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1. Introduction. Let ¢4(n) be the Ramanujan sum [I, p. 160] defined

by
q
_ 2mihn/q — d Q
wim= 3 ¢ Py} u(4)
(ha)=1 "

where p(n) is the Mobius function. We recall a well-known identity [9, p. 10]

Z () = 71-5(n) (Res > 1)

= ¢ ¢(s)

with o1-5(n) =34, d'~* and the Riemann zeta function ((s) = Y00, n™°.
Recently, T. H. Chan and A. V. Kumchev [2] studied a new type of sums,

(1) Culwy) =Y (Yem)  (h=12)

n<ly q<z

for any sufficiently large positive numbers z and y. They showed
2

(1.2) O y) =¥~ qegy O(zy'*logz + 2° /y)
for y > x,

ya” 4
(1.3) Cy(z,y) = 2(2) + O(z” + zylog x)

for y > 2%(logz)? (B > 0), and

(14)  Cofz,y) = y2’ (1+2/1(u))+0<yx2(10g1’)10(1+ <x>1/2>>

2¢(2) VI \y
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for z <y < 2%(logx)? (B > 0) and u = log(yz~2). Here x(u) is given by

LT
27r_§>o CA+it) L+it2(1—it)" .

Their work stems from their unpublished paper concerned with Diophantine
approximation of reals by sums of rational numbers. In the present paper, as
a problem on arithmetical functions, we shall consider a certain sum which
is a modification of .

Let ¢4(n) be the arithmetical function defined by

~ q
(1.5) AOESY d‘ﬂ(d>‘.
d|(n,q)
This can be regarded as a modification of the Ramanujan sum and also as a

restricted divisor function (a sum over modified square-free divisors). Note
that the Dirichlet series with the coefficients ¢,(n) is given by

(16) > o

q=1
for Re s > 1. Following [2], we let
R k
(L.7) Diley) =Y (Y am)  (k=1,2).
nly  g<z

The purpose of this paper is to obtain formulas for Dg(z,y) analogous to

C2-E9.

In the case k = 1, we have the following theorem:

THEOREM 1.1. Let x and y be large real numbers such that y > x, and
let e(z) = (log)%/®(loglog 2)~'/5. Then

i | 0@,
Di(z,y) = Frgymylos =+ 4(2)(27 BRNer) )xy SR

+ O(x' Py exp(—Ce()) + xy' P logz + 2 /y),
where v is the Fuler constant and C is a certain positive constant.

In the case k = 2, we have two types of formulas. To state the first
formula, define a polynomial P(u) by

(1.8) Plu) = —

_ L3 2
—343(2)10 + Chiu” + Cau,



A sum involving the Mébius function 151

where
A0
19 a= g (a1
1 ) 3¢/(2)
(1.10) Cy= C3(2){2’yl+8’y 67<1+ © )
6C(2) . 10C'(2)°  ¢"@)
e e T }

where 1 is the coefficient of s —1 in the Laurent expansion of {(s) at s = 1:

((s) = 2 7+ mls— D)o

s—1
In fact, these values are determined by
A+ As A% + 24145 2A3
1.11 Ci="—"%—=, (0Oy= — 7
Ay EIR) @ )

where Ay, Ay and As are constants defined by (2.1), (2.7) and (2.8) below,
respectively.

THEOREM 1.2. Let the notation be as above. Then for large real numbers
x and y, we have

(1.12) Dy(x,y) = 2*yP(log z) + O(x?y + z*).

