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1. Introduction. Let p be an odd prime, Zp = Z/(p), E the set of even
residues in Zp and O the set of odd residues,

E = {2, 4, 6, . . . , p− 1} ⊂ Zp, O = {1, 3, 5, . . . , p− 2} ⊂ Zp,
with characteristic functions χE, χO respectively. Lehmer posed the problem
of determining the number N−1 of even residues with an odd multiplicative
inverse modulo p [17, Problem F12]. One expects N−1 ∼ p/4 and this was
proven by Zhang [30]. Here, we consider the more general problem of deter-
mining the number Nk of even residues such that Axk is odd,

Nk = Nk(A) = #{x ∈ E : Axk ∈ O},
where k,A are any integers with p - A (with the convention that x−1 denotes
the multiplicative inverse of x in Zp). Lehmer’s original problem is just the
case k = −1, A = 1. The Goresky–Klapper conjecture [14] on the decimation
of `-sequences amounts to proving that Nk > 0 for p > 13 and (k, p−1) = 1.

For the general case one does not always have Nk asymptotic to p/4.
Two parameters play a key role in the determination of Nk,

d := (k, p− 1) and d1 := (k − 1, p− 1),

and their companion values,

s :=
p− 1
d

and t :=
p− 1
d1

.

We find for instance (Example 9.1) that if t and |A| are both small odd
numbers then Nk ∼

(
1− 1

At

)p
4 . In other words, the probability that an even

residue becomes odd under the mapping x 7→ Ax(p+t−1)/t is asymptotic to
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1
2

(
1− 1

At

)
. On the other hand, if both s and k are even then we have exactly

Nk = (p− 1)/4 (Theorem 1.3). We also show that Nk ∼ p/4 provided that
k is even and the set of all k-th powers is uniformly distributed, or k is odd
and d1 = o(p) (Theorems 1.1 and 1.2).

Let ep(·) = e2πi·/p denote the additive character on Zp, and set

Φ(k) = max
a∈Zp

a6=0

∣∣∣∑
x 6=0

ep(axk)
∣∣∣,(1.1)

Φ(k, 1) = max
a,b∈Zp

ab 6=0

∣∣∣∑
x 6=0

ep(axk + bx)
∣∣∣,(1.2)

Φ′(k) = max
a∈Zp

a6=0

∣∣∣(p−1)/2∑
x=1

ep(axk)
∣∣∣.(1.3)

Using the Erdős–Turán inequality we prove (Section 2)

Theorem 1.1. For any integer k,

(1.4)
∣∣∣∣Nk −

p

4

∣∣∣∣ < 1
π
Φ′(k) min

{
log
(

356p
Φ′(k)

)
, log(5p)

}
.

If k is even then

Φ′(k) =
1
2
Φ(k).

If k is odd then

Φ′(k) ≤ 1
2
Φ(k) +

1
π

log(5p)Φ(k, 1).

Since x log x → 0 as x → 0+, we see that if k is even then Nk ∼ p/4
provided that Φ(k) = o(p), that is, the set of all k-th powers is uniformly
distributed. This phenomenon fails when k and t are both odd. Indeed, one
can have (k, p−1) = 1, so that the set of k-th powers is all of Z∗p, but not have
Nk ∼ p/4; see Example 1.2. In the original Lehmer problem, where k = −1,
we have Φ(−1) = 1, and Φ(−1, 1) ≤ 2

√
p, the Kloosterman sum bound,

whence Theorem 1.1 gives the result of Zhang, |N−1 − p/4| �
√
p log2 p.

Note that, since Φ′(k) ≥ 1
2

√
p+ 1 (see (2.1)), the second option in (1.4) is

only useful for small p ≤ 20 277.

Open problem 1. How large must s be in order to have Φ(k) = o(p)
(where s, as defined above, denotes the number of k-th powers in Z∗p)? It
is known, by the work of Bourgain [4], that there exists a constant c such
that Φ(k) = o(p) for s > pc/log log p; see Section 5. It is also known that
with s ≈ log p one has Φ(k) ≈ p. The conjectured bound of Montgomery,
Vaughan and Wooley [25], Φ(k) �

√
dp log p, gives Φ(k) = o(p) provided

(log p)/s→ 0 as p→∞.
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For odd k we can bypass the concern of large Φ(k).

Theorem 1.2.

(a) If k is odd and t is even then∣∣∣∣Nk −
p

4

∣∣∣∣ ≤ 0.35p89/92 log3/2(5p).

(b) If k is odd and t is odd then∣∣∣∣Nk −
p

4

∣∣∣∣� d1 +
p

log p
.

Thus, if k is odd we have Nk ∼ p/4 provided d1 = o(p). If d1 is on the
order of p in size, this can fail to happen; see Theorem 1.5. The proof of
Theorem 1.2, given in Section 8, uses Theorem 1.1 as well as Theorems 1.3,
1.4, 1.5 and 5.1 below, and a small refinement given in Section 6.

There remain the cases where k is even and s is very small (so that
Φ(k) 6= o(p)), and when k is odd and t is very small (so that d1 6= o(p)). To
get a feeling for what one should expect in these cases we consider a couple
of examples.

Example 1.1 (small s). If k = p− 1, then xk = 1 identically and
so Nk = 0 or (p− 1)/2, depending on whether A is even or odd. If k =
(p− 1)/2, then xk = ±1. Since A and −A have opposite parity and roughly
half of the even residues are quadratic residues, one gets Nk = (p − 1)/4
(k even) or Nk ∼ p/4 (k odd). If k = (p− 1)/3 and C1, C2, C3 are the
cube roots of unity then Axk ≡ AC1, AC2 or AC3 (mod p), and one obtains
Nk = 0, (p− 1)/6, (p− 1)/3, or (p− 1)/2 depending on the number of these
values that are odd; see Theorem 1.3(a).

The following theorem treats the case of small s. When k is even we find
that Nk is exactly (p− 1)/2 times the proportion of k-th powers Ci with
ACi odd. If s is also even this proportion is 1/2 since −1 is then a k-th
power and so we get Nk = (p− 1)/4. When k is odd we get Nk ∼ p/4 for s
sufficiently small.

Theorem 1.3. Let k,A be integers with p - A and (Z∗p)k = {C1, . . . , Cs}.
(a) If k is even then

Nk =
p− 1

2s

s∑
i=1

χO(ACi).

In particular, if k is even and s is even then Nk = (p− 1)/4.
(b) If k is odd then ∣∣∣∣Nk −

p− 1
4

∣∣∣∣ < s− 1
2π
√
p log(5p).
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Next, we deal with the case where t is small.

Example 1.2 (small t). Suppose k = (p+ 1)/2, so that t = 2. Then
Axk ≡ Ax or −Ax (mod p) according as x is a quadratic residue or not.
Thus one expects half of the even residues to remain even and half to become
odd; indeed, Corollary 1.1 gives |Nk − p/4| �

√
p log2 p.

If k = (p+ 2)/3, so that t = 3, then Axk ≡ AC1x,AC2x or AC3x
(mod p), where again C1, C2, C3 are the cube roots of unity. In effect, the
problem becomes linearized, and as we see in Section 7, we need to examine
the distribution of points on the lattices y ≡ ACix (mod p). If none of the lat-
tices have a small point (0 < max(|x|, |y|)� 1) then we find (Theorem 1.5)
that the even and odd values are equidistributed and so Nk ∼ p/4, but if one
of the lattices has a small point, bias may occur. For k = (p+ 2)/3, we find
that Nk is asymptotically somewhere between p/4 − p/12 and p/4 + p/12,
depending on the size of the minimal point.

Let
(Z∗p)k−1 = {C1, . . . , Ct},

and for any C ∈ Z, p - C, let F (C) denote the number of even residues x
such that Cx is odd,

(1.5) F (C) =
∑
x

χE(x)χO(Cx).

In Section 4 we prove

Theorem 1.4. For any k and A with p - A,∣∣∣∣Nk −
1
t

t∑
i=1

F (ACi)
∣∣∣∣ ≤ 1

π2
(t− 1)

√
p log2(5p).

Corollary 1.1. For any k and A with p - A,

(1.6)
∣∣∣∣Nk −

p− 1
4

∣∣∣∣
≤


1
π2

(t− 1)
√
p log2(5p) if t is even,

1
π2

(t− 1)
√
p log2(5p) +

p

π2t
log2(5p) +

1
4

if t is odd.

Thus Nk ∼ p/4 in the range log2+ε p < t <
√
p/log2+ε p. For very small

odd t more work is required. On average F (C) is p/4 and our interest is in
estimating the discrepancy

(1.7) δC := F (C)− p/4.



