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1. Introduction. In this paper, we consider indices of subfields of cy-
clotomic Zp-extensions of number fields, and show that prime factors of the
indices are only those less than the extension degree, which split completely
and are closely related to higher degree Fermat quotients.

Let k be an algebraic number field and L be a finite extension of k with
rings of integers Ok and OL, respectively. We say that OL has a power basis
over Ok if there is an element θ of OL such that OL = Ok[θ], and if this
holds for k = Q, we simply say that OL has a power basis. Many results
have been obtained to decide whether OL has a power basis and, if the
power basis exists, to find all generators of such a basis, especially in the
case k = Q. It has been shown that there are only finitely many abelian
extensions of Q which have power bases if the extension degree is prime to 6
(see [G, Gr1, Gr2, Gy]).

When OL does not have a power basis over Ok, it is interesting to con-
sider common factors of the indices (OL : Ok[θ]) for all the integral primitive
elements θ of L. We denote the greatest common divisor of these indices by
I(L/k) and call it the index of L/k. For indices I(L/Q), there are lots
of results in the literature; here we only mention the results of Engstrom
related to Ore’s conjecture. Ore’s conjecture states that the highest expo-
nent χ of a prime q dividing I(L/Q) is not in general determined by the
prime ideal decomposition of qOL (cf. [O, DD]). Engstrom has shown that
if [L : Q] < 8, then χ is completely determined by the prime ideal decom-
position of qOL, and that there are examples of two fields whose extension
degrees over Q are 8 and have the same decomposition type of (3) with dif-
ferent χ’s for 3 (cf. [E]). In [E, Theorem 3], he has also given a formula for χ
if q splits completely in L, namely χ = 1

2vq(
∏

1≤i 6=j≤n(i− j)) if [L : Q] = n.
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Here vq is the q-adic valuation normalized by vq(q) = 1. Ore’s conjecture is
still attracting people interested in which arithmetic invariants determine χ
completely, and in what are the exact formulas for χ (cf. [Na, Sl] and [N,
Problem 22]).

Now for k = Q, the square of (OL : Z[θ]) appears as the quotient
of the discriminant dQ(θ) of θ by the discriminant d(L/Q) of L. For a
general k, there is still an analogous identity involving the ideal gener-
ated by the discriminant dk(θ) of θ over k and the discriminant d(L/k)
of L/k:

(dk(θ)) = m(θ)2 · d(L/k),

where m(θ) is an integral ideal of k called the inessential divisor of dk(θ) (cf.
[H, p. 452] or Proposition 2.2). Therefore it is quite natural to consider the
greatest common divisor of m(θ) for all the integral primitive elements θ for
L/k. We denote it by I(L/k) and call it the index ideal of L/k. Any prime
ideal of k dividing I(L/k) has been called a common inessential discriminant
divisor of L/k in [H, p. 452]. The relation between m(θ) and (OL : Ok[θ])
is

(OL : Ok[θ]) = N(m(θ)),

where N denotes the ideal norm, i.e., N(m(θ)) = (Ok : m(θ)) (cf. Proposi-
tion 2.5(ii)). From this, we see that if an ideal a of k divides I(L/k), then
its norm N(a) divides I(L/k).

It has been shown that the rings of integers of subfields of cyclotomic
Zp-extensions of k do not have a power basis over Ok if k satisfies certain
conditions, and in particular those fields over Q do not have power bases
for p ≥ 5 (cf. [AO, Corollary 2] or Theorem 3.5). So it is quite interesting
to find the indices of these subfields, which turn out to be closely related
to higher degree Fermat quotients. For a positive integer n, the nth degree
Fermat quotient for an integer a with respect to an odd prime p is defined,
if ap−1 ≡ 1 (mod pn), as

