\omega(n)$, and the prime divisor counting function, $\Omega(n)$, which are
given by

$$
\omega(n):=\sum_{p \mid n} 1 \quad \text { and } \quad \Omega(n):=\sum_{p^{k} \mid n, k \geq 1} 1 .
$$

Proof. The proof is a classic application of the method of parameters, also known as Rankin's method (see, for example, Section III. 5 of [8]). If $z \geq 1$ then

$$
\begin{aligned}
\left|\left\{n \leq y: \omega(n) \geq \alpha \sqrt{\log x / \log _{2} x}\right\}\right| & \leq z^{-\alpha \sqrt{\log x / \log _{2} x}} \sum_{n \leq y} z^{\omega(n)} \\
& \leq \mathrm{e} y z^{-\alpha \sqrt{\log x / \log _{2} x}} \sum_{n=1}^{\infty} \frac{z^{\omega(n)}}{n^{1+1 / \log x}} \\
& \leq \mathrm{e} y z^{-\alpha \sqrt{\log x / \log _{2} x}} \zeta(1+1 / \log x)^{z} \\
& \leq \mathrm{e} y z^{-\alpha \sqrt{\log x / \log _{2} x}}(2 \log x)^{z} .
\end{aligned}
$$

Choosing $z=\sqrt{\log x} / \log _{2} x$, we obtain the desired upper bound.
We now introduce a function h defined by

$$
h(q):=\prod_{p^{\nu} \| q} \nu
$$

The following lemma will imply that we only need to consider moduli q with $h(q) \leq \mathrm{e}^{\sqrt{\log x}}$.

Lemma 3.2. For x sufficiently large, we have the following bound:

$$
\left|\left\{n \leq x: h(n) \geq \mathrm{e}^{\sqrt{\log x}}\right\}\right| \leq x \mathrm{e}^{-\frac{1}{5} \sqrt{\log x} \log _{2} x}
$$

Proof. Let $y:=\frac{1}{5} \sqrt{\log x}$. For any integer n, write $n=n_{1} n_{2}$ where all prime factors of n_{1} are $\leq y$ and all prime factors of n_{2} are $>y$. For $n=$ $n_{1} n_{2} \leq x$, we have

$$
h\left(n_{1}\right) \leq\left(\frac{\log x}{\log 2}\right)^{\pi(y)} \leq \mathrm{e}^{\frac{1}{2} \sqrt{\log x}}
$$

for x sufficiently large. Therefore, integers $n \leq x$ with $h(n) \geq \mathrm{e}^{\sqrt{\log x}}$ satisfy $h\left(n_{2}\right) \geq \mathrm{e}^{\frac{1}{2} \sqrt{\log x}}$. The inequality $\nu \leq 2^{\nu-1}$ is valid for all $\nu \in \mathbb{N}$ and implies that

$$
\mathrm{e}^{\frac{1}{2} \sqrt{\log x}} \leq h\left(n_{2}\right) \leq 2^{\Omega\left(n_{2}\right)-\omega\left(n_{2}\right)} .
$$

Since for $p>y$,

$$
\sum_{\nu \geq 2} \frac{\sqrt{2}^{(\nu-1) \log _{2} x}}{p^{\nu(1+1 / \log x)}} \leq \frac{(\log x)^{(\log 2) / 2}}{p^{2}} \frac{1}{1-(\log x)^{(\log 2) / 2} / p} \ll \frac{(\log x)^{(\log 2) / 2}}{p^{2}}
$$

we have

$$
\begin{aligned}
\left|\left\{n \leq x: h(n) \geq \mathrm{e}^{\sqrt{\log x}}\right\}\right| & \leq \mathrm{e}^{-\frac{1}{4} \sqrt{\log x} \log _{2} x} \sum_{n=1}^{\infty} \frac{\sqrt{2}\left(\Omega\left(n_{2}\right)-\omega\left(n_{2}\right)\right) \log _{2} x}{n^{1+1 / \log x}} \\
& \ll x(\log x)^{(\log 2) / 2} \mathrm{e}^{-\frac{1}{4} \sqrt{\log x} \log _{2} x}
\end{aligned}
$$

with the last inequality obtained by writing the Dirichlet series in the form of an Euler product.