Parity of k-th powers modulo p 177

Trivially |δC | ≤ p/4. The value of δC depends on the distribution of points
in the lattice

LC := {(x, y) ∈ Z2 : y ≡ Cx (mod p)}.

Let |(x, y)|0 = max(|x|, |y|),

λC = min{|(x, y)|0 : (x, y) ∈ LC , (x, y) 6= (0, 0)},

and (xC , yC) denote a point in LC with |(xC , yC)|0 = λC (we call such a
point a minimal point in LC). Put λi = λACi , δi = δACi , 1 ≤ i ≤ t and let
(xi, yi) be a point in LACi with |(xi, yi)|0 = λi. Reorder the Ci so that

λ1 ≤ · · · ≤ λt.

In particular, λ1 = 1 if and only if AC1 = ±1, in which case we can take
(x1, y1) = (1,±1). In Lemma 7.2 we give the estimate

|δC | <
π2p

12|xCyC |
+
√

2p log p+
1
2
.

Another estimate for the discrepancy is given in Lemma 9.1. If t is odd
we show that only δ1 can have any effect on the asymptotic value of Nk,
establishing in Section 7 the following:

Theorem 1.5.

(a) If t is odd, then∣∣∣∣Nk −
(
p

4
+
δ1
t

)∣∣∣∣� p

log p
+ t
√
p log2 p.

(b) If t > 1 is odd and t� log p then∣∣∣∣Nk −
(
p

4
+
δ1
t

)∣∣∣∣� p
1− 1

2(t−1)

t
.

Remarks. 1. In [5] the authors proved that if d = 1, then for p suffi-
ciently large, Nk > 0, resolving a conjecture of Goresky and Klapper [14];
see also [15], [16]. The theorems above generalize this result to the following
cases: (i) k is any odd integer, t > 1, and p is sufficiently large (Theorem 1.2
for t even, or t odd and t� log p, Theorem 1.5 for t odd and t� log p); (ii) k
is even, p is arbitrary, and Axk is odd for some x ∈ Zp (Theorem 1.3(a));
such is the case if s is even (Theorem 1.3(a)), or if s is odd and Φ(k) ≤ p/5.24
(Theorem 1.1, for in this case |Nk − p/4| < p/4).

2. Yi and Zhang [29] studied the number of times xk (mod q) and
x−k (mod q) have the same parity modulo q for general q and (x, q) = 1,
obtaining the asymptotic value φ(q)/2+Ok(q3/4d(q)1/2 log2 q). We note that
the constant in the big-O depends on k, although the dependence is not in-
dicated. Shparlinski [27] generalized their result to systems of congruences.
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3. Louboutin, Rivat and Sárközy [22] studied the related problem of
determining when x and x−1 have the same parity over an interval, showing
that for any ε > 0 and any interval I of length |I| > p1/2+ε, as x runs
through I, the probability that x and x−1 have the same parity tends to
1/2 as p → ∞. They also studied the pseudorandomness of the sequence
(−1)x+x

−1
(taking x, x−1 ∈ {1, . . . , p− 1}).

Open problem 2. When does Nk = 0? More specifically, when is k even
and xk odd for all nonzero x? Example: If p = (3s − 1)/2 and k = (p− 1)/s
then the group of k-th powers Gk is just 〈3〉 = {1, 3, 32, . . . , 3s−1}, all odd,
and s ≈ log p. More can be said if Gk contains a pair of multiplicatively
independent integers a, b. In this case, by the work of Furstenberg [13] and
more specifically Bourgain, Lindenstrauss, Michel and Venkatesh [8, Theo-
rem 1.10] there exists a constant c(a, b) such that if p > c(a, b) then every
coset of the subgroup 〈a, b〉 contains both even and odd residues, and there-
fore so does every coset of Gk. Indeed, for any integer x with p - x there will
exist both even and odd residues of the type xaibj with 0 < i, j < 3 log p.

Open problem 3. How large can s be and still have a disproportionate
number of even or odd values in the set of k-th powers? This has direct
implications on a lower bound for Φ(k). Indeed, if (kn, pn) is a sequence
of exponents kn and prime moduli pn → ∞ such that Nkn 9 pn/4, then
Φ(kn)/pn 9 0.

2. The Erdős–Turán inequality and proof of Theorem 1.1. In
this section we employ a version of the Erdős–Turán inequality for estimat-
ing Nk. For any sequence of points S = (x1, . . . , xN ) in Zp set

ΦS = max
p-y

∣∣∣ N∑
n=1

ep(yxn)
∣∣∣.

Since
∑p−1

y=1 |
∑N

n=1 ep(yxn)|2 ≥ N(p − N), for N < p we note the lower
bound

(2.1) ΦS ≥

√
N(p−N)
p− 1

.

Our goal is to estimate the number of points in S contained in a given
interval I = {a+1, . . . , a+M} ⊂ Zp, with M ≤ p. The simplest approach is
to use the characteristic function χI of the interval, with Fourier expansion
χI(x) =

∑p
y=1 aI(y)ep(yx), where

aI(0) = M/p, aI(y) = p−1ep

((
−a− M

2
− 1

2

)
y

)
sin(πMy/p)
sin(πy/p)

, y 6= 0.
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Now
N∑
n=1

χI(xn) =
N∑
n=1

∑
y

aI(y)ep(yxn) = aI(0)N +
∑
y 6=0

aI(y)
N∑
n=1

ep(yxn),

and so

(2.2)
∣∣∣∣ N∑
n=1

χI(xn)− MN

p

∣∣∣∣ ≤ ΦS p−1∑
y=1

|aI(y)|.

In Lemmas 11.1 and 11.2 we prove that for any interval I,

(2.3)
p−1∑
y=1

|aI(y)| ≤ 4
π2

log p+ 0.35 ≤ 4
π2

log(3p),

and that for any interval of length M = (p± 1)/2,

(2.4)
p−1∑
y=1

|aI(y)| ≤ 1
π

log p+ 0.482 <
1
π

log(5p).

From (2.2)–(2.4) we deduce that for any interval I,

(2.5)
∣∣∣∣ N∑
n=1

χI(xn)− MN

p

∣∣∣∣ ≤ 4
π2

log(3p)ΦS ,

and when M = 1
2(p± 1),

(2.6)
∣∣∣∣ N∑
n=1

χI(xn)− MN

p

∣∣∣∣ ≤ 1
π

log(5p)ΦS .

One can improve this estimate for large p by using a smooth approxima-
tion to the characteristic function, leading to an Erdős–Turán type inequal-
ity. At the end of Section 10 we prove

Theorem 2.1. For any sequence S = (x1, . . . , xN ) in Zp, interval I =
{a+ 1, a+ 2, . . . , a+M} ⊂ Zp, and positive integer H < p,∣∣∣∣ N∑

n=1

χI(xn)− MN

p

∣∣∣∣ ≤ N

H + 1
− N

p
+

2
π

(logH + γ + π/2)ΦS ,

where γ = 0.57721 . . . is Euler’s constant. If M = (p± 1)/2 we have the
sharper bound∣∣∣∣ N∑

n=1

χI(xn)− N

2

∣∣∣∣ ≤ N

H + 1
+

1
π

(logH + γ + π + log 2)ΦS .
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Corollary 2.1. For any sequence S = (x1, . . . , xN ) in Zp and interval
I = {a+ 1, . . . , a+M} ⊂ Zp,∣∣∣∣ N∑

n=1

χI(xn)− MN

p

∣∣∣∣ ≤ 2
π

(log(N/ΦS) + 1 + γ + π/2 + log(π/2))ΦS ,

and if M = 1
2(p± 1) and πN/ΦS < p then∣∣∣∣ N∑

n=1

χI(xn)− N

2

∣∣∣∣ ≤ 1
π

(log(N/ΦS) + 1 + γ + π + log(2π))ΦS .

We note that the corollary improves on (2.5) and (2.6) when p2/πΦS >
18.18N and pΦS > 140.79N , respectively.

Proof of Corollary 2.1. Set H =
[
πN
2ΦS

]
. If N < (2/π)pΦS , then H < p

and we can apply Theorem 2.1 to obtain the first upper bound

2ΦS
π

+
2
π

(
log
(
πN

2ΦS

)
+ γ + π/2

)
ΦS

≤ 2
π
ΦS(log(N/ΦS) + 1 + γ + π/2 + log(π/2)).