This (T.12) gives an asymptotic formula for Dy(z,y) when y > 22 /log? x.
For the second formula, we introduce another polynomial Q(u) by

(1.13) Q(u) = _6C3(2)US + C3u? + Cyu + Cs,
where
_ 4¢'(2)
(1.14) 03_2C3(2)< 2y 41+ O
2 _ 4¢'(2)
(L15)  Cu= <3<2>{2'“ ”(” <<2>>

e TTee T @

2¢'(2) | 6(¢'(2))* 2(”(2)}
and C5 is a certain constant.
Under this notation we have

THEOREM 1.3. Let x and y be large real numbers such that y < 2™ for
some constant M. Then
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(1.16)  Do(zx,y) = 2*yP(logz) + z%yQ (log m;)

1/2 1/2
x
+0 <332y ((ac_?’/g +y7 ) 1og" z + <> log* = + <y2> log? x> ) ,
Yy x
where the implied constant depends on M.
This gives an asymptotic formula for Do(x,y) when zlog?z < y <
21002
x*log” x.

These theorems are proved in the same way as in [2]. The change in
the definition of the Ramanujan sum c,(n) causes a little complication in
the behaviour of Dy(z,y). However this may be of arithmetical interest,
especially in connection with modified square-free numbers.

REMARKS. (i) In Theorems 1.2 and 1.3, the asymptotic behaviour is
obtained only for y > xlog?z. It is an interesting problem to investigate
the asymptotic behaviour e.g. for y < zlog? x.

(ii) In the proof of Theorem 1.3 (see Section 5), we will observe by direct
calculation that the first three terms containing z?ylog’ z (j = 3,2,1) are
the same as those of Theorem 1.2. If we ignore the error term O(z%) of
Theorem 1.2, this is easily derived by considering the asymptotic behaviour
of these two theorems with the special choice y = 2% /log? z. Unfortunately
we cannot deduce it from the present error terms, but this observation may
suggest that the error term O(x%) in Theorem 1.2 could be smaller.

The identity (1.6]) leads to problems similar to those above. Let ¢,(n;!{)
be the gth coefficient of the Dirichlet series

¢(s) _ . Eq(n;l) es
Ul_s(n)C(ls) = ; p (Res > 1).

The function ¢,(n; 1) can be regarded as a sum over modified [-free numbers.

We shall write i
U(z,y) = (Zﬁq(n;l)) :

nly q<z

Moreover, let ¢,(n) be the gth coefficient of the series

((25)¢(3s) _ < Gg(n)
Ul_s(n)w => L= (Res>1/2),

which can be regarded as a sum over modified square-full numbers. Similarly

we write
Velew) = 3 (S am)

n<ly q<wz

q=1
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for any positive integer k. The method of the proofs of Theorems 1.1-1.3
may be applied to studying Ug(z,y) and Vi(z,y) (k = 1,2), which will be
done elsewhere.

2. Some lemmas. In order to prove our theorems, we prepare several
lemmas.

LEMMA 2.1. Let w(m) be the number of distinct prime divisors of a
positive integer m, and e(x) = (logx)3/®(loglog )~/ as in Theorem [1.1]
For x > 1, we have

> 2 = C(12)$10gx + A1z + O(a*/? exp(—Ce(x))),

where C' > 0 is a positive constant and

IR
(21) "‘“c(z)(27 ! 2<<2>>'

See A. Ivié 7, p. 394]. It is easy to see that A; is indeed given explicitly
by , though this form is not given in [7].

In the proof of Theorem 1.1, we need an upper bound on the sum
Y ner ¥(y/n), where ¢(x) = x — [x] — 1/2 denotes the first periodic Bernoulli
function. This kind of sum is estimated effectively by exponent pairs. Roughly
speaking, an exponent pair (k,A) is a pair of numbers 0 <k <1/2< A <1

such that

ZeZﬂif(n) < AKN)\7

nel
where I C (N,2N] and A < |f'(u)| < A for u € I. For the precise definition
and properties, the reader should consult S. W. Graham and G. Kolesnik
[5] and [7]. Now applying [5, Lemma 4.3] with f(n) = y/n, we have

m<x

LEMMA 2.2. Let (k,\) be an exponent pair. If I is a subinterval of
(N,2N], then

Z@b(y) < YN + N2yl
nel n
In particular, if we take (k, ) = (1/2,1/2), we get

Yy 1/3 2, —1
(2.2) Zw(n)<<y + N2y~
nel
LEMMA 2.3. Let q be a non-negative integer. For y > 1, we have

logfn 1 o1 log?y log(y + 1)
(23) > - —q+110g y- = U(y) +Clg) + O )2 :

n<y
where C(q) is the constant given by
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0,

