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Small solutions of cubic equations with

prime variables in arithmetic progressions
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Haigang Zhou (Shanghai) and Tianze Wang (Kaifeng)

1. Introduction. A well known work of A. Baker [1] on the solvability
of certain Diophantine inequalities involving primes first raised the problem
on bounds for small solutions of some equations with prime variables. This
problem is now called the Baker problem. As for the linear equation, the
Baker problem was settled qualitatively in [6] by M. C. Liu and K. M. Tsang,
and was generalized to the case of prime variables in arithmetic progressions
in [8] by M. C. Liu and T. Z. Wang. Similar investigations have been applied
to quadratic equations with five prime variables in [2], [7], [10] and [11]; and
some different types of qualitative and quantitative results have been given.
In this paper, we are going to consider the cubic equation

(1.1) a1p
3
1 + · · ·+ a9p39 = b

with prime variables in arithmetic progressions modulo large integer k ≥ 1.
One novelty of our investigations is that we will overcome the difficulties
coming from the twisting of the nonlinearity and the rareness of primes in
arithmetic progressions of large modulus as in [10]. The other novelty is
that we can transform the congruent solvability condition similar to that
in [7] to an easy to check form, by giving an elementary necessary and
sufficient solvability condition using cubic residue characters. This needs
some delicate analysis of the singular series, and forms one of the main
themes of the present paper. Further, the best qualitative bound for small
solutions is given.
Throughout this paper, we always use a1, . . . , a9; c1, . . . , c9; b and k to

stand for integers satisfying

a1 · · · a9c1 · · · c9 6= 0, k > 0,(1.2)

2000 Mathematics Subject Classification: 11P32, 11D25, 11N13, 11L20.
Key words and phrases: cubic equation, prime variable, prime solution.
The second author is supported partially by the National Natural Science Foundation

of China (Grant No. 10671056).

[169]



170 H. G. Zhou and T. Z. Wang

(cj , k) := gcd(cj , k) = 1, 1 ≤ j ≤ 9.(1.3)

We define k∗ to be 3k or k according as k is divisible by 3 or not, and assume

a1 + · · ·+ a9 ≡ b (mod 2),(1.4)

a1c
3
1 + · · ·+ a9c39 ≡ b (mod k∗).(1.5)

We sometimes use a10 to denote −b, and for any subset {i1, . . . , i9} of
{1, . . . , 10} suppose
(1.6) (ai1 , . . . , ai9) := gcd(ai1 , . . . , ai9) = 1.

Put ω = (−1 +
√
3 i)/2, and let Z[ω] denote the ring of algebraic integers

in the quadratic field Q(ω) as in [5]. For any rational prime p with p ≡ 1
(mod 3) we let π stand for a fixed primary prime divisor of p in Z[ω], and
χπ(·) denote the cubic residue character modulo π. If a rational prime p ≥ 7
with p ≡ 1 (mod 3) divides exactly eight of the ten numbers a1, . . . , a10, and
if (ai, p) = (aj , p) = 1, then we suppose

(1.7) χπ(ai) = χπ(aj).

Moreover, for any rational prime p ≤ 96 with p ≡ 1 (mod 3), i.e. p =
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, we assume that the congruence

(1.8) a1n
3
1 + · · ·+ a9n39 ≡ b (mod p)

is solvable in F×p , the multiplicative group of the finite field Fp. Throughout
this paper, we put

A := max{3, k, |a1|, . . . , |a9|}.
We use C and c to denote positive effective absolute constants, not neces-
sarily the same at different occurrences.
Our main results are as follows.

Theorem 1. Assume (1.2)–(1.8). If a1, . . . , a9 are all positive, then
there exists an effective absolute constant C > 0 such that the equation

(1.9)

{
a1p
3
1 + · · ·+ a9p39 = b,

pj ≡ cj (mod k), 1 ≤ j ≤ 9,
is solvable whenever b ≥ AC .
Theorem 2. Assume (1.2)–(1.8). If a1, . . . , a9 are not of the same sign,

then there exists an effective absolute constant C > 0 such that equation
(1.9) has solutions in primes pj satisfying

max{p1, . . . , p9} ≤ 3|b|1/3 +AC .
Proposition 1. Conditions (1.2)–(1.8) are either natural or necessary

for the solvability of equation (1.9), so in view of Theorems 1 and 2 they
form a necessary and sufficient condition for the solvability of (1.9).
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It is trivial to see that (1.2) and (1.3) are natural for the study of equation
(1.9). Now we assume that (1.9) is solvable in odd primes. Since every odd
solution satisfies p3j ≡ 1 (mod 2) for 1 ≤ j ≤ 9, (1.9) implies a1+ · · ·+a9 ≡ b
(mod 2), which is (1.4). If 3 ∤ k, then k∗ = k by definition; so (1.5) is clearly
necessary for the solvability of (1.9). If 3 | k, then pj ≡ cj (mod k) clearly
gives p3j ≡ c3j (mod 3k); so the solvability of (1.9) also implies (1.5). Con-
dition (1.6) is natural, since otherwise, the remaining aj must be divisible
by (ai1 , . . . , ai9), and then we may divide both sides of the first equality of
(1.9) by (ai1 , . . . , ai9). To see (1.7), we set p10 = 1 (similar usage may occur
below); then the solvability of (1.9) implies

aip
3
i + ajp

3
j ≡ 0 (mod p).