If N ≥ (2/π)pΦS the corollary follows from (2.5). For the second inequality
we similarly take H = [πN/ΦS ] < p.

Proof of Theorem 1.1. Let xn ≡ A2k−1nk (mod p), 1 ≤ n ≤ (p− 1)/2,
and

I ′ = {−1,−2, . . . ,−(p− 1)/2}.
Let I = I ′ or I ′ ∪ {0}. Note that for either choice of I, xn ∈ I is equivalent
to A(2n)k ∈ O and so Nk =

∑(p−1)/2
n=1 χI(xn).

With Φ′(k) as in (1.3), from (2.1) we have the lower bound Φ′(k) ≥
1
2

√
p+ 1. We assume that p ≥ 7 (otherwise the bounds are worse than the

trivial bound p/4).
Taking I = I ′ ∪ {0}, so that M = (p + 1)/2, we obtain, in the manner

of (2.6), ∣∣∣∣Nk −
p2 − 1

4p

∣∣∣∣ ≤ p−1∑
y=1

|aI(y)|Φ′(k).

Hence, using Lemma 11.2,∣∣∣∣Nk −
p

4

∣∣∣∣ ≤ ( 1
π

log
(

8eγp
π

)
+ E(p)

)
Φ′(k) +

1
4p

<
1
π

log
(

8eγp
π

)
Φ′(k),(2.7)

since
E(p) +

1
4pΦ′(k)

< −0.192
p

+
1

2p
√
p+ 1

< 0.

This gives the second inequality in (1.4).
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On checking that πN/ΦS < π 1
2(p− 1)/1

2

√
p+ 1 < p, Corollary 2.1 gives∣∣∣∣Nk −

p− 1
4

∣∣∣∣ ≤ 1
π

(
log((p− 1)/2Φ′(k)) + 1 + γ + π + log(2π)

)
Φ′(k),

and so ∣∣∣∣Nk −
p

4

∣∣∣∣ ≤ 1
π

(
log(p/Φ′(k)) + 1 + γ + π + log π

)
Φ′(k) +

1
4
.

From the second inequality in (1.4) we can assume that Φ′(k) > 71.2. The
first inequality, ∣∣∣∣Nk −

p

4

∣∣∣∣ ≤ 1
π

log(356p/Φ′(k))Φ′(k),

now follows on observing that 1 + γ + π + log π + π
4 /71.2 < 5.8746.

If k is even then trivially Φ′(k) = 1
2Φ(k). For odd k we have, with I =

{1, . . . , (p− 1)/2},
(p−1)/2∑
x=1

ep(yxk) =
p−1∑
x=1

χI(x)ep(yxk) =
p−1∑
x=1

ep(yxk)
∑
z

aI(z)ep(zx)

= aI(0)
p−1∑
x=1

ep(yxk) +
∑
z 6=0

aI(z)
p−1∑
x=1

ep(yxk + zx),

and so by (2.4),

Φ′(k) ≤ 1
2
Φ(k) +

1
π

log(5p)Φ(k, 1).

3. Proof of Theorem 1.3. When s is small, that is, the number of
k-th powers is small, then we have no nontrivial estimates available for Φ(k),
and so an alternate method is required to estimate Nk. Let d = (k, p − 1),
s = (p− 1)/d, and

(Z∗p)k = {C1, . . . , Cs}

be the set of nonzero k-th powers. Let ci be a value such that cki ≡Ci (mod p),
so that

Z∗p = c1(Z∗p)s ∪ · · · ∪ cs(Z∗p)s.

Noting that χO(x) = χE(−x), and that xk = Ci for x ∈ ci(Z∗p)s, we have

Nk =
∑
x

χE(x)χO(Axk) =
s∑
i=1

χO(ACi)
∑

x∈ci(Z∗p)s

χE(x)

=
1
s

s∑
i=1

χO(ACi)
∑
x6=0

( ∑
ψs=ψ0

ψ(cix)
)
χE(x) = Main + Error ,
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where ψ denotes a multiplicative character mod p and

Main =
p− 1

2s

s∑
i=1

χO(ACi),

Error =
1
s

∑
ψs=ψ0
ψ 6=ψ0

s∑
i=1

χO(ACi)ψ(ci)
∑
x 6=0

ψ(x)χE(x).

Note that Main = (p− 1)/4 if −1 is a k-th power, that is, s is even, for
then the even and odd values can be paired, ACi, −ACi. For the error term,
the sum over x is zero if ψ(−1) = 1 since in this case

∑(p−1)/2
x=1 ψ(x) =

1
2

∑
x ψ(x) = 0. When ψ(−1) = −1 we appeal to the bound of Pólya, Lan-

dau, Schur and Vinogradov for incomplete character sums.

Lemma 3.1. Let I be any interval in Zp and ψ any nonprincipal char-
acter modulo p. Then∣∣∣ a+M∑

x=a+1

ψ(x)
∣∣∣ ≤ √p∑

y

|aI(y)| ≤ 4
π2

√
p log(3p),

and for intervals of length M = (p± 1)/2,∣∣∣ a+M∑
x=a+1

ψ(x)
∣∣∣ ≤ √p∑

y 6=0

|aI(y)| ≤ 1
π

√
p log(5p).

Slightly better bounds are available with greater effort; see Hildebrand
[19] and Bachman and Rachakonda [1].

Proof. Letting χI be the characteristic function of I, we have
a+M∑
x=a+1

ψ(x) =
∑
x

ψ(x)χI(x) =
∑
x

ψ(x)
∑
y

aI(y)ep(yx)

= aI(0)
∑
x

ψ(x) +
∑
y 6=0

aI(y)
∑
x

ψ(x)ep(yx)

=
∑
y 6=0

aI(y)
∑
x

ψ(x)ep(yx).

The sum over x is just a Gauss sum of modulus
√
p. The lemma is now

immediate from (2.3) and (2.4).

Thus for any nonprincipal ψ,

(3.1)
∣∣∣∑
x

ψ(x)χE(x)
∣∣∣ =

∣∣∣(p−1)/2∑
x=1

ψ(x)
∣∣∣ ≤ 1

π

√
p log(5p).
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If k is even then ψ(−1) = 1 for all ψ satisfying ψs = ψ0, while if k is odd
then ψ(−1) = 1 for exactly half of the ψ satisfying ψs = ψ0. Thus Error = 0
if k is even, and if k is odd,

|Error | < s− 1
2π
√
p log(5p),

completing the proof of Theorem 1.3.

4. Proofs of Theorem 1.4 and Corollary 1.1. In this section we
proceed as in the previous section, but using the set of (k − 1)-th powers
rather than the set of k-th powers.

Proof of Theorem 1.4. Let d1 = (k − 1, p− 1), t = (p− 1)/d1, and

(4.1) (Z∗p)k−1 = {C1, . . . , Ct}

be the set of nonzero (k − 1)-th powers. Let ci be a value such that ck−1
i ≡

Ci (mod p), so that

Z∗p = c1(Z∗p)t ∪ · · · ∪ ct(Z∗p)t.

Noting that χO(x) = χE(−x), and that xk = Cix for x ∈ ci(Z∗p)t, we have

Nk =
∑
x

χE(x)χO(Axk) =
t∑
i=1

∑
x∈ci(Z∗p)t

χE(x)χO(ACix)

=
1
t

t∑
i=1

∑
x

( ∑
ψt=ψ0

ψ(cix)
)
χE(x)χO(ACix)

=
1
t

t∑
i=1

∑
x

χE(x)χO(ACix) +
1
t

∑
ψt=ψ0
ψ 6=ψ0

t∑
i=1

∑
x

ψ(cix)χE(x)χO(ACix)

=
1
t

t∑
i=1

F (ACi) + Error ,

where F (ACi) is as defined in (1.5) and

(4.2) Error =
1
t

∑
ψt=ψ0
ψ 6=ψ0

t∑
i=1

∑
x

ψ(cix)χE(x)χO(ACix).

Now for any nonzero b, C,∑
x

ψ(bx)χE(x)χE(Cx) =
∑
x

(∑
y

aE(y)ep(yx)
)(∑

z

aE(z)ep(zCx)
)
ψ(bx)

=
∑
y

∑
z

aE(y)aE(z)G(y + Cz, b),
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where G(y+Cz, b) is the Gauss sum G(y+Cz, b) =
∑

x ep((y+Cz)x)ψ(bx),
of modulus

√
p, unless y+Cz = 0 in which case it vanishes. Thus we deduce

from (2.4) that∣∣∣∑
x

ψ(bx)χE(x)χO(Cx)
∣∣∣ ≤ √p∑

y

|aE(y)|
∑
z

|aE(z)| ≤ 1
π2

log2(5p)
√
p,

|Error | ≤ (t− 1)
1
π2

log2(5p)
√
p,

completing the proof of Theorem 1.4.

