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1. Introduction and statement of results. Consider a set Q of pos-
itive integers, together with an associated family {aq}q∈Q of integers such
that the arithmetic progressions (aq mod q) are pairwise disjoint. The pur-
pose of this paper is to provide sharper bounds for the asymptotic growth
of

f(x) := sup
Q⊂N
|Q ∩ [1, x]|.

Erdős and Stein first conjectured that f(x) = o(x) (see [6]). This was
proved by Erdős and Szemerédi [6], who showed that, for a particular con-
stant c and any ε > 0,

x

exp{(log x)1/2+ε}
< f(x) <

x

(log x)c

for sufficiently large x. Erdős and Szemerédi credited Stein’s help in finding
this lower bound.

Croot in [2] then showed that as x tends to infinity, we have the following
bounds on f(x):

xL(−
√

2 + o(1), x) ≤ f(x) ≤ xL
(
−1

6 + o(1), x
)
.

Here we use the notation L(α, x) := exp
{
α
√

log x log2 x
}

, log2 x := log log x
and o(1) stands for a function that approaches 0 as x → ∞. Croot further
showed that

|Q ∩ [1, x]| ≤ xL
(
−1

2 + o(1), x
)
,

provided that Q contains only squarefree integers. The same estimate was
later proved by Chen in [1] for arbitrary Q.

We improve these results as follows.
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Theorem 1. As x tends to infinity, we have

xL(−1 + o(1), x) ≤ f(x) ≤ xL
(
−1

2

√
3 + o(1), x

)
.

We further conjecture that f(x) = xL(−1 + o(1), x). Our proof of the
theorem will depend on investigations of the multiplicative structure of ele-
ments of sets Q ⊂ [1, x] such that |Q| = f(x).

2. Proof of the lower bound. To prove the lower bound we shall
construct a specific set Q ⊂ [1, x] with cardinality xL(−1 + o(1), x) and
then show the existence of a choice of residues aq for this Q that ensure all
the arithmetic progressions are disjoint.

To begin, let

r :=

⌊
2

√
log x√
log2 x

(
1− 3√

log2 x

)⌋
,

with btc denoting the integer part of t. Then define y0 as the solution to the
following equation:

log(2y0) =
log x

r + 1
− r

4
log

(
log x

4

)
.

This gives asymptotically

(2.1) log y0 ∼ 3
√

log x.

Now we fix a prime p0 ∈ [y0, 2y0]. The prime factor p0 will divide all q ∈ Q,
in contrast to the construction of Erdős and Szemerédi, and similar to the
construction of Croot.

Let yk := y0
(
1
4 log x

)k/2
for k ∈ N, so that for x sufficiently large and all

k ≥ 1 we have

(2.2) π(2yk+1) ≤ yk
√

log x

log yk
≤ yk

√
log x

log y0
< yk.

Now we define our set Q by

Q := {p0p1 · · · pr : ∀k ∈ [1, r], pk ∈ (yk, 2yk]}.

We have

Q ⊂
[ r∏
k=0

yk, 2r+1
r∏

k=0

yk

]
.

Moreover, Q ⊂ [1, x], since, by the definition of y0 and yk, we have

2r+1
r∏

k=0

yk = (2y0)
r+1

(
1

4
log x

)r(r+1)/4

= x.
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It remains to estimate |Q|. By the previous line, y1 · · · yr = eO(r)x/y0,
and, by (2.1),

2
√

log x ≤ log y0 ≤ log yk ≤ log y0 +
r

2
log

(
log x

4

)
≤ 3
√

log x log2 x

for sufficiently large x and for 0 ≤ k ≤ r. Therefore

|Q| =
r∏

k=1

(π(2yk)− π(yk)) = eO(r)
r∏

k=1

yk
log yk

=
x

(log x)r(1+o(1))/2
= xL(−1 + o(1), x).