This clearly implies (1.7). Finally, the necessity of (1.8) is trivial, and the
proof of Proposition 1 is complete.

Remark. The bound AC in Theorems 1 and 2 is best possible if we are
not concerned with the exact value of C.

2. Outline of the proofs of Theorems 1 and 2. We shall use the
circle method, so we introduce a large parameterN which is fixed throughout
this paper. Put

(2.1) P := N δ, L := logN, Q := NP−20L−100;

here and throughout, δ is a fixed sufficiently small constant which may
depend on some fixed small positive absolute constant ε > 0. We always
assume

(2.2) P δ ≥ A.

By Dirichlet’s lemma on rational approximations, each α in [1/Q, 1 + 1/Q]
may be written as

(2.3) α = a/q + η, |η| ≤ 1/(qQ),

for some integers a and q with (a, q) = 1 and 1 ≤ a ≤ q ≤ Q. We denote
by m(a, q) the set of α satisfying (2.3), and define the major arcs M and
minor arcs C(M) as follows:

(2.4) M :=
⋃

1≤q≤P

⋃

1≤a≤q
(a,q)=1

m(a, q), C(M) := [1/Q, 1 + 1/Q] \M.

It is clear that all them(a, q)’s are mutually disjoint for q ≤ P since 2P < Q.
As usual write e(x) = exp(2πix) for any real x, and let Λ(n) denote the von
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Mangoldt function. For 1 ≤ j ≤ 9 put
(2.5) Sj(α) :=

∑

N/100<|aj |n3≤N
n≡cj (mod k)

Λ(n)e(ajαn
3),

and define

(2.6) r(b) :=
∑

(p1,...,p9)

(log p1) · · · (log p9),

where the summation is over all prime 9-tuples (p1, . . . , p9) satisfying a1p
3
1+

· · · + a9p39 = b, N/100 < |aj |p3j ≤ N and pj ≡ cj (mod k) with 1 ≤ j ≤ 9.
Then using Hölder’s inequality and Hua’s lemma (Theorem 4 in [4]) to treat
the error term we have

(2.7) r(b) =
\

M

+
\

C(M)

+O(N11/6Lc).

To prove Theorems 1 and 2, we only need to prove that for someN satisfying
(2.2), i.e. N ≥ Aδ−2 , r(b) has a positive lower bound if
(i) b = N when all the aj with 1 ≤ j ≤ 9 are positive;
(ii) N ≥ 20|b| when aj with 1 ≤ j ≤ 9 are not of the same sign.

So by (2.7) we need a lower bound for
T
M
and an upper bound for

T
C(M)
.

The former will be given in Lemma 6.1, and the latter in Lemma 7.2. Then
the combination of Lemmas 6.1, 7.2 and the definition of r(b) in (2.6) proves
Theorems 1 and 2.

3. Simplification for
T
M
. In the following, we always abbreviate

(3.1) d := (k, q), D := [k, q].

When (ℓ, q) = 1 and ℓ ≡ cj (mod d), we let sj be the unique solution modulo
D to the pair of the congruences n ≡ cj (mod k), n ≡ ℓ (mod q). Note that
(sj , k) = (sj , q) = (sj , D) = 1. Introduce the Dirichlet character χ modulo
any q ≥ 1 and let χ0 (mod q) be the principal character. For 1 ≤ j ≤ 9, χ
(modD), and any integer a with (a, q) = 1, define

(3.2)

Gj(χ, a) :=

q∑

ℓ=1
ℓ≡cj (mod d)

χ(sj)e(ajaℓ
3/q),

Gj(q, a) := Gj(χ0 (modD), a).

Define a large parameter T by

(3.3) T := N
√
δ = P 1/

√
δ.

It is well known (see, e.g., [3, §14]) that there exists a small constant c > 0
such that the function
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∏

q≤kP

∏∗

χ (mod q)

L(s, χ)

has at most one zero β̃ in the region

(3.4) σ ≥ 1− c

logP
, |t| ≤ T,

where the * indicates that the product over χ runs through all primitive
characters, s is any complex variable, σ = Re s, t = Im s; such a zero β̃,
if it exists, is real, simple and unique, and corresponds to a nonprincipal
primitive character χ̃ to a modulus r̃ with 3 ≤ r̃ ≤ kP . We call χ̃ and β̃
the exceptional character and exceptional zero respectively. From [3, §14] we
have

(3.5) 1− c

logP
≤ β̃ ≤ 1− c

r̃1/2 log2 r̃
.