Fp,n(a) =
ap−1 − 1

pn

(cf. [Hl]). When n = 1, this is just the usual Fermat quotient with base a,
which was studied in relation to Fermat’s Last Theorem and is still of in-
terest in various aspects (see for example [S, I-H]). If we denote the nth
layer of the cyclotomic Zp-extension of Q by Kn, then we show that for a
prime q smaller than the extension degree pn, q divides I(Kn/Q) if and
only if q splits completely in Kn. So there are no other prime factors
of I(Kn/Q) than those that split completely in Kn. This means that a
prime q (< pn) divides I(Kn/Q) if and only if the nth Fermat quotient
satisfies Fp,n(q) ≡ 0 (mod p) for p odd, which is quite interesting (The-
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orem 3.6). So the fact that 1093 and 3511 are the only primes p with
2 ≤ p < 6.7 × 1015 satisfying Fp,1(2) ≡ 0 (mod p) (cf. [DK]) can be re-
stated as saying that the first layers of cyclotomic Zp-extensions of Q have
odd indices for 2 ≤ p < 6.7×1015 except for 1093 and 3511 (these are called
Wieferich primes). We note that if q | I(Kn/Q) for some n, then Fp,i(q) ≡ 0
(mod p) for any i with 1 ≤ i ≤ n, but this does not necessarily mean
q | I(Ki/Q), because for that q must satisfy q < pi. It may be of some inter-
est to see if there is any prime q satisfying q | I(Kn/Q) and q | I(Kn+1/Q)
for some n ≥ 1.

Here is the outline of the paper. In Section 2, we give the notation and
recall some basic results on number fields. In Section 3, first we consider
which subfields of cyclotomic Zp-extensions of k have relative integral bases
over k by computing Steinitz classes (Proposition 3.1, Corollary 3.2). Then
we determine prime factors of the indices for Kn/Q and kKn/k, where k
is a Galois extension of Q with extension degree a prime different from
p (Theorems 3.6, 3.8). Since these prime factors split completely, we can
use Engstrom’s formula for the highest exponents (cf. [E, Theorem 3] and
[DD]). In Section 4, we give examples of indices of Kn/Q for n = 1, 2, 3. As
mentioned above, primes q dividing I(K1/Q) are those less than p whose
Fermat quotients satisfy

Fp,1(q) =
qp−1 − 1

p
≡ 0 (mod p).

So there is already a long list of such q’s in [EM], and we only list I(K1/Q)
for small p’s here.

2. Preliminaries. In this section, we give the notation and results that
are needed in subsequent sections.

Let k be a finite extension of Q, and L a finite extension of k. When
the class number of k is 1, L has a relative integral basis (RIB) over k
for any L, and in the general case, it is known that L has a RIB over k
if and only if the Steinitz class St(L/k) is trivial in the ideal class group
of k (cf. [N, §7.3]). Concerning St(L/k), we recall the following proposi-
tion.

Proposition 2.1 ([A]). Let L be an extension of k of degree m, and OL
and Ok the rings of integers of L and k, respectively. Then:

(i) There is a basis {γ1, . . . , γm} for L over k and an ideal a of k such
that

OL = Okγ1 ⊕ · · · ⊕Okγm−1 ⊕ aγm,

and the Steinitz class St(L/k) is the class [a] in the ideal class group
of k.
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(ii) Let γ1, . . . , γm and a be as in (i). For any basis {η1, . . . , ηm} of L
over k, if the matrix A is defined by

(γ1, . . . , γm) = (η1, . . . , ηm)A,

then
d(L/k)

(dk(η1, . . . , ηm))
= (a · detA)2,

where d(L/k) and dk(η1, . . . , ηm) denote the discriminant of L over
k and the discriminant of η1, . . . , ηm over k, respectively.

Proof. (ii) follows from d(L/k) = a2(d(γ1, . . . , γm)) (cf. [A]).

Next we introduce the notion of the index ideal for L over k, which relies
on the following proposition.

Proposition 2.2 ([H, p. 452]). For each integral primitive element θ
for L/k, there is an ideal m(θ) of k such that

(2.1) (dk(θ)) = m(θ)2 · d(L/k),

where dk(θ) denotes the discriminant of θ over k.