Proof of Corollary 1.1. If t is even, so that −1 is a (k − 1)-th power,
then by pairing ACi with −ACi and observing that F (ACi) + F (−ACi) =
(p− 1)/2 one gets 1

t

∑t
i=1 F (ACi) = (p− 1)/4 and so∣∣∣∣Nk −
p− 1

4

∣∣∣∣ ≤ 1
π2

(t− 1)
√
p log2(5p).

Suppose now that t is any positive integer. Using the Fourier expansion
for χE we have

F (C) =
∑
x

χE(x)χE(−Cx) =
∑
y

∑
z

aE(y)aE(z)
∑
x

ep(yx− Czx)(4.3)

= paE(0)2 + p
∑
z 6=0

aE(z)aE(Cz) =
(p− 1)2

4p
+ pG(C),

where

(4.4) G(C) :=
∑
z 6=0

aE(z)aE(Cz).

Thus

(4.5)
1
t

t∑
i=1

F (ACi) =
(p− 1)2

4p
+
p

t

t∑
i=1

G(ACi),

and ∣∣∣ t∑
i=1

G(ACi)
∣∣∣ ≤ t∑

i=1

∑
z 6=0

|aE(z)aE(ACiz)| ≤
∑
z 6=0

∑
u6=0

|aE(z)aE(u)|

≤ 1
π2

log2(5p).

By (4.5) and Theorem 1.4 we get∣∣∣∣Nk −
(p− 1)2

4p

∣∣∣∣ ≤ p

π2t
log2(5p) +

t− 1
π2

√
p log2(5p).



Parity of k-th powers modulo p 185

5. Estimates for monomial and binomial exponential sums. In
order to apply Theorem 1.1 we need estimates for monomial and binomial
exponential sums. Several are available. In [12, Theorem 2.2] Cochrane and
Pinner proved the following explicit monomial bounds:

Lemma 5.1. Suppose k | (p− 1). Put λ = 2/ 4
√

3 = 1.51967 . . . . Then

Φ(k) ≤


kp1/2, k < 3p1/3,

λk5/8p5/8, 3p1/3 ≤ k < p1/2,

λk3/8p3/4, p1/2 ≤ k < 1
3p

2/3.

The first bound is just the classical bound for a Gauss sum, while the
second two are due to Heath-Brown and Konyagin [18] (with a big-O). Next
to each bound we have indicated the interval where the estimate is optimal.
Konyagin [20] established further bounds of this type, nontrivial for k as
large as p3/4. There is also the recent ε-δ bound of Bourgain and Konyagin [7]
and Bourgain, Glibichuk and Konyagin [6]: For any ε > 0 there exists a δ > 0
such that Φ(k) < p1−δ provided d < p1−ε. More recently Bourgain [4] has
proved that

Φ(k) < p
1−exp(−C log p

log((p−1)/d)
)

for some absolute (undetermined) constant C > 1.
For binomials there is an abundance of bounds available; see [11] and

[12] for a discussion. In particular, Cochrane and Pinner established [12,
Theorem 3.1]:

Lemma 5.2. For any k ∈ Z,

Φ(k, 1) ≤ (k − 1, p− 1) + 2.292p89/92.

We readily deduce from Theorem 1.1:

Theorem 5.1.

(a) For any integer k,∣∣∣∣Nk −
p

4

∣∣∣∣� {
d3/8p3/4 log p if k is even,
(d1 + p89/92) log2 p if k is odd.

(b) For any ε > 0 there exists a δ > 0 such that if d < p1−ε then∣∣∣∣Nk −
p

4

∣∣∣∣ < { p1−δ if k is even,
p1−δ + d1 log2 p if k is odd.

Proof. Inserting the third estimate of Lemma 5.1 and the estimate of
Lemma 5.2 into Theorem 1.1 proves part (a) for k even, and for k odd
yields ∣∣∣∣Nk −

p

4

∣∣∣∣� d3/8p3/4 log p+ (d1 + p89/92) log2 p.
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If d < p40/69 then the first term is≤ p89/92 log p and we are done. If d ≥ p40/69

then s < p29/69 and so by Theorem 1.3, for k odd,∣∣∣∣Nk −
p

4

∣∣∣∣� s
√
p log p < p127/138 log p� p89/92 log2 p.

The ε-δ bound of Bourgain [3] for Φ(k) and Lemma 5.2 give part (b) in
the same manner.

6. Refinement of Theorem 5.1 for small d, d1. In this section
we obtain a slight improvement in the upper bound of Theorem 5.1. Let
χE be the characteristic function of E with Fourier expansion χE(x) =∑p−1

y=0 aE(y)ep(yx). Noting that χO(x) = χE(−x) we have

Nk =
∑
x 6=0

χE(x)χO(Axk) =
∑
x 6=0

χE(x)χE(−Axk)

=
∑
x 6=0

∑
u

aE(u)ep(ux)
∑
v

aE(v)ep(−Avxk)

=
∑
u

∑
v

aE(u)aE(v)
∑
x 6=0

ep(ux−Avxk)

= (p− 1)aE(0)2 + aE(0)
∑
u6=0

aE(u)
∑
x 6=0

ep(ux)

+ aE(0)
∑
v 6=0

aE(v)
∑
x 6=0

ep(−Avxk)

+
∑
u6=0

∑
v 6=0

aE(u)aE(v)
∑
x 6=0

ep(ux−Avxk)

= (p− 1)aE(0)2 + aE(0)2 + E1 + E2,

where
E1 = aE(0)

∑
v 6=0

aE(v)
∑
x6=0

ep(−Avxk),

E2 =
∑
u6=0

∑
v 6=0

aE(u)aE(v)
∑
x 6=0

ep(ux−Avxk).

Now aE(0) = |E|/p = (p− 1)/2p, and so

paE(0)2 =
(p− 1)2

4p
.

If we proceed by using the bounds

|E1| ≤
1

2π
log(5p)Φ(k),(6.1)

|E2| ≤
1
π2

log2(5p)Φ(k, 1),(6.2)
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available by (2.4), then we just obtain∣∣∣∣Nk −
p

4

∣∣∣∣ ≤ 1
2

+
1

2π
log(5p)Φ(k) +

1
π2

log2(5p)Φ(k, 1),

a bound already seen in Theorem 1.1.
We can save an extra

√
log p by using an alternate bound for E2 that we

shall derive below:

(6.3) |E2| ≤
1

21/4π3/2
p1/4M1/4 log3/2(5p),

where

(6.4) M = #{(x1, x2, x3, x4) ∈ (Z∗p)4 : x1 +x2 = x3 +x4, x
k
1 +xk2 = xk3 +xk4},

yielding

Proposition 6.1.

(6.5)
∣∣∣∣Nk −

p

4

∣∣∣∣ ≤ 1
2

+
1

2π
log(5p)Φ(k) +

1
21/4π3/2

p1/4M1/4 log3/2(5p).

Corollary 6.1. Let d = (k, p − 1) and d1 = (k − 1, p − 1). If d, d1 <
1.68(p− 1)16/23 then∣∣∣∣Nk −

p

4

∣∣∣∣ ≤ 1
2

+
1

2π
log(5p)Φ(k) + 0.346041p89/92 log3/2(5p).

Proof. Theorem 7.1 of [12] gives the estimate M ≤ 27.57(p − 1)66/23

provided that d, d1 < 1.68(p− 1)16/23. The corollary is now immediate from
the proposition.

Proof of Proposition 6.1. It suffices to establish (6.3). To do this we
follow the method of [5]. Let a(y) = aE(y). Then

|E2| ≤
∑
u6=0

∑
v 6=0

|a(u)a(v)|
∣∣∣∑
x 6=0

ep(ux−Avxk)
∣∣∣

=
∑
u′ 6=0

∑
v′ 6=0

β(u′, v′)
∣∣∣∑
x6=0

ep(u′x+ v′xk)
∣∣∣,

where β(u′, v′) = 1
p−1

∑
x 6=0 |a(xu′)a(A1x

kv′)| and A1A ≡ −1 (mod p). Next,
from Hölder’s inequality,

|E2| ≤
(∑
u′

∑
v′

∣∣∣∑
x6=0

ep(u′x+ v′xk)
∣∣∣4)1/4

(6.6)

×
(∑
u′ 6=0

∑
v′ 6=0

β(u′, v′)
)1/2(∑

u′ 6=0

∑
v′ 6=0

β(u′, v′)2
)1/4

= E
1/4
3 E

1/2
4 E

1/4
5 ,
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say. Clearly, E3 = p2M, with M as in (6.4). Next, using (2.4),

E4 =
∑
u′ 6=0

∑
v′ 6=0

β(u′, v′) =
1

p− 1

∑
x 6=0

∑
u′ 6=0

∑
v′ 6=0

|a(xu′)a(A1x
kv′)|

=
∑
u6=0

∑
v 6=0

|a(u)a(v)| ≤ 1
π2

log2(5p).