0q T qlogi™'t —log?t
2

) ;
1 t
with 5o = 1 and §; = 0 for ¢ > 1, and in particular C(0) = v and C(1)
pr —")/1_
This lemma is derived immediately by applying the Euler-Maclaurin
summation formula (see also [3]).

LEMMA 2.4. Let ¢p(n) be the Euler totient function and define

- 0(7)

n<x

Clq) = P(t) dt

For x > 2, we have

(2.4) Z _—logx—kAg—fF( )+0<i>,

n<lz

¢(n)logn 1 9 log log
(2.5) TZ; 3 = %@ log“x + Az — ; F(l’)+0( ; ),

$(n)log®n 1 3 log? = log? =
(2.6) nzgw 3 ERe log®x + Ay — - F(a:)—l—0< - >,
where the constants A; (j = 2,3,4) are given by

— () logn EAat)
27 SoRPS CRSE)
(2.8) g((;))"‘ Zu logn Zunlog n
gt (2) 1¢"(2) (C'( )?

(2 (2) 2C2( ) GB(2)
A4:@+2C Z logn Zu logn

Proof. We shall give a proof of (2.5) only, since and . are sim-
ilar. Using the well-known formula ¢ ( ) =mn g, k(d ) /d and changing the

order of summation, we obtain

n)logn d log dn
S:Z¢( leg _Zuép) Z gn :

n<x d<z n<z/d
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For the sum over n we apply (2.3)) with ¢ = 0,1 to get

(2.9) Széﬁg){bgd(bgz—i—V— jw(j) +0<d2>>
g e Lo(g g o Gue (51))

1 p(d)\, o 1<~ p(d)log™d pu(d) logd
=2< dz>1°g$—2zdzﬂzdz

d<z d<z

2
d<z

+0 iZm d)+0 iZb T
xQ d<z ° 1:2 d<z i d .

From the prime number theorem we observe that

5 HORE 3 ML 0 expl-e g )

d<zx
for j = 0,1, 2. Substituting this into . we get (2.5)). =
LEMMA 2.5. If o9 > max(0,0,) and x,T > 0, then

oo+iT

! 1 il
Zan:2m, S a(s)?ds—FR,

n<x oo—1tT

where

x 490 4 270 X |ay|
R« Gn|min| 1, ,
S fenlmin(1, T ) e TS
z/2<n<2z n=1
n#x
and > indicates that the last term is to be halved if x is an integer.

This is the famous Perron formula (see H. L. Montgomery and R. C.
Vaughan [8, Theorem 5.2 and Corollary 5.3]).

LEMMA 2.6 ([2, (4.12)]). Let
(2.10) G(s1,52,9) = > 015, (n)01-,(n)

n<y
and L =logy. Then

4
(211)  G(sis2.9) = > Ri(s1,50,9) + O(L°(y'/2 +y/T)),
J=1
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where

C(51)¢(s2)C(s1 + 52 — 1)
C(S1 -+ 82) ’
95, C(2 = 51)C(1 — 51 + 52)((
(2 —51)C(2 = 51+ s2)
95, C(2 = 52)C(1 + 51 — 52)((51)
(2 = 52)C(2+ 81— 52)
355, C(3 =51 —52)((2 —52)((2 — 51)
(3—81—82)C(4—31—82) ’

Ri(s1,82,y) =y

32)

Ro(s1,82,y) =y

R3(s1,82,y) =y

Ry(s1,82,y) =y

3. Proof of Theorem 1.1. From and (| ., we have

=3 Y = zzzd]u(g)] =Y dth)
n<y q<w n<y q<wz g‘\g n<y dl;I%x

Changing the order of summation, we find that

(1) Di(ry) =Y du®)|Y 1= dlft(k)m

dk<zx n<ly dk<zx
din
y
SONCEED I CIED SENCIEY
dk<z dk<z dk<zx

=:Dy1(z,y) — Di2(z,y) — D13(z,y).