Definition 2.3. The index ideal I(L/k) of L/k is defined by

I(L/k) = gcd{m(θ) | θ is an integral primitive element for L/k},
and the index I(L/k) of L/k is defined by

I(L/k) = gcd{(OL : Ok[θ]) | θ is an integral primitive element for L/k}.

Also, if (OL : Ok[θ]) = 1 for some integral primitive element θ for L/k,
we say that OL has a power basis over Ok. When k = Q, we simply say
that OL has a power basis. From this definition, if OL has a power basis
over Ok, then I(L/k) = 1, but the opposite does not hold in general (cf.
Section 4).

The next theorem is the key to finding prime divisors of I(L/k).

Theorem 2.4 ([H, p. 456]). A prime ideal q of k does not divide I(L/k)
if and only if, for every positive integer f , the number rq(f) of prime ideals
Q of L lying above q of residual degree fQ = f satisfies the inequality

rq(f) ≤ πq(f) :=
1

f

∑
d|f

µ

(
f

d

)
N(q)d,

where N(q) denotes the norm of the ideal q, µ(·) is the Möbius function and
the summation is taken over all positive divisors of f .

The size of prime factors of I(L/k) and the relation between I(L/k) and
I(L/k) are given by the next proposition.
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Proposition 2.5. The following hold:

(i) If a prime ideal q of k divides I(L/k), then N(q) < [L : k]. Moreover,
if q splits completely in L, then

q | I(L/k) if and only if N(q) < [L : k].

(ii) For an integral primitive element θ for L/k, we have |Nk(dk(θ)| =
N(d(L/k))(OL : Ok[θ])

2, so

(2.2) (OL : Ok[θ]) = N(m(θ)),

where Nk denotes the norm from k to Q, and m(θ) is the ideal of k
in (2.1). Hence, if a | I(L/k) for an ideal a of k, then N(a) | I(L/k).

Proof. For (i), we refer to [H, p. 456], or we can derive it easily from
Theorem 2.4.

For (ii), let r = [k : Q] and n = [L : k], and let {λ1, . . . , λr} be an integral
basis of k over Q. By calculating the discriminant dQ({λjθi | 1 ≤ j ≤ r, 0 ≤
i ≤ n− 1}) in two ways, we can obtain the identities

(2.3) dQ({λjθi}) = d(L/Q)(OL : Ok[θ])
2 = Nk(dk(θ))d(k/Q)[L:k].

For the first identity, we only need to note that

Ok[θ] =
{ r∑
j=1

n−1∑
i=0

cjiλjθ
i
∣∣∣ cji ∈ Z

}
.

To get the second identity, let L̃ be the Galois closure of L over Q, and let
G = Gal(L̃/Q), H1 = Gal(L̃/k) and H2 = Gal(L̃/L) be the corresponding
Galois groups. Then we have coset decompositions

G =

r⋃
j=1

H1τj and H1 =

n⋃
i=1

H2σi,

so

G =

r⋃
j=1

n⋃
i=1

H2σiτj .

Here {τ1, . . . , τr} are the conjugate maps of k over Q, {σ1, . . . , σn} are the
conjugate maps of L over k, and {σiτj | 1 ≤ j ≤ r, 1 ≤ i ≤ n} are conjugate
maps of L over Q. We set

γ1 = λ1, γ2 = λ1θ, γ3 = λ1θ
2, . . . , γn = λ1θ

n−1,

γn+1 = λ2, γn+2 = λ2θ, . . . , γ2n = λ2θ
n−1, . . . and γrn = λrθ

n−1.
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Then

dQ({λjθi}) = dQ(γ1, . . . , γrn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λσ1τ11 (λ1θ)
σ1τ1 · · · (λ1θ