Our final lemma of this subsection states that there cannot be too many elements of \mathcal{Q} with a given squarefree part. Here we define

$$
\operatorname{ker}(n):=\prod_{p \mid n} p
$$

to be the "squarefree kernel" of n.
Lemma 3.3. Let $H \in \mathbb{N}$. For any squarefree q, there are at most $H^{2} 2^{\omega(q)}$ integers n with $\operatorname{ker}(n)=q$ and with $h(n) \leq H$.

Proof. Let $K=\omega(q)$. The number of integers in question is at most

$$
\sum_{a_{1}, \ldots, a_{K} \in \mathbb{N}}\left(\frac{H}{a_{1} \cdots a_{K}}\right)^{2}=H^{2}\left(\pi^{2} / 6\right)^{K} \leq H^{2} 2^{K}
$$

3.2. Combinatorics of intersecting families. We call a family of non-empty sets \mathcal{A} an intersecting family if $|S \cap T| \geq 1$ for all $S, T \in \mathcal{A}$. (We assume that no set is repeated in \mathcal{A}.) We call an intersecting family set-minimal if for any $S \in \mathcal{A}$ and a proper subset $S^{\prime} \subset S$, there exists $T \in \mathcal{A}$ such that $\left|S^{\prime} \cap T\right|=0$. In particular, if $|\mathcal{A}|=1$, then the set $S \in \mathcal{A}$ has one element. Let \mathcal{A}^{r} denote $\{S \in \mathcal{A}:|S| \leq r\}$.

Lemma 3.4. If \mathcal{A} is a set-minimal intersecting family of sets, each with at most n elements, and $r \leq n$, then $\left|\mathcal{A}^{r}\right| \leq r n^{r-1}$.

Proof. Suppose to the contrary that $\left|\mathcal{A}^{r}\right|>r n^{r-1}$. Select a set $S_{1} \in \mathcal{A}^{r}$. Then there must exist an $x_{1} \in S_{1}$ such that the number of sets in \mathcal{A}^{r} that contain x_{1} exceeds n^{r-1}; otherwise, \mathcal{A} could not be an intersecting family. However, not all sets in \mathcal{A} can contain x_{1}; otherwise, $\left\{x_{1}\right\}$ is a nontrivial subset of a set in \mathcal{A}^{r} that intersects all sets in \mathcal{A}, contradicting setminimality. Thus there exists $S_{2} \in \mathcal{A}$ that does not contain x_{1} and an $x_{2} \in S_{2}$ such that the number of sets in \mathcal{A}^{r} that contain x_{1}, x_{2} exceeds n^{r-2}. If $r \geq 3$, then there must be a set S_{3} which does not contain x_{1} and does not contain x_{2}, and for some $x_{3} \in S_{3}$, the number of sets in \mathcal{A}^{r} that contain x_{1}, x_{2}, x_{3} exceeds n^{r-3}. We can continue in this way until we find x_{1}, \ldots, x_{r} such that there is more than one set in \mathcal{A}^{r} that contains these r elements, which is impossible.

REmark. The proof of Lemma 3.4 follows the general steps of a proof of Erdős and Lovász ([4, p. 621]).

Consider some set $\mathcal{Q} \subset \mathbb{N}$ of moduli with associated residues $\left\{a_{q}: q \in \mathcal{Q}\right\}$ such that the arithmetic progressions $\left(a_{q} \bmod q\right)$ are all disjoint. The nonintersection property is equivalent to the condition that for any $q_{1}, q_{2} \in \mathcal{Q}$ there exists a prime p and an exponent $\nu \geq 1$ such that $p^{\nu} \mid\left(q_{1}, q_{2}\right)$ and $a_{q_{1}} \not \equiv a_{q_{2}}\left(\bmod p^{\nu}\right)$.

Each pair q_{1}, q_{2} in \mathcal{Q} must share at least one prime in common, but not all $q \in \mathcal{Q}$ must share the same prime: it could be that some q are divisible by 2 and 3 , some divisible by 3 and 5 , and some by 2 and 5 , or something considerably more complicated. Regardless, if we consider the subset of elements in \mathcal{Q} that, say, are both divisible by 2 and 3, then each pair of numbers in this subset with a_{q} equivalent modulo 6 must share some prime other than 2,3 .