Define Ẽ = 1 or 0 according as r̃ |D or not. For 1 ≤ j ≤ 9, put
(3.6) Nj := (N/|aj|)1/3, N ′j := (N/(100|aj |))1/3.
Let

(3.7)

Ij(η) :=

Nj\
N ′j

e(ajηx
3) dx, Ĩj(η) :=

Nj\
N ′j

xβ̃−1e(ajηx
3) dx,

Ij(χ, η) :=
∑′

|γ|≤T

Nj\
N ′j

x̺−1e(ajηx
3) dx.

Put

Cj(a, q, η) :=
∑

χ (modD)

Gj(χ, a)Ij(χ, η),(3.8)

Hj(a, q, η) := Gj(q, a)Ij(η)− ẼGj(χ̃χ0, a)Ĩj(η)− Cj(a, q, η).(3.9)

When we multiply out the product
∏9
j=1Hj(a, q, η) using (3.9), we get a

sum of 39 terms which can be classified into the following three categories:

J1: the term
∏9
j=1Gj(q, a)Ij(η),

J2: the 39 − 29 = 19171 terms each of which has at least one Cj(a, q, η)
as factor,

J3: the remaining 29 − 1 = 511 terms.
For 1 ≤ v ≤ 3 define

(3.10) Mv :=
∑

1≤q≤P

1

ϕ(D)9

q∑

a=1
(a,q)=1

e

(
−ab
q

)

×
∞\
−∞
e(−bη){sum of the terms in Jv} dη.
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Then, with the help of [9, Lemmas 4.3 and 4.5], we can conclude, using
similar arguments to those in [10],

(3.11)
\

M

=M1 +M2 +M3 +O(N
2|a2 · · · a9|−1/3P−27).

4. Estimation of M1. We first give a lemma which can be proved by
the method of [6, Lemma 4.7] and will be used to treat the singular integral.

Lemma 4.1. For any complex number ̺j with 0 < Re ̺j ≤ 1, we have

(4.1)

∞\
−∞
e(−bη)

( 9∏

j=1

Nj\
N ′j

x̺j−1e(ajηx
3) dx
)
dη

= N2(39|a9|)−1
\
D

9∏

j=1

((Nxj)
(̺j−1)/3x−2/3j ) dx1 · · · dx8,

where

(4.2) x9 := (bN
−1 − a1x1 − · · · − a8x8)/a9

and

(4.3) D := {(x1, . . . , x8) : 1/(100|aj|) ≤ xj ≤ 1/|aj |, 1 ≤ j ≤ 9}.
Furthermore, if either (i) not all the aj’s are of the same sign and N ≥ 20|b|,
or (ii) all the aj ’s are positive and N = b, then

(4.4)
\
D

9∏

j=1

x
−2/3
j dx1 · · · dx8 ≍ |a1 · · · a8|−1/3|a9|2/3.

For any character χ modulo q≥1 and any integers a and c with (c, k)=1,
let d = (k, q) and put

(4.5) G∗(χ, a) :=
q∑

ℓ=1
ℓ≡c (mod d)

χ(ℓ)e(aℓ3/q).

Lemma 4.2. Let χ (mod pα) be any character and α ≥ 0. Then
(a) G∗(χ, a) = 0 if χ is primitive, ordp(k) ≤ α− 1, and p | a;
(b) G∗(χχ0, a) = 0 if χ0 is modulo pt, p ∤ a and ordp(k) ≤ max{1, α},
t ≥ θ +max{1, α}, where θ = 1 + [3/p]− [2/p];

(c) |G∗(χ, a)| ≤ 2(2, p)(a, pα)1/2pα/2.
Proof. (a) In view of p | a, we can write a = a′p. Writing ℓ = vpα−1 + u

with 1 ≤ u ≤ pα−1 and 0 ≤ v ≤ p − 1, and noting (k, pα) = pordp(k) since
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ordp(k) ≤ α− 1, we get

(4.6) G∗(χ, a) =
∑

1≤u≤pα−1
u≡c (mod pordp(k))

e(a′u3/pα−1)F (u),

where F (u) =
∑
0≤v≤p−1 χ(vp

α−1 + u). Clearly, F (u) is a periodic function

with period pα−1. Since χ (mod pα) is primitive, there exists an integer
1 < m < pα such that m ≡ 1 (mod pα−1) and χ(m) 6= 1. Thus

χ(m)F (u) =
∑

0≤v≤p−1
χ(mvpα−1 +mu) =

∑

0≤v≤p−1
χ(vpα−1 + u) = F (u),

which implies F (u) = 0, and part (a) follows from (4.6).