n−1)σ1τ1 λσ1τ12 (λ2θ)
σ1τ1 · · ·

λσ2τ11 (λ1θ)
σ2τ1 · · · (λ1θ

n−1)σ2τ1 λσ2τ12 (λ2θ)
σ2τ1 · · ·

· · · · · · · · ·
· · · · · · · · ·

λσnτ11 (λ1θ)
σnτ1 · · · (λ1θ

n−1)σnτ1 λσnτ12 (λ2θ)
σnτ1 · · ·

λσ1τ21 (λ1θ)
σ1τ2 · · · (λ1θ

n−1)σ1τ2 λσ1τ22 (λ2θ)
σ1τ2 · · ·

· · · · · · · · ·
· · · · · · · · ·

λσnτ21 (λ1θ)
σnτ2 · · · (λ1θ

n−1)σnτ2 λσnτ22 (λ2θ)
σnτ2 · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

λσnτr1 (λ1θ)
σnτr · · · (λ1θ

n−1)σnτr λσnτr2 (λ2θ)
σnτr · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

If we set

Γ =


1 θσ1 · · · (θn−1)σ1

· · · ·
· · · ·
1 θσn · · · (θn−1)σn

 and Γ τi =


1 θσ1τi · · · (θn−1)σ1τi

· · · ·
· · · ·
1 θσnτi · · · (θn−1)σnτi

 ,

then

dQ(γ1, . . . , γrn) =

∣∣∣∣∣∣∣∣∣∣∣∣

λτ11 Γ
τ1 λτ12 Γ

τ1 · · · λτ1r Γ
τ1

λτ21 Γ
τ2 λτ22 Γ

τ2 · · · λτ2r Γ
τ2

· · · ·
· · · ·

λτr1 Γ
τr λτr2 Γ

τr · · · λτrr Γ
τr

∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣∣

Γ τ1 0 · · · 0

0 Γ τ2 · · · 0

· · · ·
· · · ·
0 0 · · · Γ τr

∣∣∣∣∣∣∣∣∣∣∣∣

2 ∣∣∣∣∣∣∣∣∣∣∣∣

λτ11 In λτ12 In · · · λτ1r In

λτ21 In λτ22 In · · · λτ2r In

· · · ·
· · · ·

λτr1 In λτr2 In · · · λτrr In

∣∣∣∣∣∣∣∣∣∣∣∣

2

,
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where In is the identity matrix of size n. Since |Γ τi | = |Γ |τi for all i, we have

|Γ τ1 · · ·Γ τr |2 = Nk(|Γ |2) = Nk(dk(θ)).

Hence
dQ(γ1, . . . , γrn) = Nk(dk(θ))d(k/Q)n,

which gives the second identity of (2.3).
From (2.3) and the transitivity property of differents, D(L/Q) =

D(L/k)D(k/Q), we get

(2.4) |Nk(dk(θ)| = N(d(L/k))(OL : Ok[θ])
2.

Hence from (2.1), we obtain (2.2).

Note that when k = Q, the index ideal I(L/Q) is generated by I(L/Q).

3. Indices of subfields of cyclotomic Zp-extensions. In this section,
we study the indices of subfields of cyclotomic Zp-extensions, which turn out
to be closely related to Fermat quotients.

First, we consider which subfields of cyclotomic Zp-extensions of number
fields have relative integral bases. Let p be a prime, k an extension of Q of
degree r, and Kn the nth layer of the cyclotomic Zp-extension of Q as in
the Introduction. Then we can easily prove the following proposition about
Steinitz classes.

Proposition 3.1. Set Ln = kKn. If

pOk = pe11 · · · p
eg
g with pi a prime ideal of k and ei ≥ 1 for each i

is the factorization of pOk into primes and (ei, p) = 1 for each i, then the
Steinitz class of Ln/k is given by

St(Ln/k) =
[ g∏
i=1

p
−(ei−1)(pn−1)/2
i

]
=

{
[(
∏g
i=1 pi)

(pn−1)/2] for p 6= 2,

[(
∏g
i=1 p

−(ei−1)/2
i )2

n−1] for p = 2.