We say a set $\left\{n_{1}, \ldots, n_{k}\right\}$ of squarefree integers >1 is intersecting (respectively, minimal) with size ℓ if the corresponding collection of sets $\mathcal{A}=\left\{S_{1}, \ldots, S_{k}\right\}$ with $S_{j}=\left\{p: p \mid n_{j}\right\}$ is intersecting (respectively, setminimal) with size ℓ.

Lemma 3.5. For any finite, intersecting set \mathcal{B} of squarefree integers >1, there is a minimal, intersecting set \mathcal{C} of squarefree integers >1 such that for all $B \in \mathcal{B}$, there exists $C \in \mathcal{C}$ such that $C \mid B$.

Proof. Construct \mathcal{C} iteratively. Start with $\mathcal{C}=\mathcal{B}$ and repeat the following until \mathcal{C} is minimal:

- If there exists $C \in \mathcal{C}$ and a prime $p \mid C$ such that $\left(C / p, C^{\prime}\right)>1$ for all $C^{\prime} \in \mathcal{C}$, then replace C by C / p. If C / p is duplicated in \mathcal{C}, then remove the duplicate.

This process must terminate, since \mathcal{B} is finite.

4. Proof of the upper bound

4.1. Constructing \mathcal{Q}^{\prime}. Consider a set $\mathcal{Q} \subset[1, x]$ of moduli and disjoint progressions $\left\{a_{q} \bmod q: q \in \mathcal{Q}\right\}$ such that $|\mathcal{Q}|=f(x)=: S$ and suppose x is large. We first construct a subset $\mathcal{Q}^{\prime} \subset \mathcal{Q}$ with cardinality S^{\prime} satisfying the following conditions:
(1) $S^{\prime} \geq S \cdot L(o(1), x)$;
(2) $\mathcal{Q}^{\prime} \subset[x L(-2, x), x]$;
(3) for each $q \in \mathcal{Q}^{\prime}, h(q) \leq \mathrm{e}^{\sqrt{\log x}}$;
(4) there is an integer $K \in\left[1,3 \sqrt{\log x / \log _{2} x}\right]$ such that for each $q \in \mathcal{Q}^{\prime}$, $\omega(q)=K$; and
(5) the numbers $\operatorname{ker}(q)$ for $q \in \mathcal{Q}^{\prime}$ are distinct.

By Lemmas 3.1 and 3.2, together with the already proven lower bound on S, there exists a subset of \mathcal{Q} with cardinality at least $S / 2$ that satisfies conditions (2) and (3) and for which every element has at most $3 \sqrt{\log x / \log _{2} x}$ prime factors. By the pigeonhole principle, we can find a further subset of cardinality at least $S /\left(6 \sqrt{\log x / \log _{2} x}\right)$ and an integer $K \in\left[1,3 \sqrt{\log x / \log _{2} x}\right]$ such that each element has exactly K distinct prime factors. Finally, using Lemma 3.3 , there is a further subset (which we call \mathcal{Q}^{\prime}) of cardinality at least

$$
\frac{S}{6\left(\log x / \log _{2} x\right)^{1 / 2} 2^{K} \mathrm{e}^{2 \sqrt{\log x}}}=S \cdot L(o(1), x)
$$

such that the numbers $\operatorname{ker}(q)$ for $q \in \mathcal{Q}^{\prime}$ are distinct.
4.2. The descending chain. Now, as Croot did originally, we construct a descending chain of subsets

$$
\mathcal{Q}^{\prime} \supset \mathcal{Q}_{1} \supset \mathcal{Q}_{1}^{\prime} \supset \cdots \supset \mathcal{Q}_{R} \supset \mathcal{Q}_{R}^{\prime}
$$