For the first term, we apply Lemma 2.1 to get

(32)  Duilmy) =y Y lpk)=y D> D |uk)| =y 2

dk<z m<z k|m m<zx

=y gy one + e 4 OG exp(-C=) ).

¢(2)
Furthermore,
(33) Diswy) =5 3 diu(h) = 5 S lu(k)] Y d
dk<m k<z d<z/k
s Xk (w ()
= %xz ,; ‘kQ + O(xlogz) = 42((24)) 22 + O(zlog ).
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To estimate D1 3(x,y) we use the theory of exponent pairs. Let N; = N;; =
(x/k)277. Then

Dig(z,y) =Y |ulk)| > dw(z>

k<z d<x/k
<3 lutk \ZN sup| o (Y )
k<zx del
where the sup is over all subintervals I of (N;,2N;]. From we have
(3-4) Dig(z,y) < Y lp(k)] Y {Njy'"? + Njy~'}
k<z j=0

g (B (7))

S SUTCIRS SV TCIe

k<z k<z

< xy1/3 logz 4+ a3y~ 1.

Substituting (3.2)—(3.4) in (3.1)), we get the assertion of Theorem 1.1. =

4. Proof of Theorem 1.2. We follow the method of Chan and Kum-
chev [2]. From (1.5)), we have

Do) = 3 (X am) =3 (X diuth))”

nly q<z n<y dk<z

din
S )l Y k) 1
diki1<z doko<z n<y
di|n, dz|n

The sum over n can be written as

I (Xl

n<y [d1,d2]m<y m<y/[d1,d2]
diln,dz2|n

where [dy, d2] denotes the least common multiple of d; and ds. Hence

1) Dae= XS dluo)l )| ]

drkr <z doka<z [dy, do]

=y Y. > (di,dy)|ulkr)]|u(ke)| + O(E),

di1k1<z doka<z
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where

E = Z Z dida|p(k)] |p(k2)]

dik1<z doka<z
< Zdl[ ] ng[ ] < 22 2% = 2"
di<z

Now we shall evaluate the main term of (4.1)):

S (dudo) (k)| p(ks)|
di1k1<x doko<zx
=>d > > |p(k)| (k)]

d<z dl1ki1<z,dlsko<zx
(I1,l2)=1

=37d > > Juk)l k)l Y- p

d<zx dlik1<z dloks<x U(l1,l2)

=S (Y k)’

di<z mk<z/(dl)
=S ao( Y S hwi).
di<z n<z/(dl) kln
By Lemma 2.1, for large x,

@) (X Tww) =( X o)

n<z/(dl) k|n n<z/(dl)

1 22 r  24; 22 T x2 2\
— log? 1 + A7
o B2 4 er ®ater +O<<dl> )
z2log?zx 1 222 log x log dl 22 log?dl 24;2%logx 1

C2(2) 212 2(2) 22 (2 22 C(2) 22
~ 2412° logdl et (2 3/2
¢(2) da?? d?1? dl
_ 2?logx 24122 logx 422 1 222 logz  2A12% ) logdl
¢(2) ¢(2) 12 ¢2(2) 2 J &r

22 log?dl z\%/?
o e o(@) )

Write G(z,dl) for the first three terms of the right hand side of (4.2)). Since

log’ di $(n)log/ n

di<z n<z
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we can apply Lemma 2.4 to get

(43) > du()G(z,dl)
di<z
w?logdz A+ Ay 5.
= + x“log” x +
3¢3(2) ¢2(2)
24, A3 Ay
+ | A3A; — +
( e e
Since F(x) < log x trivially, xF(x) is included in the last error term.