Proof. First we note that Ln is the nth layer of the cyclotomic Zp-ext-
ension of k, for k ∩K1 = Q under our assumptions. Let {λ1, . . . , λpn} be an
integral basis of Kn. Then {λ1, . . . , λpn} is a basis for Ln over k. So from
Proposition 2.1(ii), we have

d(Ln/k)

(dk(λ1, . . . , λpn))
= (a · detA)2

for some ideal a of k and a matrix A with entries in k. Since dk(λ1, . . . , λpn) =
dQ(λ1, . . . , λpn) = d(Kn/Q), we get

d(Ln/k)

(d(Kn/Q))
= (a · detA)2.

Now the Steinitz class is given by [a], so we need to compute the left hand
side.
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Let pOk = pe11 · · · p
eg
g be the factorization of pOk into primes as in the

statement of the proposition. Then from the assumption (ei, p) = 1, pi is
totally ramified in Ln and divides d(Ln/k) for each i. Also d(Ln/k) does
not have other prime factors than p1, . . . , pg by the basic properties of Zp-
extensions. From the relation between the (global) discriminant and the
local ones, we have

d(Ln/k) =

g∏
i=1

dpi(Ln/k) with dpi(Ln/k) = d((Ln)Pi/kpi),

where Pi is the unique prime ideal of Ln lying above pi, and (Ln)Pi and kpi
are completions of Ln and k with respect to Pi and pi, respectively.

To compute the local discriminant, take a prime ideal p = pi of k lying
above p with ramification index e and residual degree f , and take the unique
prime ideal P of Ln lying above p and the unique prime ideal Q of Kn lying
above p, respectively. We consider completions of Q, k, Kn and Ln with
respect to p, p, Q and P, and denote them by Qp, kp, (Kn)Q and (Ln)P,

respectively. If we write the valuation of each discriminant by d̃, then we
have

d̃((Ln)P/Qp) = pn · d̃(kp/Qp) + f · d̃((Ln)P/kp)

= ef · d̃((Kn)Q/Qp) + d̃((Ln)P/(Kn)Q),

so

d̃((Ln)P/kp)− e · d̃((Kn)Q/Qp) =
1

f
{d̃((Ln)P/(Kn)Q)− pn · d̃(kp/Qp)}.

From (e, p) = 1, we know that d̃(kp/Qp) = d̃((Ln)P/(Kn)Q) = f(e− 1). So

if we set d̃((Ln)P/kp) = l and d̃((Kn)Q/Qp) = s, then we get

d̃((Ln)P/kp)− e · d̃((Kn)Q/Qp) = l − es = −(e− 1)(pn − 1),

which gives the exponent of p = pi in d(Ln/k)/(d(Kn/Q)).

Thus if we denote e and l for each pi and Pi by ei and li, respectively,
then we have

d(Ln/k)

(d(Kn/Q))
= (a · detA)2 =

g∏
i=1

pli−eisi =

g∏
i=1

p
−(ei−1)(pn−1)
i .

So the Steinitz class is given by

St(Ln/k) = [a] =
[ g∏
i=1

p
−(ei−1)(pn−1)/2
i

]
.

When p 6= 2, since [
∏g
i=1 p

ei
i ] = 1, we obtain the desired form. When p = 2,

ei is odd for each i, and we obtain the result.
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Corollary 3.2. Let the notation and assumptions be as in Proposition
3.1, and further assume that g = 1, i.e., pOk = pe11 . Then St(Ln/k) = 1 if
and only if the order of [p1] in the ideal class group of k divides (pn − 1)/2
for p 6= 2 and 2n − 1 for p = 2. So in that case, Ln has a RIB over k.

Proof. We only note that when p = 2 and St(Ln/k) = 1, the order ν
of [p1] in the ideal class group of k divides both e1 and e1−1

2 (2n − 1). So
ν | 2n − 1. The rest is trivial.

Remark 3.3. (i) From Proposition 3.1, if p is unramified in k, then Ln
has a RIB over k. This can also be seen from OLn = OkOKn , which holds
under our assumptions.

(ii) In Corollary 3.2, if e1 divides (pn − 1)/2 for p 6= 2 or 2n−1 for p = 2,
then St(Ln/k) = 1 and Ln has a RIB over k.