with corresponding cardinalities $S^{\prime} \geq S_{1} \geq S_{1}^{\prime} \geq \cdots \geq S_{R} \geq S_{R}^{\prime}$ as well as a sequence of residue classes $\left\{m_{r} \bmod P_{r}\right\}_{r=1}^{R}$ such that
(1) $\omega\left(P_{1} \cdots P_{R}\right)=K$ and the numbers P_{1}, \ldots, P_{R} are pairwise coprime;
(2) for each $q \in \mathcal{Q}_{r}, P_{1} \cdots P_{r} \mid q$ and $\operatorname{gcd}\left(P_{r}, q / P_{r}\right)=1$;
(3) for each $q \in \mathcal{Q}_{r}^{\prime}, a_{q} \equiv m_{r}\left(\bmod P_{r}\right)$; and
(4) we have

$$
\begin{equation*}
P_{r} S_{r}^{\prime} \geq S_{r} \geq \frac{S_{r-1}^{\prime}}{h\left(P_{r}\right)^{2} 7^{w_{r}} K^{w_{r}-1}}, \quad w_{r}=\omega\left(P_{r}\right) \tag{4.1}
\end{equation*}
$$

Suppose $r \geq 1$ and $\mathcal{Q}_{0}^{\prime}=\mathcal{Q}^{\prime}, \mathcal{Q}_{1}, \mathcal{Q}_{1}^{\prime}, \ldots, \mathcal{Q}_{r-1}, \mathcal{Q}_{r-1}^{\prime}$ satisfy all the required conditions. Let $\mathcal{B}_{r}=\left\{q /\left(P_{1} \cdots P_{r-1}\right): q \in \mathcal{Q}_{r-1}^{\prime}\right\}$. By Lemma 3.5 (with $\mathcal{B}=\left\{\operatorname{ker}(b): b \in \mathcal{B}_{r}\right\}$), there is a minimal, intersecting set \mathcal{C}_{r} of squarefree integers so that for all $B \in \mathcal{B}_{r}$, there is a $C \in \mathcal{C}_{r}$ with $C \mid B$. For each B, let $C(B)$ denote the least $C \mid B$ with $C \in \mathcal{C}_{r}$. There must exist some choice of $w_{r} \geq 1$ such that

$$
\left|\left\{B \in \mathcal{B}_{r}: \omega(C(B))=w_{r}\right\}\right| \geq \frac{S_{r-1}^{\prime}}{2^{w_{r}}}
$$

since $\sum_{w \geq 1} 1 / 2^{w}=1$. By Lemma 3.4, the number of elements $C \in \mathcal{C}_{r}$ with $\omega(C)=w_{r}$ is at most $w_{r} K^{w_{r}-1}$. Hence, there exists some such C so that

$$
\left|\left\{B \in \mathcal{B}_{r}: C(B)=C\right\}\right| \geq \frac{S_{r-1}^{\prime}}{2^{w_{r}} w_{r} K^{w_{r}-1}} \geq \frac{S_{r-1}^{\prime}}{4^{w_{r}} K^{w_{r}-1}}
$$

Since $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$, for some integer P_{r}, composed of prime divisors of C,

$$
\begin{aligned}
\mid\left\{B \in \mathcal{B}_{r}: C(B)=\right. & \left.C, P_{r} \mid B, \operatorname{gcd}\left(C, B / P_{r}\right)=1\right\} \mid \\
& \geq\left(\frac{6}{\pi^{2}}\right)^{w_{r}} \frac{S_{r-1}^{\prime}}{4^{w_{r}} K^{w_{r}-1} h\left(P_{r}\right)^{2}} \geq \frac{S_{r-1}^{\prime}}{7^{w_{r}} K^{w_{r}-1} h\left(P_{r}\right)^{2}}
\end{aligned}
$$

Then we define

$$
\mathcal{Q}_{r}:=\left\{P_{1} \cdots P_{r-1} B \in \mathcal{Q}_{r-1}^{\prime}: C(B)=C, P_{r} \mid B, \operatorname{gcd}\left(C, B / P_{r}\right)=1\right\}
$$

for this choice of C and P_{r}.
Now consider the subsets

$$
\mathcal{Q}_{r}(a):=\left\{q \in \mathcal{Q}_{r}: a_{q} \equiv a\left(\bmod P_{r}\right)\right\} .
$$