Finally, for E5 we have

E5 =
∑
u′ 6=0

∑
v′ 6=0

β(u′, v′)2

=
1

(p− 1)2
∑
x 6=0

∑
y 6=0

∑
u′ 6=0

∑
v′ 6=0

|a(xu′)a(A1x
kv′)| |a(yu′)a(A1y

kv′)|

=
1

p− 1

∑
1≤u1,u2,v1,v2<p

(v1/v2)≡(u1/u2)k (mod p)

|a(u1)a(v1)| |a(u2)a(v2)|

=
1

p− 1

∑
1≤u1,u2,j<p

|a(u1)a(juk1)| |a(u2)a(juk2)|

=
1

p− 1

∑
1≤u1,u2<p

|a(u1)a(u2)|
∑
j

|a(juk1)a(juk2)|.

Using the Cauchy–Schwarz inequality, the Parseval identity∑
y

|a(y)|2 =
1
p

∑
x

χ2
E(x) =

p− 1
2p

and (2.4) we obtain

E5 ≤
1

p− 1

∑
1≤u1,u2<p

|a(u1)a(u2)|
∑
j

|a(j)|2 =
1
2p

∑
1≤u1,u2<p

|a(u1)a(u2)|

≤ 1
2π2p

log2(5p).

Thus, by (6.6) and the estimates for E3, E4 and E5,

|E2| ≤ (p2M)1/4
(

1
π2

log2(5p)
)1/2( 1

2π2p
log2(5p)

)1/4

≤ 1
21/4π3/2

p1/4M1/4 log3/2(5p).
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7. Proof of Theorem 1.5. For any integer C with p - C, let LC denote
the lattice of integer points satisfying y ≡ Cx (mod p), so that

G(C) =
∑

(x,y)∈LC

0<max(|x|,|y|)<p/2

aE(x)aE(y),

where G(C) is as defined in (4.4). Let |(x, y)|0 = max(|x|, |y|),
λC = min{|(x, y)|0 : (x, y) ∈ LC , (x, y) 6= (0, 0)},

and let (xC , yC) denote a minimal point in LC with |(xC , yC)|0 = λC . Put
λi = λACi , 1 ≤ i ≤ t, where the Ci are as in (4.1), and let (xi, yi) be a
primitive point in LACi with |(xi, yi)|0 = λi. By a primitive point in a lattice
we mean a point with gcd(xi, yi) = 1. Reorder the Ci so that λ1 ≤ · · · ≤ λt.
In particular, λ1 = 1 if and only if AC1 = ±1, in which case we can take
(x1, y1) = (1,±1). Let δC denote the discrepancy as in (1.7).

Lemma 7.1. If LC has a primitive point (x0, y0) with |(x0, y0)|0 <
√
p/2

then any other point in LC with |(x, y)|0 <
√
p/2 is a multiple of (x0, y0).

In particular, (x0, y0) = ±(xC , yC).

Proof. We have y0 ≡ Cx0 (mod p) and y ≡ Cx (mod p) and so y0x ≡
x0y (mod p). But |y0x− x0y| < p and so y0x− x0y = 0. The result follows
from the assumption that (x0, y0) is primitive.

Using the formula [5, Section 2] aE(x) = −1
pe
−πxi/p sin(πx/p)

sin(2πx/p) , one has

|aE(x)| = 1
p

∣∣∣∣ sin(πx/p)
sin(2πx/p)

∣∣∣∣ ≤ 1
p

1
|sin(2πx/p)|

.

Then from the inequality |sin(πx)| ≥ 2|x| for |x| < 1/2, we get

|aE(2x)| ≤ 1
2|x|

for 0 < |x| < p/2,

where 2 denotes the multiplicative inverse of 2 (mod p). We break LC into
two sets: the multiples of (xC , yC), and the remaining points (x, y) all of
which satisfy |x| ≥

√
p/2 or |y| ≥

√
p/2 by Lemma 7.1. Thus

(7.1) |G(C)| ≤
∑

(x,y)∈LC

0<max(|x|,|y|)<p/2

|aE(2x)| |aE(2y)| ≤ 1
4

∑
(x,y)∈LC

0<max(|x|,|y|)<p/2

1
|xy|

≤ 1
2|xCyC |

∞∑
l=1

1
l2

+
1
4

∑
(x,y)∈LC√
p/2≤|y|<p/2

1√
p/2 |x|

+
1
4

∑
(x,y)∈LC√
p/2≤|x|<p/2

1√
p/2 |y|

≤ π2

12|xCyC |
+
√

2 log p
√
p

.
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We immediately deduce from (4.3):

Lemma 7.2. For any integer C with p - C we have∣∣∣∣F (C)− p

4

∣∣∣∣ ≤ π2p

12|xCyC |
+
√

2p log p+
1
2
,

where, as above, (xC , yC) is the minimal nonzero point of the lattice LC .

Lemma 7.3. Let δ1 = δAC1 = F (AC1)− p/4. Then∣∣∣∣1t
t∑
i=1

F (ACi)−
(
p

4
+
δ1
t

)∣∣∣∣ < π2

12
p

t

t∑
i=2

1
|xiyi|

+
√

2p log p+
1
2
.

Proof. By Lemma 7.2 we have

1
t

t∑
i=1

F (ACi) =
1
t
F (AC1) +

1
t

t∑
i=2

F (ACi)(7.2)

=
(
p

4
+
δ1
t

)
+ θ1

π2p

12t

t∑
i=2

1
|xiyi|

+ θ2
√

2p log p+
θ3
2

for some |θi| ≤ 1.

As a consequence of Theorem 1.4 and Lemma 7.3 we have

(7.3)
∣∣∣∣Nk −

(
p

4
+
δ1
t

)∣∣∣∣� p

t

t∑
i=2

1
|xiyi|

+ t
√
p log2 p.

We are left with considering the distribution of the values |xiyi|. The fol-
lowing lemma is motivated by the ideas in Section 6 of Bombieri, Bourgain
and Konyagin [2].

Lemma 7.4. Suppose that t is odd.

(a) Let 2 ≤ b < (p/2)1/4. The number of t-th roots of unity C with
1 ≤ |xCyC | ≤ b is at most (t− 1) [log(p/2)/2 log b]−1 + 1.

(b) Let 2 ≤ b < (p/2)1/8. The number of values i with 1 ≤ |xiyi| ≤ b is
at most (t− 1) [log(p/2)/4 log b]−1 + 1.

If t is even the same results hold with +2 in place of the +1.

Proof. (a) Suppose that C is such a value with 2 ≤ |xCyC | ≤ b. We as-
sume here that xC > 0. Then for any positive integer n such that |(xnC , ynC)|0
≤ |xCyC |n <

√
p/2, the point (xnC , y

n
C) is a primitive point in the lattice LCn

satisfying the condition of Lemma 7.1, and so (xnC , y
n
C) = (xCn , yCn). Note

that the values Cn are distinct t-th roots of unity by Lemma 7.1. Now if
powers from two different C1, C2 coincide, (xrC1

, yrC1
) = (xsC2

, ysC2
) say, then

(xC1 , yC1) = (xs/gcd(r,s),±ys/gcd(r,s)), (xC2 , yC2) = (xr/gcd(r,s),±yr/gcd(r,s))
for some x, y ∈ N (and appropriate ± signs). Writing gcd(r, s) = as + br
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gives (x,±y) = (xC3 , yC3) where C3 = Ca1C
b
2 (for an appropriate ± sign).

Thus both (xC1 , yC1) and (xC2 , yC2) are powers of (xC3 , yC3) (since t is odd
the ± sign is decided by the power) with plainly |xC3yC3 | ≤ b.