Now we construct the aq with aq ∈ [1, q]. Each q ∈ Q can be written as
q = p0p1 · · · pr with pk ∈ [yk, 2yk]. Using the Chinese Remainder Theorem,
we may define aq entirely by its residues modulo pk. Let rk := π(pk), and
note rk+1 < pk by (2.2). Then define aq by

aq ≡ rk+1 (mod pk) (0 ≤ k ≤ r − 1), aq ≡ 0 (mod pr).

It only remains to show that the arithmetic progressions so formed are
disjoint. Let n ∈ N and suppose there exists q ∈ Q such that n ≡ aq (mod q).
We will show that q is unique. First, let m1 be the representative of the
residue class n (mod p0) in [1, p0]. If we let p(m) denote the mth prime
number, then we have p1 = p(m1). Iterating this procedure, we obtain pk =
p(mk) where mk is the representative of the residue class n (mod pk−1) in
[1, pk−1], and

q = p0

r∏
k=1

p(mk).

This completes the proof of the lower bound.

3. Preliminary lemmas for the upper bound

3.1. Some auxiliary upper bounds. We begin with three lemmas
that show that moduli q with certain bad properties are so rare that they
may be excluded from consideration in the upper bound without affecting
the main term. The first lemma will imply that we only need to consider
moduli q with a “small” number of prime factors.

Lemma 3.1. Let A > 0. As x tends to infinity, we have, uniformly in
2 ≤ y ≤ x, α ∈ [0, A],∣∣{n ≤ y : ω(n) ≥ α

√
log x/log2 x}

∣∣ ≤ yL(−1
2α+ o(1), x

)
.

Here, we use the usual definitions of the distinct prime divisor counting
function, ω(n), and the prime divisor counting function, Ω(n), which are
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given by

ω(n) :=
∑
p|n

1 and Ω(n) :=
∑

pk|n, k≥1

1.

Proof. The proof is a classic application of the method of parameters,
also known as Rankin’s method (see, for example, Section III.5 of [8]). If
z ≥ 1 then∣∣{n ≤ y : ω(n) ≥ α

√
log x/log2 x}

∣∣ ≤ z−α√log x/log2 x
∑
n≤y

zω(n)

≤ eyz−α
√

log x/log2 x
∞∑
n=1

zω(n)

n1+1/log x

≤ eyz−α
√

log x/log2 xζ(1 + 1/log x)z

≤ eyz−α
√

log x/log2 x(2 log x)z.

Choosing z =
√

log x/log2 x, we obtain the desired upper bound.

We now introduce a function h defined by

h(q) :=
∏
pν‖q

ν.

The following lemma will imply that we only need to consider moduli q with
h(q) ≤ e

√
log x.

Lemma 3.2. For x sufficiently large, we have the following bound:∣∣{n ≤ x : h(n) ≥ e
√
log x}

∣∣ ≤ xe−
1
5

√
log x log2 x.

Proof. Let y := 1
5

√
log x. For any integer n, write n = n1n2 where all

prime factors of n1 are ≤ y and all prime factors of n2 are > y. For n =
n1n2 ≤ x, we have

h(n1) ≤
(

log x

log 2

)π(y)
≤ e

1
2

√
log x

for x sufficiently large. Therefore, integers n ≤ x with h(n) ≥ e
√
log x satisfy

h(n2) ≥ e
1
2

√
log x. The inequality ν ≤ 2ν−1 is valid for all ν ∈ N and implies

that

e
1
2

√
log x ≤ h(n2) ≤ 2Ω(n2)−ω(n2).

Since for p > y,∑
ν≥2

√
2
(ν−1) log2 x

pν(1+1/log x)
≤ (log x)(log 2)/2

p2
1

1− (log x)(log 2)/2/p
� (log x)(log 2)/2

p2
,
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we have∣∣{n ≤ x : h(n) ≥ e
√
log x}

∣∣ ≤ exe−
1
4

√
log x log2 x

∞∑
n=1

√
2
(Ω(n2)−ω(n2)) log2 x

n1+1/log x

� x(log x)(log 2)/2e−
1
4

√
log x log2 x,

with the last inequality obtained by writing the Dirichlet series in the form
of an Euler product.