Now we consider the indices of Kn/Q and Ln/k. For that, we need to
generalize Fermat quotients to higher degree.

Definition 3.4 ([Hl]). Let n be a positive integer and a an integer
coprime to p odd. If ap−1 ≡ 1 (mod pn), we set

Fp,n(a) =
ap−1 − 1

pn
,

and call it the nth degree Fermat quotient of a with respect to p. For n = 1,
this is the usual Fermat quotient with base a. We note that the definition of
Fp,n(a) a priori assumes that a satisfies the congruence ap−1 ≡ 1 (mod pn).
Also, notice that for an odd prime q, Fp,n(q) ≡ 0 (mod p) if and only if q
splits completely in Kn.

Theorem 3.5 ([AO, Corollary 2]). Let k be an extension of Q of de-
gree r such that either p is unramified in k, or k is Galois over Q, and
define Ln = kKn. If (p, r) = 1 and p − 1 - 2r, then OLn does not have a
power basis over Ok. In particular, OKn does not have a power basis for
p ≥ 5.

From this, it is meaningful to consider the indices I(Ln/k) and I(Kn/Q),
and for I(Kn/Q) we have the following:

Theorem 3.6. Let q be a prime. Then for p ≥ 5,

q | I(Kn/Q) if and only if 2 ≤ q < pn and Fp,n(q) ≡ 0 (mod p).

In this case, the highest exponent λ of q dividing I(Kn/Q) is given by

(3.1) λ =
∑
i≥1

si

{
pn − qi si + 1

2

}
with si =

[
pn

qi

]
.
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Proof. Suppose that the prime ideal Q of Kn lying above q ( 6= p) has
the residual degree fn(Q) = pk with k ≥ 1. Then the prime Q′ of Kn−1
lying above q has fn−1(Q

′) = pk−1, so qp
k−1(p−1) ≡ 1 (mod pn). Hence

qp
k−1(p−1) > pn,

which implies, with the same notation as in Theorem 2.4,

πq(fn(Q)) · fn(Q) = qp
k − qpk−1

> qp
k−1

(pn − 1) ≥ 2(pn − 1) ≥ pn

= rq(fn(Q)) · fn(Q),

so πq(fn(Q)) ≥ rq(fn(Q)). Hence q does not divide I(Kn/Q). For q = p,
fn(Q) = 1 for all n and rp(1) = 1 in Theorem 2.4, so p does not divide
I(Kn/Q). Hence the prime q that divides I(Kn/Q) has to split completely
in Kn, which implies Fp,n(q) ≡ 0 (mod p). Hence from Proposition 2.5(i),
for a prime q,

q | I(Kn/Q) if and only if 2 ≤ q < pn and Fp,n(q) ≡ 0 (mod p).

As for the highest exponent λ of q dividing I(Kn/Q), we refer to the
result of Engstrom [E, Theorem 3], for q splits completely in Kn.

Remark 3.7. In the proof of Theorem 3.6, we have shown the results
without the assumption p ≥ 5. Since I(Kn/Q) = 1 for p = 3, this implies
that for any positive integer n there are no primes q satisfying q < 3n and
q2 ≡ 1 (mod 3n+1), but this is of course obvious from Proposition 2.5(i).

As for I(Ln/k), we have the following:

Theorem 3.8. Let k/Q be a Galois extension of degree r with r a prime
satisfying r 6= p, and Ln = kKn. For a prime q, we have:

(i) If q | I(Ln/k), then q | I(Kn/Q).
(ii) Suppose q | I(Kn/Q). Then the following hold:

(a) When q splits completely in k, we have q | I(Ln/k). In this case,
the highest exponent χ of q dividing I(Ln/k) is χ = rλ′.

(b) When q is a prime in k, we have q | I(Ln/k) only if qr < pn. In
this case, χ = rλ′.

(c) When q is ramified in k, we have q | I(Ln/k). In this case, χ=λ′.