We may suppose then that the (xC , yC) with 2 ≤ |xCyC | ≤ b consist
of powers (gji , h

j
i ), j = 1, . . . , ui, of a basic set of (gi, hi), i = 1, . . . , v,

all of whose powers are distinct. Hence if there are N values of C with
2 ≤ |xCyC | ≤ b then

N =
v∑
i=1

ui =
v∑
i=1

[
log b

log |gihi|

]
,

while the number of (xC , yC) with |xCyC | <
√
p/2 arising from taking pow-

ers of the (gi, hi) is
∑v

i=1

[ log
√
p/2

log |gihi|
]
. Hence

t− 1 ≥
v∑
i=1

[
log
√
p/2

log |gihi|

]
=

v∑
i=1

[
log
√
p/2

log b
log b

log |gihi|

]

≥
v∑
i=1

[
log
√
p/2

log b

][
log b

log |gihi|

]
= N

[
log
√
p/2

log b

]
.

The result follows on including C = 1.
For even t the argument is similar except that the values occur in pairs

(xnC ,±ynC).
(b) Suppose that (xi, yi), i = 1, . . . , N, are the minimal points satis-

fying 1 ≤ |xiyi| ≤ b. By definition, yi ≡ ACixi (mod p). Then x1yi ≡
(Ci/C1)xiy1 (mod p) where Ci/C1 is a t-th root of unity. After removing
any common factor from (x1yi, xiy1), plainly 1 ≤ |xCi/C1

yCi/C1
| ≤ b2. The

result now follows from part (a).

Lemma 7.5.

(a) If t > 1 is odd and C 6= 1 is a t-th root of unity modulo p, then
λC > (p/t)1/(t−1).

(b) If t > 1 is odd then λ2 ≥ (p/t)1/2(t−1).

Proof. (a) Any point (x, y) ∈ LC must satisfy xt ≡ yt (mod p) with
x 6≡ y (mod p) and so

xt−1 + xt−2y + · · ·+ xyt−2 + yt−1 ≡ 0 (mod p).

Since the form on the left-hand side is positive definite (for odd t) the sum
is at least p and the result follows.

(b) Suppose that λ1 ≤ λ2 ≤ (p/t)1/2(t−1). Then as we observed above
λC1/C2

≤ (p/t)1/(t−1), contradicting part (a).
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Lemma 7.6. If t > 1 is odd, then

t∑
i=2

1
|xiyi|

≤ 8(t− 1)
log(p/2)

log(λ2
2e)

λ2
�


t

log p
always,

1
p1/2(t−1)

if t� log p.

Proof. Writing
mj = |{i ≥ 2 : |xiyi| = j}|

we first note that for x ≥ λ2,

C(x) :=
∑
j≤x

mj ≤
8(t− 1)
log(p/2)

log(λ2x).

For λ2x ≥ (p/2)1/8 this follows from the trivial bound C(x) ≤ t − 1.
For λ2x < (p/2)1/8 we use the fact that [z] ≥ z/2 for z ≥ 1 to get
[log(p/2)/4 log(λ2x)] ≥ 1

2 log(p/2)/4 log(λ2x) and so by Lemma 7.4(b),

C(x) ≤ C(λ2x) ≤ t− 1[ log(p/2)
4 log(λ2x)

] ≤ 8(t− 1)
log(p/2)

log(λ2x).

(The +1 in Lemma 7.4(b) can be omitted since, on this interval, |x1y1| ≤ λ2x
but C(λ2x) does not count |x1y1|.) Applying partial summation we have

t∑
i=2

1
|xiyi|

=
∞∑

j=λ2

mj

j
=
∞�

λ2

C(u)
u2

du

≤ 8(t− 1)
log(p/2)

∞�

λ2

log(λ2u)
u2

du =
8(t− 1)
log(p/2)

log(λ2
2e)

λ2
.

The first upper bound in the lemma is immediate since log(λ2
2e)/λ2 < 1.2.

For the second inequality we use the lower bound for λ2 in Lemma 7.5(b)
to get λ2 ≥ 3−1/4p1/2(t−1) (for t ≥ 3), with this value at least 3 for t − 1
< 0.36 log p, and hence log(λ2

2e)/λ2 � log(p1/2(t−1))/p1/2(t−1) for t − 1 ≤
0.36 log p.

Finally, we note that the two bounds are the same for t ≈ log p.

We immediately deduce Theorem 1.5 from (7.3) and Lemma 7.6.

8. Proof of Theorem 1.2. (a) Suppose k is odd and t is even. If
p < 1027 then we have trivially

(8.1)
∣∣∣∣Nk −

p

4

∣∣∣∣ ≤ p

4
< 0.35p89/92 log3/2(5p).

If s < (0.35)(2π)p43/92 log1/2(5p) then by Theorem 1.3(b),∣∣∣∣Nk −
p

4

∣∣∣∣ ≤ s− 1
2π
√
p log(5p) < 0.35p89/92 log3/2(5p),
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while if t < (0.35)π2p43/92 log−1/2(5p), then by Corollary 1.1,∣∣∣∣Nk −
p

4

∣∣∣∣ ≤ t− 1
π2

√
p log2(5p) < 0.35p89/92 log3/2(5p).

Thus we may assume that p ≥ 1027, d < 0.454729p49/92/log1/2(5p) and
d1 < 0.28949p49/92 log1/2(5p). Using the upper bound Φ(k) ≤ λd3/8p3/4

(Lemma 5.1) we obtain, from Corollary 6.1,∣∣∣∣Nk −
p

4

∣∣∣∣ < 0.5 + 0.18p699/736 log13/16(5p) + 0.346041p89/92 log3/2(5p)

< 0.35p89/92 log3/2(5p)

for p ≥ 1027.
(b) Suppose next that k is odd and t is odd. By Theorem 1.3,∣∣∣∣Nk −

p

4

∣∣∣∣� s
√
p log p.

By Theorem 1.1 and the bounds Φ(k)� d3/8p3/4, Φ(k, 1)� d1 + p89/92,∣∣∣∣Nk −
p

4

∣∣∣∣� d3/8p3/4 log p+ (d1 + p89/92) log2 p.

Using the first inequality if d > p6/11 and the second if d ≤ p6/11 we obtain∣∣∣∣Nk −
p

4

∣∣∣∣� (d1 + p89/92) log2 p

uniformly for odd k. If d1 < p89/92 we keep this inequality. If d1 ≥ p89/92 we
apply Theorem 1.5(a), and the trivial bound |δ1| ≤ p/4, to get∣∣∣∣Nk −

p

4

∣∣∣∣� |δ1|t +
p

log p
+ p3/92√p log2 p� d1 +

p

log p
.

9. Estimates for F (C) and the discrepancy δC . Recall that F (C)
is the number of even residues x such that Cx is odd,

F (C) =
∑
x

χE(x)χO(Cx),

and the discrepancy δC equals F (C) − p/4. We can also talk about the
complementary function H(C) = F (−C), the number of even residues x
such that Cx is even. The following statements are evident:

F (−C) =
p− 1

2
− F (C),

F (−1) =
p− 1

2
, F (1) = 0,

F (C) = F (C),(9.1)

where C denotes the multiplicative inverse of C (mod p).
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Lemma 9.1.

(a) For any nonzero integer C with |C| even,

(9.2)
∣∣∣∣F (C)− p

4

∣∣∣∣ < |C|+ 1
2

.

(b) For any integer C with |C| odd,

(9.3)
∣∣∣∣F (C)−

(
1− 1

C

)
p

4

∣∣∣∣ < |C|2
+

3
4
.

Proof. We shall prove the corresponding statements forH(C). The state-
ments are trivial if |C| ≥ p/2 so we may assume that |C| < p/2. More-
over, from the identity H(−C) = (p− 1)/2 − H(C), it suffices to con-
sider the case where 1 ≤ C < p/2. Then H(C) is the number of val-
ues of n ∈ {1, . . . , (p− 1)/2} such that 2jp ≤ 2nC < (2j + 1)p, that is,
jp/C ≤ n < jp/C + p/2C for some j with 0 ≤ j ≤ [(C − 1)/2]. Thus

(9.4) H(C) =
[(C−1)/2]∑

j=0

[
jp

C
+

p

2C

]
−
[
jp

C

]
.