The union of $\mathcal{Q}_{r}(a)$ over all a from 1 to P_{r} is \mathcal{Q}_{r}, so there exists a_{r} such that

$$
\begin{equation*}
\left|\mathcal{Q}_{r}\left(a_{r}\right)\right| \geq S_{r} / P_{r} \tag{4.2}
\end{equation*}
$$

We then define $\mathcal{Q}_{r}^{\prime}:=\mathcal{Q}_{r}\left(a_{r}\right)$ for this choice of a_{r}. The process terminates when \mathcal{Q}_{R}^{\prime} consists of a single element $P_{1} \cdots P_{R}$.
4.3. Completing the proof. By iterating (4.1) and letting

$$
W_{r}:=\sum_{k=1}^{r} w_{r} \quad \text { and } \quad V_{r}:=h\left(P_{1} \cdots P_{r}\right)
$$

we have

$$
S_{r} \geq \frac{S^{\prime}}{7^{W_{r}} V_{r}^{2} \prod_{j=1}^{r} K^{w_{j}-1} \prod_{j=1}^{r-1} P_{j}}
$$

Let $c=R / \sqrt{\log x / \log _{2} x}$ and $d=K / \sqrt{\log x / \log _{2} x}$. By Lemma 3.1.

$$
\begin{aligned}
S_{r} & \leq\left|\left\{m \leq \frac{x}{P_{1} \cdots P_{r}}: \omega(m)=K-W_{r}\right\}\right| \\
& \leq \frac{x}{P_{1} \cdots P_{r}} L\left(-\frac{1}{2} d+o(1), x\right)(\log x)^{W_{r} / 2}
\end{aligned}
$$

This estimate is uniform in W_{r}.
By (3), $V_{r} \leq \mathrm{e}^{\sqrt{\log x}}$. Comparing the upper and lower bounds for S_{r}, we obtain

$$
\begin{aligned}
P_{r} & \leq \frac{x}{S^{\prime}} L\left(-\frac{1}{2} d+o(1), x\right)(\log x)^{W_{r} / 2} V_{r}^{2}\left(\prod_{j=1}^{r} K^{w_{j}-1}\right) 7^{W_{r}} \\
& =\frac{x}{S^{\prime}} L\left(-\frac{1}{2} d+o(1), x\right)(\log x)^{W_{r} / 2} \exp \left\{\sum_{j=1}^{r}\left(w_{j}-1\right) \log K\right\}
\end{aligned}
$$

By multiplying the upper bounds for each P_{j} together and using the lower bound (2), we have

$$
\begin{aligned}
x L(-2, x) \leq \prod_{r=1}^{R} P_{r} \leq & \left(\frac{x}{S^{\prime}} L\left(-\frac{1}{2} d+o(1), x\right)\right)^{R} \\
& \times \exp \left\{\sum_{r=1}^{R}(R-r+1)\left(\frac{1}{2} w_{r} \log _{2} x+\left(w_{r}-1\right) \log K\right)\right\}
\end{aligned}
$$

We claim that the sum is maximized when $w_{1}=K-R+1$ and $w_{r}=1$ for $r \geq 2$. It suffices to show that if $w_{r}>1, r<R$, then replacing w_{r} with $w_{r}-1$ and replacing w_{r+1} with $w_{r+1}+1$ always decreases the value of the sum. Note that under such an operation only the r th and $(r+1)$ th terms change value: the r th term changes by an amount

$$
-(R-r+1)\left(\frac{1}{2} \log _{2} x+\log K\right),
$$

while the $(r+1)$ th term changes by an amount

$$
(R-r)\left(\frac{1}{2} \log _{2} x+\log K\right) .
$$

Therefore, noting that $\log K<\frac{1}{2} \log _{2} x$ for sufficiently large x, we have

$$
\begin{aligned}
x L(-2, x) \leq & \left(\frac{x}{S^{\prime}} L\left(-\frac{1}{2} d+o(1), x\right)\right)^{R} \exp \left\{\frac{1}{2} R(K-R+1) \log _{2} x\right\} \\
& \times \exp \left\{R(K-R) \log K+\frac{1}{2} \sum_{r=2}^{R}(R-r+1) \log _{2} x\right\} \\
\leq & \left(\frac{x}{S^{\prime}} L\left(-\frac{1}{2} d+o(1), x\right) \exp \left\{\left(K-\frac{3}{4} R-\frac{1}{4}\right) \log _{2} x\right\}\right)^{R} .
\end{aligned}
$$