(b) For 1 ≤ ℓ ≤ pt, write ℓ = vpt−θ+u with 1 ≤ u ≤ pt−θ, 0 ≤ v ≤ pθ−1.
Then since ordp(k) ≤ max{1, α} and t ≥ θ +max{1, α} we have

e(aℓ3/pt) = e(a(v3p3t−3θ + 3u2vpt−θ + 3uv2p2t−2θ + u3)/pt)

= e(au3/pt)e(3au2v/pθ),

χχ0(ℓ) = χχ0(vp
t−θ + u) = χ(u)χ0(u), (k, p

t) = pordp(k) ≤ pt−θ.
So by definition and in view of p ∤ a, θ = 1 + [3/p]− [2/p], we get

G∗(χχ0, a) =
∑

1≤u≤pt−θ
u≡c (mod pordp(k))

χχ0(u)e(au
3/pt)

∑

0≤v≤pθ−1
e(3au2v/pθ) = 0.

This proves part (b).

(c) By definition and the orthogonality of characters, we have

|G∗(χ, a)| ≤ 1

ϕ(d)

∑

χ1 (mod d)

∣∣∣
pα∑

ℓ=1

χ1χ(ℓ)e(aℓ
3/pα)

∣∣∣.

Note that d = (k, pα). So χ1χ is a character modulo p
α. Thus the last sum

over ℓ can be bounded by 2(2, p)(a, pα)1/2pα/2 by [7, Lemma 3.1(c)]. This
proves part (c). The proof of Lemma 4.2 is complete.

Now we turn to the investigation of the singular series. Let

(4.7) A(q) :=
ϕ(d)9

ϕ(q)9

q∑

a=1
(a,q)=1

e

(
−ab
q

) 9∏

j=1

Gj(q, a).

Then A(q) is a multiplicative function of q. So we are led to evaluate A(q)
when q is a prime power pm. Firstly, by (1.3) and (1.4), direct computations
yield A(1) = A(2) = 1. For any integer m ≥ 2, we can compute A(2m) as
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follows. If 2m | k (so (k, 2m) = 2m), then in view of (1.5),

A(2m) =
2m∑

a=1
(a,2)=1

e

(
− ab
2m

) 9∏

j=1

e(ajac
3
j/2
m) = ϕ(2m).

If 2m ∤ k, we suppose 2v ‖ k, i.e. 2v | k but 2v+1 ∤ k. Then 0 ≤ v ≤ m− 1 and
(k, 2m) = 2v. Also, in view of (1.6), there exists a 1 ≤ j0 ≤ 9 such that
(aj0 , 2) = 1. Introducing Dirichlet characters χ (mod 2

v), we get

(4.8)
2m∑

ℓ=1
(ℓ,2)=1

ℓ≡cj0 (mod2v)

e(aj0aℓ
3/2m)

=
1

ϕ(2v)

∑

χ (mod 2v)

χ(cj0)
2m∑

ℓ=1
(ℓ,2m)=1

χ(ℓ)e(aj0aℓ
3/2m).

For any χ (mod 2v), in view of m ≥ 1 + max{1, v}, by Lemma 4.2(b) we
see that the last sum over ℓ in (4.8) vanishes. Thus by (4.7) we obtain
A(2m) = 0.

Gathering together the above, we obtain

Lemma 4.3. Under the assumptions (1.3)–(1.5), we have A(1) = A(2)
= 1, and for any integer m ≥ 2,

A(2m) =

{
ϕ(2m) if 2m | k,
0 if 2m ∤ k.

Now we begin to compute A(3m) for m ≥ 1. If m = 1, we consider two
cases according as 3 | k or not. When 3 | k, by (1.5) we have A(3) = ϕ(3).
When 3 ∤ k, so (3, k) = 1, we have

A(3) =
1

ϕ(3)9

3∑

a=1
(a,3)=1

e

(
− b
3

) 9∏

j=1

(e(aj/3) + e(−aj/3)) = (−1)10−nϕ(3)n−9,

where n is the number of integers among a1, . . . , a10 divisible by 3. To com-
pute A(9) we consider three cases according as (k, 9) = 1, 3 or 9. If (k, 9) = 1,
(4.7) gives

A(9) =

(
1

ϕ(9)

)9 9∑

a=1
(a,3)=1

e

(
−ab
9

) 9∏

j=1

9∑

ℓ=1
(ℓ,3)=1

e(ajaℓ
3/9)

=

9∑

a=1
(a,3)=1

e

(
−ab
9

) 9∏

j=1

cos

(
2πaaj
9

)
.



Equations with prime variables in arithmetic progressions 177

If (k, 9) = 3 or 9, by (4.7) and (1.5), direct computation yields A(9) = ϕ(9).
For any integer m ≥ 3, we can compute A(3m) as follows. If 3m | k (so
(k, 3m) = 3m), then in view of (1.5) we have A(3m) = ϕ(3m). If 3m−1 | k but
3m ∤ k (so (k, 3m) = 3m−1), then

(4.9) A(3m) =

(
1

3

)9 3m∑

a=1
(a,3)=1

e

(
− ab
3m

) 9∏

j=1

3m∑

ℓ=1
(ℓ,3)=1

ℓ≡cj (mod 3m−1)

e(ajaℓ
3/3m).