Here λ′ is the highest exponent dividing I(Ln/k) of a prime ideal q
of k lying above q, which is given by

(3.2) λ′ =
∑
i≥1

s′i

{
pn − (N(q))i

s′i + 1

2

}
with s′i =

[
pn

N(q)i

]
.
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Proof. Let θ be an integral primitive element of Kn over Q, so Kn = Q(θ)
and Ln = k(θ). If we set N(d(Ln/k)) = pd, then from (2.4) we have

|Nk(dk(θ))| = N(d(Ln/k))(OLn : Ok[θ])
2 = pd(OLn : Ok[θ])

2.

On the other hand, if we set d(Kn/Q) = pd0 , then

dk(θ) = dQ(θ) = d(Kn/Q)(OKn : Z[θ])2 = pd0(OKn : Z[θ])2,

so we obtain

(3.3) (OLn : Ok[θ])
2 = prd0−d(OKn : Z[θ])2r

for any integral primitive element θ of Kn over Q.

For the proof of (i), take a prime q satisfying q | I(Ln/k). Assume first
q 6= p. Then from (3.3), q | (OKn : Z[θ]) for any θ, which means that
q | I(Kn/Q). Assume next q = p. If p is unramified in k, the unique prime
ideal Q of Kn lying above p is also unramified in Ln. From the relation
D(Ln/k)D(k/Q) = D(Ln/Kn)D(Kn/Q) among differents, we have rd0 = d,
so p | (OKn : Z[θ]) for any θ, which means p | I(Kn/Q). This contradicts The-
orem 3.6. If p is ramified in k, let p be the unique prime ideal of k lying
above p. Then p is totally ramified in Ln, so the number rp(f) of prime
ideals in Ln lying above p of residual degree f is given by

rp(f) =

{
1 if f = 1,

0 if f > 1.

Hence from Theorem 2.4, p - I(Ln/k), which implies p - I(Ln/k) by (2.2).
So this does not happen either, and we finish the proof of (i).

For the proof of (ii), suppose q | I(Kn/Q). So 2 ≤ q < pn and q splits
completely in Kn by Theorem 3.6. Let q be a prime ideal of k lying above q.
Then q splits completely in Ln. Hence from Proposition 2.5(i), we have

(3.4) q | I(Ln/k) if and only if N(q) = qf0 < pn,

where f0 is the residual degree of q over q. For the formula (3.2) for the
highest exponent λ′ of q dividing I(Ln/k), we refer to the proof of Theorem 2
in [DD], or we can show it similarly to the case of Kn/Q, since q splits
completely in Ln (cf. [Hn] and [E, Theorem 3]). In fact, λ′ is equal to

pn−1∑
j=1

∑
l≥1

[
j

N(q)l

]
.

For cases (b) and (c), q is the only prime ideal of k lying above q. So
from (2.2) we have

qλ
′ ‖ I(Ln/k) if and only if qf0λ

′ ‖ I(Ln/k),
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where aµ ‖ b means that aµ | b and aµ+1 - b for a prime or a prime ideal a.
So from (3.4), we have

q | I(Ln/k) if and only if N(q) = qf0 < pn,

which finishes the proof of (b) and (c).
For (a), let qOk = q1 · · · qr be the factorization of qOk into primes in k.

Since N(qi) = q < pn, from (3.4) we have qi | I(Ln/k) for each i. Hence
q | I(Ln/k) from Proposition 2.5(ii). Let χ be the highest exponent of q
dividing I(Ln/k). Since qλ

′
i ‖ I(Ln/k) for each i, we have qλ

′ | I(Ln/k), which
implies N((qλ

′
)) = qrλ

′ | I(Ln/k) by Proposition 2.5(ii). Hence rλ′ ≤ χ.
Now λ′ = λ in (3.1) and qλ ‖ I(Kn/Q), so there is an integral primitive
element θ0 for Kn/Q such that qλ ‖ (OKn : Z[θ0]). Then from (3.3), we have
qrλ ‖ (OLn : Ok[θ0]), which gives χ ≤ rλ = rλ′, so χ = rλ′. This completes
the proof of (ii).