So taking R th roots and rearranging gives

$$
S^{\prime} \leq x L\left(-\frac{1}{c}-\frac{3 c}{4}+\frac{d}{2}+o(1), x\right) .
$$

However, by Lemma 3.1, we also have

$$
S^{\prime} \leq x L\left(-\frac{1}{2} d+o(1), x\right)
$$

So,

$$
\begin{aligned}
S & \leq S^{\prime} \cdot L(o(1), x) \leq x L\left(-\max \left\{\frac{1}{c}+\frac{3 c}{4}-\frac{d}{2}, \frac{d}{2}\right\}+o(1), x\right) \\
& \leq x L\left(-\min _{0 \leq c \leq d \leq 3} \max \left\{\frac{1}{c}+\frac{3 c}{4}-\frac{d}{2}, \frac{d}{2}\right\}+o(1), x\right) \\
& =x L\left(-\frac{1}{2} \sqrt{3}+o(1), x\right)
\end{aligned}
$$

This proves the upper bound.

5. Conditional bounds

5.1. More on intersecting families. As we remarked in the introduction, we believe that the lower bound given in Theorem 1 is closer to the truth.

Conjecture 1. We have $f(x)=x L(-1+o(1), x)$.
We believe the weakness of our method lies in the use of Lemma 3.4. The bound given in Lemma 3.4 is, however, nearly sharp by Theorem 7 of 4] (there exist sets with $\left|\mathcal{A}^{n}\right|>n!$). We can avoid the use of Lemma 3.4 with the following.

Conjecture 2. There are constants $t(1), t(2), \ldots$ satisfying $\log t(j)=$ $o(j \log j)$ as $j \rightarrow \infty$ and such that for any finite intersecting family \mathcal{A} of finite sets, there is a non-empty set \mathcal{C} so that

$$
\#\{S \in \mathcal{A}: \mathcal{C} \subseteq S\} \geq \frac{|\mathcal{A}|}{t(|\mathcal{C}|)}
$$

Remark. We can show the conclusion of Conjecture 2 holds with a sequence $t(1), \ldots$ satisfying $t(j) \ll j^{j+2}$.

Theorem 2. Conjecture 2 implies Conjecture 1.
Proof. The proof is nearly identical to the proof of Theorem 1, with the following differences. In the "descending chain" argument (Section 4.2), apply Conjecture 2 with

$$
\mathcal{A}=\left\{\{p: p \mid B\}: B \in \mathcal{B}_{r}\right\}
$$

We can then find a set \mathcal{C} of w_{r} primes with product C so that

$$
\#\left\{B \in \mathcal{B}_{r}: C \mid B\right\} \geq \frac{S_{r-1}^{\prime}}{t\left(w_{r}\right)}
$$

The remainder of the argument is as before, except that the factor $w_{r} K^{w_{r}-1}$ is replaced by $t\left(w_{r}\right)$ throughout. In the final Section 4.3, the sum of $\left(w_{j}-1\right)$ $\log K$ is replaced by

$$
\sum_{j=1}^{R} \log t\left(w_{j}\right)=o(\log K) \sum_{j=1}^{R} w_{j}=o(K \log K)=o\left(\sqrt{\log x \log _{2} x}\right)
$$

This leads to the estimate

$$
S^{\prime} \leq \max _{0 \leq c \leq 3} x L\left(-\frac{1}{c}-\frac{c}{4}+o(1), x\right) \leq x L(-1+o(1), x)
$$

5.2. Sunflowers. There is a close connection between our Conjecture 2 and the theory of so-called Δ-sets (also known as sunflowers). A Δ-system of size k (sunflower of size k) is a collection of k sets whose pairwise intersections are all identical (this common intersection may be the empty set).