Note that ℓ ≡ cj (mod 3m−1) must imply (ℓ, 3) = 1 since (cj , k) = 1. So the
last summation variable ℓ in (4.9) can be written as ℓ = 3m−1t + cj with
0 ≤ t ≤ 2, and the sum over ℓ is

∑

0≤t≤2
e(aja(3

m−1t+ cj)
3/3m) = 3e(ajac

3
j/3
m).

Thus by (4.9) we get

A(3m) =

3m∑

a=1
(a,3)=1

e

(
− ab
3m

) 9∏

j=1

e(ajac
3
j/3
m) = ϕ(3m).

If 3m−1 ∤ k, we suppose 3v ‖ k. Then 0 ≤ v ≤ m − 2, (k, 3m) = 3v. Also, in
view of (1.6), there exists a 1 ≤ j0 ≤ 9 such that (aj0 , 3) = 1. Introducing
the Dirichlet character χ (mod 3v), we get

(4.10)
3m∑

ℓ=1
(ℓ,3)=1

ℓ≡cj0 (mod 3v)

e(ajaℓ
3/3m)

=
1

ϕ(3v)

∑

χ (mod 3v)

χ(cj0)

3m∑

ℓ=1
(ℓ,3m)=1

χ(ℓ)e(aj0aℓ
3/3m).

For any χ (mod 3v), in view of m ≥ 2 + max{1, v}, by Lemma 4.2(b) we
see that the last sum over ℓ in (4.10) vanishes, and so does (4.10). Thus by
(4.7) we obtain A(3m) = 0.

Gathering together the above, we obtain

Lemma 4.4. Under the assumptions (1.3), (1.5) and (1.6), let n denote
the number of aj ’s (1 ≤ j ≤ 10) divisible by 3. Then

A(3) =

{
ϕ(3) if 3 | k,
(−1)10−nϕ(3)n−9 if 3 ∤ k,
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A(9) =





ϕ(9) if 3 | k,
9∑

a=1
(a,3)=1

e

(
−ab
9

) 9∏

j=1

cos

(
2πaaj
9

)
if 3 ∤ k,

and for m ≥ 3,

A(3m) =

{
ϕ(3m) if 3m−1 | k,
0 if 3m−1 ∤ k.

Now, we compute A(pm) for p ≥ 5 and m ≥ 1. If p ∤ k, then (k, pm) = 1;
so by (4.7),

A(pm) = ϕ(pm)−9
pm∑

a=1
(a,p)=1

e

(
− ab
pm

) 9∏

j=1

pm∑

ℓ=1
(ℓ,p)=1

e(ajaℓ
3/pm).

In view of (1.6), there exists a 1 ≤ j0 ≤ 9 such that (aj0 , p) = 1. So if
m ≥ 2, then by Lemma 4.2(b) the last sum over ℓ with j = j0 vanishes for
any a with (a, p) = 1; and this leads to A(pm) = 0 for p ≥ 5, m ≥ 2 and
p ∤ k.

Next, we consider the case p | k. For any m ≥ 1, if pm | k, then (k, pm) =
pm. Thus by (4.7) and (1.5) we get A(pm) = ϕ(pm). If pm ∤ k, we suppose
pv ‖ k; then 1 ≤ v ≤ m− 1, and (k, pm) = pv. By (4.7) we get
(4.11) A(pm)

=

(
ϕ(pv)

ϕ(pm)

)9 pm∑

a=1
(a,pm)=1

e

(
− ab
pm

) 9∏

j=1

pm∑

ℓ=1
(ℓ,pm)=1

ℓ≡cj (mod pv)

e(ajaℓ
3/pm).

If we introduce Dirichlet characters χ (mod pv), the last sum over ℓ in (4.11)
with j = j0 is

1

ϕ(pv)

∑

χ (mod pv)

χ(cj0)

pm∑

ℓ=1
(ℓ,p)=1

χ(ℓ)e(aj0aℓ
3/pm),

where p ∤ aj0 . Since m ≥ 1+v, by Lemma 4.2(b) the last sum over ℓ vanishes
for any χ (mod pv), and this leads to the vanishing of (4.11).