On the other hand, the contribution from the error term of (4.2)) is
bounded above by

T 3/2 2
Zd(dl> <Y T
di<x

n<x

<A% + 241 A5 B 245 >I2 log
¢(2) ¢*(2)
>x2 — A2zF(z) + O(zlog? ).

Hence the terms lower than x2 in (4.3)) are absorbed in the error. Thus using
(1.8)—(1.11)), we finally obtain
Dy(z,y) = 2*yP(log z) + O(z%y + 2).
This completes the proof of Theorem 1.2. u
5. Proof of Theorem 1.3. In this section we assume 1 < y < M for

some constant M. Without loss of generality we can assume z,y € Z+ 1/2.
We apply Lemma 2.5 with

= G(n) ¢(s)
O
Then we have, for 2° < T < =,
R 1 a+iT C(3> e
(5.1) qux Cq(n) = Gy aSiT o1-s(n) C(2s) 5 ds + Ey(z,n)

with @ > 14 1/logx, where E;(x,n) is the error term given by

Bian) < Y |5q(n)|mm< —— |>+“Z|Aq(:)l_
q=1

x/2<q<2x q

It is easy to see that

Eq(z,n) < %O’o(n) log z.
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Let aj =1+ j/logz (j =1,2). Applying (5.1) with a = «; we get

62 (Xam) = G

q<z

a1 +iT ag+1T
S S F(s1,s2,n)dszds1 + Ea(x,n),

a1 —iT ag—iT

where

C(s1)C(s2) x*1t*2
((281)¢(252) s182

F(s1,82,n) = 015, (n)01_5,(n)

ay+iT 51
Es(z,n) = Ei(z,n) <1Z S o1, (n) C(s1) Ldsl

2 oy —iT <(281) S1
1 ag+iT C(SQ) 52 )
+ — O1—s, (N —dss + E1(z,n) |.
27i ML 1 )C(252) sy 2 1(@,n)
We can see easily that
72
Esy(z,n) < ?Uo(n)2 log? .

Summing ([5.2)) over n and using the estimate

> oo(n)’ < ylog’y,

n<y
we get
S C(51)¢(s2) aht
5.3) Da(x,y) = —— G(s1, So, dso ds
(5:3) Da(,y) (27i)? oc1§iTa2§iT (51,52 y)((Zsl)C(Qsz) 5182 2021
+ O(z*yL5/T).

where G(s1,s2;y) is defined by (2.10) and L = logx. Here we note that
logy < M log x by the assumption.

Now we shall evaluate the integral of (5.3). Substituting (2.11f) in (5.3)),

we obtain
4

(5:4)  Da(w,y) =3 Daylwy) + Oy Ly~ +1/T)),
j=1
where
Lo ((s1)¢(s2) amte
Pl =i VN B0y e

a1 —1T ag—1iT

with oy = 1+ 1/logz and as = 1+ 2/log .
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First we deal with Ds1(z,y). From the definition of Ry(s1, s2,y), we get

(5.5)
a1 +iT ag+iT

Y || ¢*(51)¢%(s2)¢(s1 + 59 — 1) a1+
(2mi)? C(s1+ 82)C(251)C(2582)  s1892

D2,1(513,y) = dso dsy.

a1—1T ag—iT

Asin [2], let I'(e, 8, T) denote the contour consisting of the line segments
la—4T, B—iT], [8—iT, B+iT] and [8+iT, a+iT]. In (5.5]), we move the line
of integration with respect to se to I'(ag,1/2,T). We denote the integrals
over the horizontal line segments by .J; 1 and J; 3, and the integral over the
vertical line segment by Ji 2. Then

J11, J13

1C%(aq + Ztl)—’ dty O§2 1C%(09 +iT)C(aq + 00 — 1+ ity +T))|z2

<< — - do
T ST 1+ |t C(205 + 2iT)] ?