Our final lemma of this subsection states that there cannot be too many
elements of Q with a given squarefree part. Here we define

ker(n) :=
∏
p|n

p

to be the “squarefree kernel” of n.

Lemma 3.3. Let H ∈ N. For any squarefree q, there are at most H22ω(q)

integers n with ker(n) = q and with h(n) ≤ H.

Proof. Let K = ω(q). The number of integers in question is at most∑
a1,...,aK∈N

(
H

a1 · · · aK

)2

= H2(π2/6)K ≤ H22K .

3.2. Combinatorics of intersecting families. We call a family of
non-empty sets A an intersecting family if |S ∩ T | ≥ 1 for all S, T ∈ A.
(We assume that no set is repeated in A.) We call an intersecting family
set-minimal if for any S ∈ A and a proper subset S′ ⊂ S, there exists T ∈ A
such that |S′ ∩ T | = 0. In particular, if |A| = 1, then the set S ∈ A has one
element. Let Ar denote {S ∈ A : |S| ≤ r}.

Lemma 3.4. If A is a set-minimal intersecting family of sets, each with
at most n elements, and r ≤ n, then |Ar| ≤ rnr−1.

Proof. Suppose to the contrary that |Ar| > rnr−1. Select a set S1 ∈ Ar.
Then there must exist an x1 ∈ S1 such that the number of sets in Ar
that contain x1 exceeds nr−1; otherwise, A could not be an intersecting
family. However, not all sets in A can contain x1; otherwise, {x1} is a non-
trivial subset of a set in Ar that intersects all sets in A, contradicting set-
minimality. Thus there exists S2 ∈ A that does not contain x1 and an
x2 ∈ S2 such that the number of sets in Ar that contain x1, x2 exceeds
nr−2. If r ≥ 3, then there must be a set S3 which does not contain x1 and
does not contain x2, and for some x3 ∈ S3, the number of sets in Ar that
contain x1, x2, x3 exceeds nr−3. We can continue in this way until we find
x1, . . . , xr such that there is more than one set in Ar that contains these r
elements, which is impossible.
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Remark. The proof of Lemma 3.4 follows the general steps of a proof
of Erdős and Lovász ([4, p. 621]).

Consider some set Q ⊂ N of moduli with associated residues {aq : q ∈ Q}
such that the arithmetic progressions (aq mod q) are all disjoint. The non-
intersection property is equivalent to the condition that for any q1, q2 ∈ Q
there exists a prime p and an exponent ν ≥ 1 such that pν | (q1, q2) and
aq1 6≡ aq2 (mod pν).

Each pair q1, q2 in Q must share at least one prime in common, but
not all q ∈ Q must share the same prime: it could be that some q are
divisible by 2 and 3, some divisible by 3 and 5, and some by 2 and 5, or
something considerably more complicated. Regardless, if we consider the
subset of elements in Q that, say, are both divisible by 2 and 3, then each
pair of numbers in this subset with aq equivalent modulo 6 must share some
prime other than 2, 3.

We say a set {n1, . . . , nk} of squarefree integers > 1 is intersecting
(respectively, minimal) with size ` if the corresponding collection of sets
A = {S1, . . . , Sk} with Sj = {p : p |nj} is intersecting (respectively, set-
minimal) with size `.

Lemma 3.5. For any finite, intersecting set B of squarefree integers > 1,
there is a minimal, intersecting set C of squarefree integers > 1 such that
for all B ∈ B, there exists C ∈ C such that C |B.

Proof. Construct C iteratively. Start with C = B and repeat the following
until C is minimal:

• If there exists C ∈ C and a prime p |C such that (C/p,C ′) > 1 for all
C ′ ∈ C, then replace C by C/p. If C/p is duplicated in C, then remove
the duplicate.