Now we are in a position to consider A(p) for 5 ≤ p ∤ k. For p ≡ 2 (mod 3)
(so (p−1, 3) = 1), it is known that for any 1 ≤ a ≤ p−1, the equation x3 = a
has exactly one solution in the multiplicative group F×p = {1, . . . , p− 1} of
the finite field Fp. So when ℓ runs over F×p , ℓ

3 will run over F×p as well. Thus
(4.7) yields
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A(p) = ϕ(p)−9
p∑

a=1
(a,p)=1

e

(
−ab
p

) 9∏

j=1

p∑

ℓ=1
(ℓ,p)=1

e(ajaℓ/p)(4.12)

= (−1)10−nϕ(p)n−9.
Here, and in what follows, n is always used to denote the number of integers
divisible by p among a1, . . . , a10 with a10 = −b. For p ≡ 1 (mod 3), let g1 and
g2 be two fixed cubic non-residues from 1, . . . , p − 1 whose indices relative
to a given primitive root modulo p are congruent to 1 and 2 respectively
modulo 3. Then a3, g1a

3 and g2a
3 will run through respectively the cubic

residues, the cubic non-residues whose indices are ≡ 1 (mod 3), and the
cubic non-residues whose indices are ≡ 2 (mod 3) three times as a assumes
1, . . . , p− 1. Hence by (4.7) we have

A(p) =
1

3
ϕ(p)−9

p−1∑

a=1

(
e

(
−a
3b

p

) 9∏

j=1

p∑

ℓ=1
(ℓ,p)=1

e(aja
3ℓ3/p)(4.13)

+ e

(
−g1a

3b

p

) 9∏

j=1

p∑

ℓ=1
(ℓ,p)=1

e(ajg1a
3ℓ3/p)

+ e

(
−g2a

3b

p

) 9∏

j=1

p∑

ℓ=1
(ℓ,p)=1

e(ajg2a
3ℓ3/p)

)
.

Again, for p ≡ 1 (mod 3), we can write 4p = a2 + 27b2 with a ≡ 1 (mod 3)
uniquely determined, and we can define a unique θ = θ(p) up to sign as in [3,
§3]. Put λ1 = 2

√
p cos θ, λ2 = 2

√
p cos(θ−2π/3) and λ3 = 2

√
p cos(θ+2π/3).

Then from [3, §3] we have∑p−1ℓ=1 e(ℓ3/p) = λ1 − 1,
∑p−1
ℓ=1 e(g1ℓ

3/p) = λ2 − 1
and
∑p−1
ℓ=1 e(g2ℓ

3/p) = λ3 − 1. Further, let u, v and w denote respectively
the number of cubic residues, of cubic non-residues whose indices are ≡ 1
(mod 3), and of cubic non-residues whose indices are ≡ 2 (mod 3) among
a1, . . . , a10. Then we have n + u + v + w = 10. It then follows from (4.13)
that

A(p) =
1

3
ϕ(p)n−9{(λ1 − 1)u(λ2 − 1)v(λ3 − 1)w(4.14)

+ (λ1 − 1)v(λ2 − 1)w(λ3 − 1)u
+ (λ1 − 1)w(λ2 − 1)u(λ3 − 1)v}.

Now we obtain the following

Lemma 4.5. Under the assumptions (1.3), (1.5) and (1.6), for p ≥ 5 and
m ≥ 1 we have
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A(pm) =

{
ϕ(pm) if pm | k,
0 if pm ∤ k, m ≥ 2;

and for 5 ≤ p ∤ k we have (4.12) or (4.14) according as p ≡ 2 (mod 3) or
p ≡ 1 (mod 3).
By Lemmas 4.3–4.5, and the multiplicativity of A(q), for any real y ≥ 1

we have

(4.15)
∑

q≤y
|A(q)| ≪ k

∏

36=p∤k
p≡1 (mod 3)

(1 + |A(p)|)
∏

36=p∤k
p≡2 (mod 3)

(1 + |A(p)|).

For p ≡ 2 (mod 3) with p | a1 · · · a9, but p ∤ k, in view of (4.12), it is easy to
see that |A(p)| < 1. For p ≡ 2 (mod 3) with p ∤ a1 · · · a9k, also from (4.12)
we get |A(p)| ≤ ϕ(p)−8. For p ≡ 1 (mod 3) and p ∤ k, by (4.14),

(4.16) |A(p)| ≤ ϕ(p)n−9(2√p+ 1)u+v+w = (p− 1)n−9(2√p+ 1)10−n.
Gathering these, direct computations yield |A(p)| ≤ 10 for 3 6= p ∤ k, and for
all p ∤ ka1 · · · a9 (so n = 0 or 1), |A(p)| ≤ 500p−2. So (4.15) can be estimated
further as

(4.17) ≪ k
∏

36=p∤k
p|a1···a9

11
∏

36=p∤ka1···a9

(1 + 500p−2)≪ 11ω(a1···a9)k,

where ω(m) denotes the number of distinct prime factors of the integer m.
This shows that

∑
q≤y |A(q)| can be bounded by a constant independent

of y, so the series

(4.18) S(b) :=
∞∑

q=1

A(q)

is absolutely convergent. In view of Lemmas 4.3–4.5, we can define

(4.19) s(3) :=





1 + ϕ(3) + ϕ(32) + · · ·+ ϕ(31+ord3(k)) = 31+ord3(k)
if 3 | k,

1 +A(3) +A(32) if 3 ∤ k;

(4.20) s(p) :=





1 + ϕ(p) + ϕ(p2) + · · ·+ ϕ(pordp(k)) = pordp(k)
if 3 6= p | k,

1 +A(p) if 3 6= p ∤ k.