Using [y] ≤ [x]− [x− y] ≤ [y] + 1, we have

(9.5)
[
p

2C

][
C + 1

2

]
≤ H(C) ≤

([
p

2C

]
+ 1
)[

C + 1
2

]
,

and so ∣∣∣∣H(C)− p

4

∣∣∣∣ < C

2
, 1 < C <

p

2
, C even,(9.6) ∣∣∣∣H(C)−

(
1 +

1
C

)
p

4

∣∣∣∣ < C

2
+

1
4
, 1 < C <

p

2
, C odd.(9.7)

Corollary 9.1. Suppose that t > 1 is odd, t � log p, and that for
some t-th root of unity Ci, ACi ≡ m (mod p), where m is an odd number
satisfying |m| < (p/t)1/2(t−1). Then

∣∣δ1 + p
4m

∣∣ < |m|
2 + 3

4 and∣∣∣∣Nk −
(

1− 1
mt

)
p

4

∣∣∣∣� p
1− 1

2(t−1)

t
.

In particular Nk ∼
(
1 − 1

mt

)p
4 , with Nk − p

4 ∼ −
p

4mt provided that m =
o(p1/2(t−1)).

Proof. Suppose that ACi ≡ m (mod p) where m is an odd number
satisfying |m| < (p/t)1/2(t−1). Since (1,m) ∈ Lm we have λACi = λm =
|m| < (p/t)1/2(t−1). But then by Lemma 7.5, λ2 > λACi . Therefore λ1 = λACi
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and so by (9.3) we obtain∣∣∣∣δ1 +
p

4m

∣∣∣∣ =
∣∣∣∣F (m)−

(
1− 1

m

)
p

4

∣∣∣∣ ≤ |m|2
+

3
4
.

The result then follows from Theorem 1.5(b).

Example 9.1. Suppose A is an odd number with |A| < (p/t)1/2(t−1) and
t � log p. Then the hypotheses of the corollary hold with Ci = 1, m = A
and so we get Nk ∼

(
1− 1

At

)p
4 .

Example 9.2. Let t be a positive odd integer such that 3t − 1 has a
prime factor p with p >

√
3t − 1. Then p is such that ordp (3) = t, where t is

an odd value with t := l log3 p for some l with 1 < l < 2. Set A = −1. The
t-th roots of unity modulo p are just {1, 3, 32, . . . , 3t−1}. For 0 ≤ i < t/2 we
have, by (9.3), ∣∣∣∣F (−3i)−

(
1 +

1
3i

)
p

4

∣∣∣∣ < 3i

2
+

3
4
,

while for i > t/2 we have, by (9.1) and the fact that 3t ≡ 1 (mod p),

F (−3i) = F (−3i) = F (−3t−i).

Thus

1
t

t∑
i=1

F (ACi) =
1
t

t−1∑
i=0

F (−3i) =
1
t

[
F (−1) + 2

(t−1)/2∑
i=1

F (−3i)
]

=
1
t

[
p− 1

2
+ 2

(t−1)/2∑
i=1

{(
1 +

1
3i

)
p

4
+ θi

(
3i

2
+

3
4

)}]
=

1
t

[
p

2
− 1

2
+
p

4
(t− 1) +

p

6

(
3
2
− ε
)

+ θ3(t−1)/2

(
3
2
− ε
)

+
3
4
θt

]
,

where ε := 1
2

1
3(t−3)/2 <

33/2

2
√
p and |θ|, |θi| < 1. Thus,∣∣∣∣1t

t∑
i=1

F (ACi)−
(

1 +
2
t

)
p

4

∣∣∣∣ ≤ 1
t

3
2
· 3(t−1)/2 +

3
4

+
√

3
4

√
p

t
<

2pl/2

t
,

and by Theorem 1.4,∣∣∣∣Nk −
(

1 +
2
t

)
p

4

∣∣∣∣� pl/2

t
+
√
p log3 p.

On the other hand, δ1 = p/4 − 1/2, and so Theorem 1.5(a) shows that
|Nk − (1 + 1/t)p/4| � p/log p. This apparent discrepancy in the asymptotic
estimate is explained by the fact that in this example p/t ≈ p/l log3 p, the
same order of magnitude as the error term in Theorem 1.5(a). In particular
we see that the error estimate in Theorem 1.5(a) cannot be improved.
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10. The Erdős–Turán inequality and proof of Theorem 2.1. The
discrepancy of a finite sequence S = (x1, . . . , xN ) of real numbers is given
by

DN (x1, . . . , xN ) := sup
I=[α,β)⊂[0,1)

∣∣∣∣ 1
N

N∑
i=1

χI({xi})− (β − α)
∣∣∣∣.

The Erdős–Turán inequality states that there exist absolute constants c1, c2
such that for any positive integer H,

NDN (x1, . . . , xN ) ≤ c1N

H + 1
+ c2

H∑
h=1

1
h

∣∣∣ N∑
n=1

e(hxn)
∣∣∣.

Kuipers and Niederreiter [21] obtained the admissible pair (c1, c2)=(6, 4/π),
Montgomery [24] the pair (c1, c2) = (1, 3), Mauduit, Rivat and Sárközy [23]
the pair (c1, c2) = (1, 1) and Rivat and Tenenbaum [26] the pairs (c1, c2) =
(1, 0.6528), (c1, c2) = (1.1435, 2/π), among others. The latter authors also
proved that any such pair must satisfy c1 ≥ 1 and c2 ≥ 2/π. Here we obtain
these optimal constants, but in a slightly weaker form of the inequality. If
we restrict to intervals I of length 1/2, as in our applications, the constants
can be reduced further.

Theorem 10.1. Let (x1, . . . , xN ) be a sequence of real numbers and H
a positive integer. Put Φ = max1≤h≤H |

∑N
n=1 e(hxn)|.

(a) If I = [α, β] is an interval in [0, 1] then∣∣∣ N∑
n=1

χI({xn})−N |I|
∣∣∣ ≤ N

H + 1
+

2
π

(logH + γ + π/2)Φ,

where γ = 0.57721 . . . is Euler’s constant.
(b) If |I| = 1/2 then∣∣∣∣ N∑

n=1

χI({xn})−
N

2

∣∣∣∣ ≤ N

H + 1
+

1
π

(logH + γ + π + log 2)Φ.

Proof. The results follow readily from an inequality of Vaaler [28, The-
orem 20, (8.3)], which reads∣∣∣ N∑
n=1

χI({xn})−N |I|
∣∣∣

≤ N

H + 1
+ 2

H∑
h=1

(∣∣sinπh|I|∣∣ Ĵ(h/(H + 1))
πh

+
K̂(h/(H + 1))

H + 1

)∣∣∣ N∑
n=1

e(hxn)
∣∣∣,

where by [28, (2.28),(2,29)],

(10.1) Ĵ(t) = πt(1− |t|) cot(πt) + |t|, K̂(t) = (1− |t|)
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for 0 < |t| < 1. Setting m = H + 1, and observing that 0 < Ĵ(t) < 1 for
0 < t < 1, we obtain∣∣∣ N∑

n=1

χI({xn})−N |I|
∣∣∣

≤ N

m
+ 2

m−1∑
h=1

(
1
πh

+
1− h/m

m

)
Φ

=
N

m
+ 2Φ

(
1
π

(
log(m− 1) + γ +

∞�

m−1

{u}
u2

du

)
+

1
2
m− 1
m

)
=
N

m
+

2Φ
π

(
log(m− 1) + γ +

π

2
+ E1

)
,

with
E1 ≤

1
m− 1

− π

2m
< 0

for m ≥ 3 (and E1 = 1− γ − π/4 < 0 for m = 2), giving (a).
If |I| = 1/2 then using the fact that sin(πh|I|) = 0 for even h, the sum∑m−1
h=1 1/h can be replaced by

m−1∑
h=1
h odd

1
h

=
m−1∑
h=1

1
h
−

[(m−1)/2]∑
h=1

1
2h

=
1
2

log
(

(m− 1)2

[(m− 1)/2]

)
+

1
2
γ +

∞�

m−1

{u}
u2

du− 1
2

∞�

[(m−1)/2]

{u}
u2

du

≤ 1
2

(log(m− 1) + γ + log 2) +
1

2(m− 1)
+

1
2

log
( 1

2(m− 1)[
1
2(m− 1)

])
and thus∣∣∣∣ N∑

n=1

χI({xn})−
N

2

∣∣∣∣ ≤ N

m
+
Φ

π
(log(m− 1) + γ + log 2 + π + E2) ,

with

E2 =
1

m− 1
+ log

( 1
2(m− 1)[
1
2(m− 1)

])− π

m
.

The bound (b) follows since E2 < 0 for m ≥ 3 (and the bound is worse than
the trivial bound N/2 for m = 2, i.e. H = 1).