1/2

T .
zyL* S |¢% (o +ity)]

a2
2 1
dt T§(1_02)T3(1 o2—1/log z) 2°2 do
T 1+ |t] ' 2

1/2

<

Lo s
< xyT (x+ ') < ya®

where we have used the estimate S1T |C(ay +it)|*dt < T.
For the integral along the vertical line we have

T < ya'l? f :SF (o +it1)¢P(1/2 +ita)¢(ar — 1/2 + ity + t2)))|

: dty dt
RS [C(1L + 2it2)[(1+ [ta]) (1 + [t2]) L
T T | .9 . . )
<ya¥213 | | G772+ ita)Clon — 12+ it +8))] 4, gy
o (1+ [t + Jt2])
2T T ) .
. 1/2 + it))|
< ya*?L? ( —l—zu) it dt du
Y g log z _ST L+ [¢)(1 + [t — u])
2T T .
‘ [C(1/2 + it)]
< yx?’/ 2r3 ( —|— 2u> dt du.
S ST (T + DA+ [t —ul)
Here we note that
T 2 : )
1/2 + it L
caz+i) o+ | < |ul

3 W)+t - ul) T+ [ul 1+ ]’

lt—ul>3lul  |t—u|<3|ul
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where 0 is a positive number such that

X
| 1¢%(1/2 +it)| dt = cXlog X + ' X + O(X°).
0

Hence,

2T
J1,2 < y:v3/2L4 S
=27

¢ l—i- ! +u [ul? du < yz®?T0L°
2 logx 1+ |ul '

For simplicity, we take § = 1/3 in what follows.

It remains to evaluate the residues of the poles of the integrand when
we move the line of integration to I'(ag,1/2,T). There is a simple pole at
S$9 = 2 — s1 with residue

¢*(51)¢3(2 — s1)a?
¢(2)¢(251)¢(4 — 2s1)s1(2 — 1)

and a double pole at sy = 1 with residue

¢*(s1) ﬂfsl“{C(C(Sl) <10g«%’ +A1>

¢(2s1) s1 s1+1)\ ¢(2)
4L < (1) C(Sl)C’(31+1)>}
C(2)\((s1+1) 2(s1+1)
=: 9351+1{H2(51) logx + Hs(s1)},
where A; is defined by . The contributions to Dj;(z,y) from these

residues are

=: Hl(sl)xQ,

ny a1 +iT Ty logzv aq+iT
Smi S Hi(s1)dsy + = S Hy(s1)x® ds;
a1 —1iT o1 —iT
Ty a1 +iT
+ o S Hi(s1)x™ dsy =: Iy + Iz + I3,
aq—iT
say.

For I, moving the line of integration to I'(a1,5/4,T), we get

H; <Z + ’it1> ’ dt1>

x2y 5/4+i00 %)
I = S Hy(s1)dsy + O<x2y S
T

271 )
5/4—i00

+ O(nyL4T—11/6)
= caly + O(a:Qy/T),
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where we have set
5/4+i0c0
c=— H dsy.
271 S 1(s1) dsy
5/4—ioco
For I, we move the line of integration to I'(ay,1/2,T'). The integrals
over the horizontal lines are

o1 1/2
< zyL® 1§2 TV 1% doy < ayL® (; + (;) ),

and the integral over the vertical line is

T .
IC(1/2 4 it)]?
<Lz L2 —_—
yL* | 1+ [t]

=T

212 dty < x3/2yL6,

where we have used the well-known estimate Sg IC(1/2+it)]Pdt < TlogT.
Furthermore, when moving the line of integration we encounter a triple pole
at s1 = 1. Hence by Cauchy’s theorem we get

1/2
Iy = x?ylog Py (log ) + O<xyL5 <; + <;> >> + O(23?yLY),

where Pj(u) is a polynomial in u of degree 2. By direct computation we find
that

(5.6) Pifu) = ar” + au+az

with

(5.7) a; = 2@1(2) @2 = g312) (37 - ?ﬁg))

(5.8) az= 431(2){3(’71 +7°%) - 3’Y<1 + 3?;2?)
15001

In the same way as for I, we find that there exists a polynomial Py(t)
in t of degree 3 such that

1/2
I3 = 22y Py(log ) + O(acyL6 (; + <;) >> + O(23/%yLb).