Then for any integer m it is clear that

(4.21)

∞∑

q=1
(q,m)=1

A(q) =
∏

p∤m

(1 +A(p) +A(p3) + · · ·) =
∏

p∤m

s(p).
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Next, we prove that the series S(b) defined by (4.18) has a positive lower
bound. By (4.19), (4.20) and (4.21) with m = 1 we have

(4.22) S(b) =
∏

p|k
s(p)
∏

p∤k

s(p).

Note that for 3 ∤ k, by Lemma 4.4,

A(32) =
∑

a=1,2,4

9∏

j=1

cos2
(
2πaaj
9

)
+ i

9∑

a=1
(a,3)=1

sin

(
2πaa10
9

) 9∏

j=1

cos

(
2πaaj
9

)
.

This shows that A(32) has positive real part when 3 ∤ k. Hence, for 3 ∤ k,
s(3) = 1+A(3)+A(32) has real part≥ 1/2 since by Lemma 4.4, |A(3)| ≤ 1/2.
Thus s(3) ≥ 1/2, and this together with (4.22), (4.19) and (4.20) yields

(4.23) S(b)≫ k
∏

36=p∤k
(1 +A(p)).

For convenience we introduce, for any integer q ≥ 1,

(4.24) N (q) := card
{
(n1, . . . , n9) : 1 ≤ nj ≤ q,

(nj , q) = 1,
9∑

j=1

ajn
3
j ≡ b (mod q)

}
.

Similar to [7, (3.8)], for 3 6= p ∤ k we have

(4.25) ϕ(p)−9pN (p) = 1 +A(p).
When p ≡ 2 (mod 3) and p ∤ k, in view of (4.12) and n ≤ 8, we get A(p) 6= −1.
When p ≡ 1 (mod 3) and p ∤ k, we separate our discussion into three cases
as follows: (i) for p ≤ 96, condition (1.8) clearly implies N (p) ≥ 1, or
A(p) 6= −1 by (4.25); (ii) for p ≥ 97 and n ≤ 7, in view of (4.16), direct
computation shows that |A(p)| < 1, so A(p) 6= −1; (iii) for p ≥ 97 and n = 8,
in view of u+ v +w+ n = 10, we have u+ v+w = 2, so by condition (1.7)
we see that the possible triplets (u, v, w) are (2, 0, 0), (0, 2, 0) or (0, 0, 2); and
by (4.14) we get

A(p) =
1

3
ϕ(p)n−9{(λ1 − 1)2(λ2 − 1)0(λ3 − 1)0

+ (λ1 − 1)0(λ2 − 1)0(λ3 − 1)2 + (λ1 − 1)0(λ2 − 1)2(λ3 − 1)0}

=
3(p+ 1)

3(p− 1) =
p+ 1

p− 1 6= −1.

Therefore we can conclude for any prime p with 3 6= p ∤ k that A(p) 6= −1,
and this in combination with (4.25) implies N (p) ≥ 1, thus 1 + A(p) ≥
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ϕ(p)−9p. This in combination with (4.23) yields

S(b)≫ k
∏

p|a1···a9

pϕ(p)−9
∏

36=p∤k
p∤a1···a9

(1 +A(p)).

In view of |A(p)| ≤ 500p−2 for p ∤ ka1 · · · a9, the last product is ≫ 1. So we
arrive at

(4.26) S(b)≫ k
∏

p|a1···a9

p−8 ≫ k|a1 · · · a9|−8.

Let σ = (logP )−1. By Lemmas 4.3–4.5, the multiplicativity of A(q), and
|A(p)| ≤ 500p−2 for any 3 6= p ∤ ka1 · · · a9, and |A(p)| ≤ 10 for any 3 6= p ∤ k,
we have

∑

q≥P
|A(q)| ≪ P−1k2

∏

p|a1···a9

(11p)
∏

p∤a1···a9

(1 + 500p−1−σ)(4.27)

≪ P−1k2L500|a1 · · · a9|2.
Finally, we complete the estimate for M1. By definition we have

M1 =
∑

1≤q≤P

1

ϕ(D)9

q∑

a=1
(a,q)=1

e

(
−ab
q

) ∞\
−∞
e(−bη)

9∏

j=1

Gj(q, a)Ij(η) dη.

Note that ϕ(d)ϕ(D) = ϕ(k)ϕ(q). So by (4.7) and Lemma 4.1 with ̺1 =
̺2 = ̺3 = 1 we get

M1 = N
2(39|a9|)−1ϕ(k)−9

( ∑

1≤q≤P
A(q)
) \
D

9∏

j=1

x
−2/3
j dx1 · · · dx8.

Now let

(4.28) M0 := N
2(39|a9|)−1ϕ(k)−9S(b)

\
D

9∏

j=1

x
−2/3
j dx1 · · · dx8.