This process must terminate, since B is finite.

4. Proof of the upper bound

4.1. Constructing Q′. Consider a set Q ⊂ [1, x] of moduli and disjoint
progressions {aq mod q : q ∈ Q} such that |Q| = f(x) =: S and suppose x
is large. We first construct a subset Q′ ⊂ Q with cardinality S′ satisfying
the following conditions:

(1) S′ ≥ S · L(o(1), x);
(2) Q′ ⊂ [xL(−2, x), x];

(3) for each q ∈ Q′, h(q) ≤ e
√
log x;

(4) there is an integer K ∈ [1, 3
√

log x/log2 x] such that for each q ∈ Q′,
ω(q) = K; and

(5) the numbers ker(q) for q ∈ Q′ are distinct.
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By Lemmas 3.1 and 3.2, together with the already proven lower bound
on S, there exists a subset ofQwith cardinality at least S/2 that satisfies con-
ditions (2) and (3) and for which every element has at most 3

√
log x/ log2 x

prime factors. By the pigeonhole principle, we can find a further subset of car-
dinality at least S/(6

√
log x/log2 x) and an integer K ∈ [1, 3

√
log x/log2 x]

such that each element has exactly K distinct prime factors. Finally, using
Lemma 3.3, there is a further subset (which we call Q′) of cardinality at
least

S

6(log x/log2 x)1/22Ke2
√
log x

= S · L(o(1), x)

such that the numbers ker(q) for q ∈ Q′ are distinct.

4.2. The descending chain. Now, as Croot did originally, we con-
struct a descending chain of subsets

Q′ ⊃ Q1 ⊃ Q′1 ⊃ · · · ⊃ QR ⊃ Q′R

with corresponding cardinalities S′ ≥ S1 ≥ S′1 ≥ · · · ≥ SR ≥ S′R as well as a
sequence of residue classes {mr mod Pr}Rr=1 such that

(1) ω(P1 · · ·PR) = K and the numbers P1, . . . , PR are pairwise coprime;
(2) for each q ∈ Qr, P1 · · ·Pr | q and gcd(Pr, q/Pr) = 1;
(3) for each q ∈ Q′r, aq ≡ mr (mod Pr); and
(4) we have

(4.1) PrS
′
r ≥ Sr ≥

S′r−1
h(Pr)27wrKwr−1 , wr = ω(Pr).

Suppose r ≥ 1 and Q′0 = Q′,Q1,Q′1, . . . ,Qr−1,Q′r−1 satisfy all the re-
quired conditions. Let Br = {q/(P1 · · ·Pr−1) : q ∈ Q′r−1}. By Lemma 3.5
(with B = {ker(b) : b ∈ Br}), there is a minimal, intersecting set Cr of
squarefree integers so that for all B ∈ Br, there is a C ∈ Cr with C |B. For
each B, let C(B) denote the least C |B with C ∈ Cr. There must exist some
choice of wr ≥ 1 such that∣∣{B ∈ Br : ω(C(B)) = wr}

∣∣ ≥ S′r−1
2wr

,

since
∑

w≥1 1/2w = 1. By Lemma 3.4, the number of elements C ∈ Cr with

ω(C) = wr is at most wrK
wr−1. Hence, there exists some such C so that∣∣{B ∈ Br : C(B) = C}

∣∣ ≥ S′r−1
2wrwrKwr−1 ≥

S′r−1
4wrKwr−1 .
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Since
∑∞

n=1 1/n2 = π2/6, for some integer Pr, composed of prime divisors
of C,∣∣{B ∈ Br : C(B) = C, Pr |B, gcd(C,B/Pr) = 1}

∣∣
≥
(

6

π2

)wr S′r−1
4wrKwr−1h(Pr)2

≥
S′r−1

7wrKwr−1h(Pr)2
.