Proof of Theorem 2.1. Let (x1 + (p), . . . , xN + (p)) be a sequence in
Zp with xi ∈ Z. We simply apply Theorem 10.1 to the sequence of reals
(x1/p, . . . , xN/p). For any interval I = {a+1, . . . , a+M} in Zp and 0 < δ < 1
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there is a corresponding interval I ′ = [(a+ δ)/p, (a+M + 1− δ)/p] in R/Z
of length |I ′| = (M + 1− 2δ)/p. So we have∣∣∣ N∑

n=1

χI(xn)−N |I ′|
∣∣∣ =

∣∣∣ N∑
n=1

χI′({xn/p})−N |I ′|
∣∣∣.

For the first inequality we take δ → 1, |I ′| → (M − 1)/p and δ → 0,
|I ′| → (M + 1)/p to obtain the stated upper and lower bounds respectively
for
∑N

n=1 χI(xn). When M = 1
2(p−1) or 1

2(p+1) we can take δ = 1/4 or 3/4
giving |I ′| = 1/2 and the second inequality. The results are now immediate,
upon observing that the value Φ in Theorem 10.1 satisfies Φ ≤ ΦS .

11. A trigonometric sum of Vinogradov. In this section we discuss
the estimation of the Vinogradov sum

p−1∑
y=1

|aI(y)| = 1
p

p−1∑
y=1

∣∣∣∣sin(πMy/p)
sin(πy/p)

∣∣∣∣,
which was needed in Sections 2, 4 and 6. As before, the aI(y) are the Fourier
coefficients of the characteristic function of an interval I ⊂ Zp with |I| = M .

Lemma 11.1. For any prime p and interval I we have

(11.1)
p−1∑
y=1

|aI(y)| ≤ 4
π2

log p+ 0.35 ≤ 4
π2

log(3p).

The estimate is a slight improvement on the upper bound given in [9,
Theorem 1].

Proof. The bound is trivial for M = p so we may assume 1 ≤ M < p.
Cochrane and Peral [10, Proposition] obtained the asymptotic formula

(11.2)
1
p

p−1∑
y=1

∣∣∣∣sin(πMy/p)
sin(πy/p)

∣∣∣∣
=

4
π2

(log(4p/π) + γ) +
8
π2

∞∑
j=1
p-j

log |sin(πjM/p)|
4j2 − 1

+ E′(p,M),

where γ is Euler’s constant and

E′(p,M) = E(p,M)− 8
π2

(log(4p/π) + γ)
∑
p|j

1
4j2 − 1

,

with
−4
π2p
≤ E(p,M) ≤ 1

3π2

∑
p-j

1
R(jM)2(4j2 − 1)

+
4
π2p

.
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Here R(jM) = minl∈Z |jM − lp|. Using the trivial bound R(jM) ≥ 1 we
have

E′(p,M) ≤ E(p,M) ≤ 1
6π2

+
4
π2p
≤ .018

for p > 364. Since the sum over j in the asymptotic formula is plainly nega-
tive, one obtains the result of the lemma (checking small p on a computer).

For certain length intervals, the contribution from the sum over j in
(11.2) gives an extra savings on the main term. For instance, when M =
(p± 1)/2 we get

Lemma 11.2. For M = 1
2(p± 1),

p−1∑
y=1

|aI(y)| = 1
p

p−1∑
y=1

∣∣∣∣sin(πMy/p)
sin(πy/p)

∣∣∣∣ =
1
π

log p+ C + E,

with

C =
1
π

log
(

8eγ

π

)
= 0.481261 . . . , −0.822

p
< E < −0.192

p
.

Numerical checking shows that the minimum value of E = E(p) occurs
at p = 3, and so we have uniformly E ≥ E(3) = −π−1 log(24eγ−2π/3/π) =
−0.1642 . . . .

Proof. Rather than appeal to the asymptotic formula above, we give a
direct proof. Since

|sin(πMy/p)| =
{ |cos(πy/2p)| if y is odd,
|sin(πy/2p)| if y is even,

we have
p−1∑
y=1

|aI(y)| = 2
p

(p−1)/2∑
y=1

∣∣∣∣sin(πMy/p)
sin(πy/p)

∣∣∣∣(11.3)

=
1
p

(p−1)/2∑
y=1
y odd

1
sin(πy/2p)

+
1
p

(p−1)/2∑
y=1
y even

1
cos(πy/2p)

.

Writing m2 =
⌊

1
4(p+ 1)

⌋
, we have, see [10, Lemma 1],

1
p

(p−1)/2∑
y=1
y odd

1
(πy/2p)

=
2
π

m2∑
k=1

1
2k − 1

=
1
π

log p+
γ

π
+ E1,

with
1
π

log
(
m2

p/4

)
≤ E1 ≤

1
π

log
(
m2

p/4

)
+

1
24πm2

2

.
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In order to estimate the sums in (11.3) we first note the following. If
0 ≤ δ ≤ 1 and f(x) is a positive and increasing function on (1/2,m + δ)
then plainly

1�

1/2

f(u) du ≤ f(1) ≤
2�

1/2

f(u) du,

j�

j−1

f(u) du ≤ f(j) ≤
j+1�

j

f(u) du, j = 2, . . . ,m− 1,

and
m+δ�

m−1

f(u) du− δf(m+ δ) ≤ f(m) ≤
m+δ�

m

f(u) du+ (1− δ)f(m+ δ),

giving

(11.4) − δf(m+ δ) ≤
m∑
j=1

f(j)−
m+δ�

1/2

f(u) du ≤ (1− δ)f(m+ δ).

Similarly if f(x) is positive and increasing on (0,m+ δ) then
1�

0

f(u) du ≤ f(1) ≤
2�

0

f(u) du− f(0)

and

(11.5) − δf(m+ δ) ≤
m∑
j=1

f(j)−
m+δ�

0

f(u) du ≤ −f(0) + (1− δ)f(m+ δ).

Since 1/sinu − 1/u is increasing on (0, π), applying (11.4) with f(x) =
1

sin(π(2x−1)/2p) −
1

π(2x−1)/2p and δ = p
4 + 1

2 −m2, we therefore have

1
p

(p−1)/2∑
y=1
y odd

(
1

sin(πy/2p)
− 1
πy/2p

)

=
1
p

m2∑
k=1

(
1

sin(π(2k − 1)/2p)
− 1
π(2k − 1)/2p

)

=
1
p

p/4+1/2�

1/2

(
1

sin(π(2x− 1)/2p)
− 1
π(2x− 1)/2p

)
dx+ E2

=
1
π

log
(

8
π

(
√

2− 1)
)

+ E2,
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with

−1
p

(√
2− 4

π

)(
1
2

+
p

4
−m2

)
< E2 <

1
p

(√
2− 4

π

)(
m2 + 1−

(
1
2

+
p

4

))
.

Similarly, writing m1 =
⌊

1
4(p − 1)

⌋
, since 1/cosx is increasing on (0, π/2),

applying (11.5) with f(x) = 1
cos(πx/p) and δ = p

4 −m1, we get

1
p

(p−1)/2∑
y=1
y even

1
cos(πy/2p)

=
1
p

m1∑
l=1

1
cos(πl/p)

=
1
p

p/4�

0

1
cos(πx/p)

dx+ E3

=
1
π

log(
√

2 + 1) + E3,

with

−
√

2
p

(
p

4
−m1

)
< E3 < −

1
p

+
√

2
p

(
m1 + 1− p

4

)
.

Hence

p−1∑
y=1

|aI(y)| = 1
π

log p+
γ

π
+

1
π

log
(

8
π

(
√

2− 1)
)

+
1
π

log(
√

2 + 1) + E,

where

E = E1 + E2 + E3

≤ 1
π

log
(
m2

p/4

)
+

1
24πm2

2

+
1
p

(√
2− 4

π

)(
m2 +

1
2
− p

4

)
− 1
p

+
√

2
p

(
m1 + 1− p

4

)
= −

(
1 +

2
π
−
√

2
)

1
p

+


1
π

(log(1− 1/p) + 1/p) +
2

3π(p− 1)2
if p ≡ 1 (mod 4),

1
π

(log(1 + 1/p)− 1/p) +
2

3π(p+ 1)2
if p ≡ 3 (mod 4),

< −0.192
p

.
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Similarly

E ≥ 1
π

log
(
m2

p/4

)
− 1
p

(√
2− 4

π

)(
p

4
+

1
2
−m2

)
−
√

2
p

(
p

4
−m1

)

= −
(√

2− 2
π

)
1
p

+


1
π

(log(1− 1/p) + 1/p) if p ≡ 1 (mod 4),

1
π

(log(1 + 1/p)− 1/p) if p ≡ 3 (mod 4),

> −0.822
p

.
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