Here we have used the mean square estimate SoT |¢"(1/2 +it)|? dt < T'log®T
due to A. E. Ingham [6], and the bound ('(o + it) < |t|%(1_") log? |t| for
1/2 <o <1 (see S. M. Gonek [4]). In this case we find that

(59) Pg(u) = b1u3 + b2u2 + bsu + by
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with
1
(5.10) h=—¢ze 2=0
(5.11) bs = C3(2) + C3(2) C3(2) <1 * C(2) )

_|_

1 3(¢'(2))° 34”(2)>
3¢ (2) + + )
i (0O + G+
From 7, and we find that
as+by=ay=C17 and az—+ b3=C,

hence
uPy(u) + Pa(u) = P(u) + ba,

where P(u) is the polynomial defined by ((1.8). The constant term by can
also be computed explicitly. Combining these results we get

(5.12) Do i(z,y) = 2%y (P(logz) + by + ¢)
+ O(x?yL8)T) + O(2*?yT'/3LP).
Next we consider the term Ds 4(x,y). It is given explicitly by

3 a1 +1T ag+iT

Y | C(3 =81 —52)((2 — 51)¢(2 — 52)((51)((52)

1314($7y)::

@mi)? | ol S =81 = 52)C(251)((282)(3 — 81— s9)
X Md@ dsq.
5152

We move the line of integration with respect to sy to I'(ag,3,T), where
B =5/2—a; =3/2—1/logz. There are no poles when we deform the path
of integration over so. The contributions from the horizontal lines are

:c) ? €1 — gz — 1)1+ gz +it)|
1

Ja1,Ja3 < 3ny<
’ ’ Y o 1+ |t1]

5k@—b;—@—am+ﬂx@—@—ﬂxwrwn\xaw
% S (14 |ti+TNT () g2

a2

The inner integral is estimated as

1 x H—é x %_ﬁ
<t (PG) - G )
T(1+ |ty +T)) Yy Y

L3 T 2\ /2
srhmE)6)")
T(1+ |t +T) <y>< y
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where we have used the assumption y < ™. Hence,
Ja1,Ja3

13 A2\ Tl - B —it) (1 + ks i)
< 2 = 1+T1/3<> ) ng ogx dt
T ( y _ST (1 + ) (1 + [a] + T) :

L* 2\ Y2
2 1/3
<<$Z/T2(1+T/<y> )

For the integral on the vertical line we find that
Ja2

o ‘C(%_i(t1+t2))<(1_ loéz _itl)c(%—i_loéx _it2)<(1+loéx+itl)‘
(T [tr+t2]) (1 [t2]) (1+[£2])

T 5/2
X <> dtl dtg
Y

dty dity

AN !cl—zt1+tz>)C(%+ﬁ—itz)}
3(T g
()1

(L4 |t ]) (X + [t2])(1 + |t1 + t2])

<<y3<x>5/22 2{ \<<2—w>\§ <G+ gz =]
y Lop LAl S ([ fu = 22)

2 (X 12 4
L zy|l — L=,
Yy

Hence we get

1/2
5.13 D 2L - .
o ot (2
Now we shall evaluate the integral D 3(z,y). It is given explicitly by
D2,3 (1,‘, y)

2 a1+iT as+iT

S C(2 = 52)¢(1 + 51 — 52)¢%(51)¢(s2) w152y~
(27Ti)2 (2 — SQ)C(Q + 81 — SQ)C(QSl)C(QSQ) 51852
We move the line of integration with respect to se to I'(ag,3/2,T). Note

that there exist no poles under this deformation. The contributions from the
horizontal lines are