Then we define

Qr := {P1 · · ·Pr−1B ∈ Q′r−1 : C(B) = C, Pr |B, gcd(C,B/Pr) = 1}
for this choice of C and Pr.

Now consider the subsets

Qr(a) := {q ∈ Qr : aq ≡ a (mod Pr)}.
The union of Qr(a) over all a from 1 to Pr is Qr, so there exists ar such
that

(4.2) |Qr(ar)| ≥ Sr/Pr.
We then define Q′r := Qr(ar) for this choice of ar. The process terminates
when Q′R consists of a single element P1 · · ·PR.

4.3. Completing the proof. By iterating (4.1) and letting

Wr :=
r∑

k=1

wr and Vr := h(P1 · · ·Pr),

we have

Sr ≥
S′

7WrV 2
r

∏r
j=1K

wj−1
∏r−1
j=1 Pj

.

Let c = R/
√

log x/log2 x and d = K/
√

log x/log2 x. By Lemma 3.1,

Sr ≤
∣∣∣∣{m ≤ x

P1 · · ·Pr
: ω(m) = K −Wr

}∣∣∣∣
≤ x

P1 · · ·Pr
L
(
−1

2d+ o(1), x
)
(log x)Wr/2.

This estimate is uniform in Wr.

By (3), Vr ≤ e
√
log x. Comparing the upper and lower bounds for Sr, we

obtain

Pr ≤
x

S′
L
(
−1

2d+ o(1), x
)
(log x)Wr/2V 2

r

( r∏
j=1

Kwj−1
)

7Wr

=
x

S′
L
(
−1

2d+ o(1), x
)
(log x)Wr/2 exp

{ r∑
j=1

(wj − 1) logK
}
.
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By multiplying the upper bounds for each Pj together and using the lower
bound (2), we have

xL(−2, x) ≤
R∏
r=1

Pr ≤
(
x

S′
L
(
−1

2d+ o(1), x
))R

× exp
{ R∑
r=1

(R− r + 1)(12wr log2 x+ (wr − 1) logK)
}
.

We claim that the sum is maximized when w1 = K −R+ 1 and wr = 1
for r ≥ 2. It suffices to show that if wr > 1, r < R, then replacing wr with
wr − 1 and replacing wr+1 with wr+1 + 1 always decreases the value of the
sum. Note that under such an operation only the rth and (r + 1)th terms
change value: the rth term changes by an amount

−(R− r + 1)
(
1
2 log2 x+ logK

)
,

while the (r + 1)th term changes by an amount

(R− r)
(
1
2 log2 x+ logK

)
.

Therefore, noting that logK < 1
2 log2 x for sufficiently large x, we have

xL(−2, x) ≤
(
x

S′
L
(
−1

2d+ o(1), x
))R

exp
{
1
2R(K −R+ 1) log2 x

}
× exp

{
R(K −R) logK + 1

2

R∑
r=2

(R− r + 1) log2 x
}

≤
(
x

S′
L
(
−1

2d+ o(1), x
)

exp
{(
K − 3

4R−
1
4

)
log2 x

})R
.

So taking Rth roots and rearranging gives

S′ ≤ xL
(
−1

c
− 3c

4
+
d

2
+ o(1), x

)
.

However, by Lemma 3.1, we also have

S′ ≤ xL
(
−1

2d+ o(1), x
)
.

So,

S ≤ S′ · L(o(1), x) ≤ xL
(
−max

{
1

c
+

3c

4
− d

2
,
d

2

}
+ o(1), x

)
≤ xL

(
− min

0≤c≤d≤3
max

{
1

c
+

3c

4
− d

2
,
d

2

}
+ o(1), x

)
= xL

(
−1

2

√
3 + o(1), x

)
.

This proves the upper bound.
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5. Conditional bounds

5.1. More on intersecting families. As we remarked in the intro-
duction, we believe that the lower bound given in Theorem 1 is closer to the
truth.

Conjecture 1. We have f(x) = xL(−1 + o(1), x).