4. Examples. In this section, we give some examples of indices of Kn/Q
for n = 1, 2, 3. From Theorem 3.6, we know that primes q dividing I(Kn/Q)
are those satisfying

2 ≤ q < pn and Fp,n(q) ≡ 0 (mod p).

For n = 1, there is a long list of these primes in [EM], so here we only
list those p’s in 5 ≤ p < 2700 with I(K1/Q) > 1. Also we list those
in 5 ≤ p < 2800 and in 5 ≤ p < 500 for n = 2 and n = 3, respec-
tively.

Table 1. p and I(K1/Q) (> 1) for 5 ≤ p < 2700

p I(K1/Q) p I(K1/Q) p I(K1/Q) p I(K1/Q)

11 317 43 1929 59 536 71 11195

79 3165 97 5344 103 4377 137 19427

263 79315 331 71614 349 22312631732 359 25710233128

421 251170 433 34984 487 307180 523 241323

653 197777 659 503156 743 467276 859 643216

863 1329995 907 1272793761146 919 457467 983 419709

1069 487677 1087 617470 1091 691400 1093 2591387

1163 2412242 1223 997226 1229 821408 1279 683596

1381 653803 1483 42119231061422 1499 941558 1549 1069480

1657 1481176 1663 7091199 1667 4632223 1697 4612325857840

1747 1153594 1777 1381396 1787 6311681 1789 4492673

1877 1091786 1993 27761951747246 2011 199318 2213 3675571

2221 6592709 2251 15115659 2281 1657624 2309 82321491453856

2371 1493878 2393 4315500 2473 1787686 2671 2063608
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Table 2. p and I(K2/Q) (> 1) for 5 ≤ p < 2800

p I(K2/Q) p I(K2/Q) p I(K2/Q)

7 1941 37 691678 79 15239734

101 49435573 107 55736179 167 179879902

193 310196230 251 3376729234549738028 293 3330171795

337 24733206946 383 66191552551 761 252709400115

761 363767215354 769 50041390948 919 478273366288

1049 403079991565668179432222 1213 864503606866 1249 2383974353669

1277 5366211672461 1373 1923178311896 1429 3762374566650

1447 4168494216310 1487 1293203917966 1567 1663223792266

1667 11134012217575 1811 2843213436508 2083 13600674856265

2111 35136126069694 2341 19375575147891 2389 24217434149413

2549 45057071991694 2593 43160512407598 2777 63516291360100

Table 3. p and I(K3/Q) (> 1) for 5 ≤ p < 500

p I(K3/Q) p I(K3/Q) p I(K3/Q)

13 2399018 19 28195261 107 1195515675125

137 5989874295542 281 577491131914657 467 3887062787083245

491 6969592948674842 · · · · · · · · · · · ·
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Q de degré premier l ≥ 5, J. Number Theory 23 (1986), 347–353.
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[Sl] J. Śliwa, On the nonessential discriminant divisor of an algebraic number field,
Acta Arith. 42 (1982), 57–72.

Yoko Inoue, Kaori Ota
Department of Mathematics
Tsuda College
2-1-1 Tsuda-cho, Kodaira-shi, Tokyo 187-8577, Japan
E-mail: ota@tsuda.ac.jp

Received on 18.3.2014
and in revised form on 14.3.2015 (7756)

http://dx.doi.org/10.1016/0022-314X(86)90079-X
http://go.helms-net.de/math/expdioph/fermatquotients.pdf
http://go.helms-net.de/math/expdioph/fermatquotients.pdf
http://dx.doi.org/10.1090/S0002-9947-1985-0779058-2
http://dx.doi.org/10.1007/BF01459087
http://dx.doi.org/10.1016/0022-314X(88)90019-4

	1 Introduction
	2 Preliminaries
	3 Indices of subfields of cyclotomic Zp-extensions
	4 Examples
	References