J3,1,J3,3

dSQ ClSl.

a1 —1T ag—iT

3/2

[ (an +ita)| S €2 =02 —iT)((14+ a1 — o2+ i(t1 — T))

1+ |t

<<ﬁ§
=T

o2
x (o9 +iT)| (;) dos dty
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2 13 T |2 TINER: o2
yxl® o [ +ith)| (“1402)/3 (“1t02)/3(
T T2 (14t =T 72 — | doodt

< T2 S 1+ |t aS (L[t =T1) y 02 aty

273 T |2 - 3/2 2

yraLl® | (ar +ita)] o(~1+0)/3 [ &

dt T 72 — d

< T2 S 1+ |t 1 QSQ ” 02

2,74 . 3/2 1/2
< % <T1/3 ("T) + x) < ya?L* <T2 /3 (5”) )
T Yy Yy y

On the other hand, the contribution from the vertical line is
J3.2

)

o | 1T (3 = ##2)¢(5 + gz + il — 12))| (x) o di
A A1 (1 +t2))? y
L (23
<Ly :c() L.
Y
Hence
3 1/2

(5.14) Dy 3(r,y) < 3/952L{1Lﬂ2 - (z) }

Finally we consider the integral Dy o(z,y). Its explicit form is

(515) D272($,y)

B alJSriTaziLiT C(2 = s1)¢(1 — 51+ 52)C(51)(P(52) wirtsay—s1

(273)? (2 —51)C(2 — 81+ 52)C(251)C(2s2) 5182

This time we first move the line of integration over s; to I'(aq,3/2,T) @
The estimates over the horizontal lines and the vertical line are the same as
those of Dj 3(x,y), but there is a simple pole at s; = s7 inside this contour.

The residue of the integrand of (b.15]) at this pole is

((2 = s2)((s2) a2y~
C(2)C(252)%(2 — s2)53

dso dsy.

a1 —iT ag—1T

hence

9 ao+iT 3 2\1—s
Tty C(2 — 52)((82)° (y/x") ~*
Daa(:3) et -

271 ]
ag—iT

L3 2\ /2
2
+ yx L{T2+<y> }

(*) In [2 p. 8, line 4], Chan and Kumchev wrote that “Similarly, by moving the line
of integration to I'(a2,3/2,T), we find” formulas (4.16) and (4.17). But it seems that to
derive (4.17) of [2], we need to move the line of integration over s1 to I'(au1,3/2,T).

d82
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The treatment of the integral on the right hand side is easier than the
corresponding integral of [2]. In fact, we move the line of integration to
I'(a2,1/2,T). By the same method as before, the integrals over the hori-
zontal lines are estimated as

2 —2/logx 1/2 2 14 1/2
y 2172 Y x yL 12 Y
TY(pa L2722 1+TY2( =

and those over the vertical line are estimated as < z2y(y/z?)"/2L?. Fur-
thermore, there is a contribution from the pole sy = 1 of order 4, hence

) 3 1/2
_ 2 r 2 (L z
(5.16)  Dapa(z,y) = 27yQo <10g y > Ty L<T2 i (y> >

A 1/2 1/2
co( () ) rol() #)
T T

where Qo(u) is a polynomial in u of degree 3. By Cauchy’s residue theorem,
we have

1
Qo(u) =
)=
where C3 and C} are the constants defined by ([1.14)) and (1.15)), respectively,
and Cj, is another constant.

Now we substitute (5.12)(5.14) and (5.16) into (5.4), and take T = x3/8.
Then we obtain

———u® + C3u® 4 Cyu + CL,

2
Dy(z,y) = J:Qy(P(log x) 4+ bg + c) + x2yQ0(log %)

2\ 1/2 y 1/2
ol ) ())
y x

Taking C5 = by + ¢+ Cf and defing Q(u) by (1.13), we get the assertion of
Theorem 1.3. u
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