We believe the weakness of our method lies in the use of Lemma 3.4. The
bound given in Lemma 3.4 is, however, nearly sharp by Theorem 7 of [4]
(there exist sets with |An| > n!). We can avoid the use of Lemma 3.4 with
the following.

Conjecture 2. There are constants t(1), t(2), . . . satisfying log t(j) =
o(j log j) as j → ∞ and such that for any finite intersecting family A of
finite sets, there is a non-empty set C so that

#{S ∈ A : C ⊆ S} ≥ |A|
t(|C|)

.

Remark. We can show the conclusion of Conjecture 2 holds with a
sequence t(1), . . . satisfying t(j)� jj+2.

Theorem 2. Conjecture 2 implies Conjecture 1.

Proof. The proof is nearly identical to the proof of Theorem 1, with
the following differences. In the “descending chain” argument (Section 4.2),
apply Conjecture 2 with

A =
{
{p : p |B} : B ∈ Br

}
.

We can then find a set C of wr primes with product C so that

#{B ∈ Br : C |B} ≥
S′r−1
t(wr)

.

The remainder of the argument is as before, except that the factor wrK
wr−1

is replaced by t(wr) throughout. In the final Section 4.3, the sum of (wj−1)
logK is replaced by

R∑
j=1

log t(wj) = o(logK)

R∑
j=1

wj = o(K logK) = o(
√

log x log2 x).

This leads to the estimate

S′ ≤ max
0≤c≤3

xL

(
−1

c
− c

4
+ o(1), x

)
≤ xL(−1 + o(1), x).

5.2. Sunflowers. There is a close connection between our Conjecture 2
and the theory of so-called ∆-sets (also known as sunflowers). A ∆-system
of size k (sunflower of size k) is a collection of k sets whose pairwise inter-
sections are all identical (this common intersection may be the empty set).
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A famous problem of Erdős and Rado [5] is to bound φ(k, n), the maximum
cardinality of a family of n-element sets that contains no ∆-set of size k.
In [5], Erdős and Rado proved that

(k − 1)n ≤ φ(k, n) < (k − 1)nn!

and conjectured that for each k ≥ 3 there is a constant Ck so that φ(k, n)
≤ Cnk . The conjecture remains open for all k, the best bound known today
being Kostochka’s estimate [7]

φ(k, n)�k n!

(
30k log3 n

log2 n

)n
.

Our Conjecture 2 implies a much stronger bound.

Theorem 3. Assume Conjecture 2. Then uniformly for k ≥ 3,

log φ(k, n) ≤ n log(k − 1) + o(n log n) (n→∞).

Proof. Let A be a family of n-element sets of maximum cardinality
φ(k, n). In particular, A does not contain k mutually disjoint sets. Thus,
there is an intersecting subfamily A′ ⊆ A of size ≥ 1

k−1φ(k, n). By Conjec-
ture 2, there is a set C so that

A1 = {S − C : C ⊆ S ∈ A}
has cardinality

|A1| ≥
|A′|
t(|C|)

≥ |A|
(k − 1)t(|C|)

.

The set A1 contains no ∆-system of size k, since if {Si}ki=1 is such a ∆-
system, then {Si ∪ C}ki=1 would be a ∆-system of size k for A, which we
know does not exist. Therefore |A1| ≤ φ(k, n − |C|). Combining these two
estimates gives

φ(k, n) ≤ max
1≤j≤n

(k − 1)t(j)φ(k, n− j).

Iterating this last inequality and using φ(k, 0) = 1 yields

φ(k, n) ≤ max
1≤i≤n

(k − 1)i max
j1+···+ji=n

t(j1) · · · t(ji) ≤ (k − 1)n exp{o(n log n)}.
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(1968), 85–90.

[7] A. V. Kostochka, An intersection theorem for systems of sets, Random Structures
Algorithms 9 (1996), 213–221.

[8] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 3ème
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