A famous problem of Erdős and Rado [5] is to bound $\phi(k, n)$, the maximum cardinality of a family of n-element sets that contains no Δ-set of size k. In [5], Erdős and Rado proved that

$$
(k-1)^{n} \leq \phi(k, n)<(k-1)^{n} n!
$$

and conjectured that for each $k \geq 3$ there is a constant C_{k} so that $\phi(k, n)$ $\leq C_{k}^{n}$. The conjecture remains open for all k, the best bound known today being Kostochka's estimate [7]

$$
\phi(k, n) \ll_{k} n!\left(\frac{30 k \log _{3} n}{\log _{2} n}\right)^{n}
$$

Our Conjecture 2 implies a much stronger bound.
Theorem 3. Assume Conjecture 2. Then uniformly for $k \geq 3$,

$$
\log \phi(k, n) \leq n \log (k-1)+o(n \log n) \quad(n \rightarrow \infty)
$$

Proof. Let \mathcal{A} be a family of n-element sets of maximum cardinality $\phi(k, n)$. In particular, \mathcal{A} does not contain k mutually disjoint sets. Thus, there is an intersecting subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ of size $\geq \frac{1}{k-1} \phi(k, n)$. By Conjecture 2, there is a set \mathcal{C} so that

$$
\mathcal{A}_{1}=\{S-\mathcal{C}: \mathcal{C} \subseteq S \in \mathcal{A}\}
$$

has cardinality

$$
\left|\mathcal{A}_{1}\right| \geq \frac{\left|\mathcal{A}^{\prime}\right|}{t(|\mathcal{C}|)} \geq \frac{|\mathcal{A}|}{(k-1) t(|\mathcal{C}|)}
$$

The set \mathcal{A}_{1} contains no Δ-system of size k, since if $\left\{S_{i}\right\}_{i=1}^{k}$ is such a Δ system, then $\left\{S_{i} \cup \mathcal{C}\right\}_{i=1}^{k}$ would be a Δ-system of size k for \mathcal{A}, which we know does not exist. Therefore $\left|\mathcal{A}_{1}\right| \leq \phi(k, n-|\mathcal{C}|)$. Combining these two estimates gives

$$
\phi(k, n) \leq \max _{1 \leq j \leq n}(k-1) t(j) \phi(k, n-j)
$$

Iterating this last inequality and using $\phi(k, 0)=1$ yields
$\phi(k, n) \leq \max _{1 \leq i \leq n}(k-1)^{i} \max _{j_{1}+\cdots+j_{i}=n} t\left(j_{1}\right) \cdots t\left(j_{i}\right) \leq(k-1)^{n} \exp \{o(n \log n)\}$.
Acknowledgements. The authors thank Zoltán Füredi for drawing their attention to paper 4 and for pointing out the connection between Conjecture 2 and the theory of Δ-systems. The first author was supported in part by an IUF Junior and the second one was supported in part by National Science Foundation grant DMS-0901339.

References

[1] Y.-G. Chen, On disjoint arithmetic progressions, Acta Arith. 118 (2005), 143-148.
[2] E. S. Croot III, On non-intersecting arithmetic progressions, Acta Arith. 110 (2003), 233-238.
[3] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25-42.
[4] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets (Keszthely, 1973), dedicated to P. Erdős on his 60th birthday, Vol. II, Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, 609-627.
[5] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[6] P. Erdős and E. Szemerédi, On a problem of P. Erdős and S. Stein, Acta Arith. 15 (1968), 85-90.
[7] A. V. Kostochka, An intersection theorem for systems of sets, Random Structures Algorithms 9 (1996), 213-221.
[8] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, $3^{\text {ème }}$ éd., Coll. Échelles, Belin, 2008; English transl. of the 2nd ed.: Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, Cambridge, 1995.

Régis de la Bretèche
Institut de Mathématiques de Jussieu UMR 7586
Université Paris Diderot - Paris 7
UFR de Mathématiques, case 7012
Bâtiment Chevaleret
75205 Paris Cedex 13, France
E-mail: breteche@math.jussieu.fr

Kevin Ford, Joseph Vandehey
Department of Mathematics
University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL 61801, U.S.A.
E-mail: ford@math.uiuc.edu vandehe2@illinois.edu

Received on 24.3.2012
and in revised form on 3.10.2012

[^0]: 2010 Mathematics Subject Classification: Primary 11B25; Secondary 05D05. Key words and phrases: arithmetic progressions, sunflowers, delta systems.