Then by (4.18) and (4.27) we get

M1 =M0 +R,

where by (4.4) we have R ≪ N2ϕ(k)−9P−1k2L500|a1 · · · a9|5/3. Therefore
we can conclude that

(4.29) M1 =M0 +O(N
2ϕ(k)−9P−1k2L500|a1 · · · a9|5/3).

5. General singular series. Throughout this section, we let r1, . . . , r9
be any positive integers, and let χj (mod rj) be primitive characters. Put
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r := [r1, . . . , r9]. The purpose of this section is to estimate the sum

(5.1)
∑
:=
∑

1≤q≤P
r|D

(
1

ϕ(D)

)9 q∑

a=1
(a,q)=1

e

(
−ab
q

) 9∏

j=1

Gj(χjχ0, a),

where d = (k, q) and D = [k, q] are as in (3.1), Gj(χ, a) is defined as in
(3.2) with χ modulo D, and χ0 is the principal character modulo D. For
1 ≤ j ≤ 9, let
(5.2) r′j =

∏

ordp(rj)>ordp(k)

pordp(rj), r′′j = rj/r
′
j =

∏

ordp(rj)≤ordp(k)
pordp(rj).

Put r′ = [r′1, . . . , r
′
9]. Then it is easy to see that

(5.3) r |D ⇔ rj = r′jr′′j | [k, q], 1 ≤ j ≤ 9 ⇔ r′j | q, 1 ≤ j ≤ 9 ⇔ r′ | q.
Next, (5.2) yields (r′j , r

′′
j ) = 1 and rj = r

′
jr
′′
j . So one can split χj (mod rj),

1 ≤ j ≤ 9 as χj (mod rj) = χ′j (mod r′j)χ′′j (mod r′′j ) with both χ′j and χ′′j
primitive since χj is primitive. Here we temporarily regard χ (mod 1) as
primitive, and similar usage may occur below. Note that for 1 ≤ j ≤ 9, by
(5.2) we have r′′j | k, and by (5.3), if r |D then r′j | q. Thus we can write

(5.4)
∑
=

(
1

ϕ(k)

)9( 9∏

j=1

χ′′j (cj)
)∑

1
,

where

(5.5)
∑
1

:=
∑

1≤q≤P
r′|q

(
ϕ(d)

ϕ(q)

)9 q∑

a=1
(a,q)=1

e

(
−ab
q

) 9∏

j=1

q∑

ℓ=1
(ℓ,q)=1

ℓ≡cj (mod d)

χ′j(ℓ)e(ajaℓ
3/q).

Now the estimation for
∑
is reduced to the estimation for

∑
1. To proceed

further, we introduce the following notation similar to that in [7, (3.1) and
(3.2)]:

Z(q;χ1, . . . , χ9) :=

q∑

a=1
(a,q)=1

e

(
−ab
q

) 9∏

j=1

q∑

ℓ=1
ℓ≡cj (mod d)

χj(ℓ)e(ajaℓ
3/q),(5.6)

Y (q;χ1, . . . , χ9) :=

q∑

a=1

e

(
−ab
q

) 9∏

j=1

q∑

ℓ=1
ℓ≡cj (mod d)

χj(ℓ)e(ajaℓ
3/q),(5.7)

where q is any positive integer, χ1, . . . , χ9 are characters modulo q, and
d = (k, q). When there is no possible confusion about the character χj , we
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shall abbreviate these to Z(q) and Y (q) respectively. Similar to [7, Lemma
3.2] it can be easily proved that both Z(q) and Y (q) are multiplicative.

Lemma 5.1. For j = 1, . . . , 9, let χj (mod p
αj ) be primitive charac-

ters and α = max{α1, . . . , α9} > ordp(k). For any t ≥ α, let Z(pt) =
Z(pt;χ1χ0, . . . , χ9χ0) where χ0 is modulo p

t. Then

(a) Z(pα) = Y (pα),

(b) Z(pt) = 0 if t ≥ θ + α, where θ = 1 + [3/p]− [2/p],

(c)

β∑

v=α

(
ϕ((k, pv))

ϕ(pv)

)9
Z(pv) =

(
ϕ((k, pβ))

ϕ(pβ)

)9
Y (pβ) for any β ≥ α.

Proof. This lemma can be proved in precisely the same way as [10,
Lemma 5.2] using Lemma 4.2.

Now we come to the estimate for
∑
1. For any integers m and n, we

now use the notation m ‖n to denote that m |n and every prime factor of
n divides m. For the integer q in (5.5) we write

q = q1q2, r
′ ‖ q1, (r′, q2) = 1.

It is clear that (q1, q2) = 1. So by (5.5), (5.6) and (4.7) we get

(5.8)
∑
1
=
∑

1≤q1≤P
r′‖q1

(
ϕ((k, q1))

ϕ(q1)

)9
Z(q1;χ

′
1χ0, . . . , χ

′
9χ0)

∑

1≤q2≤P/q1
(q2,r′)=1

A(q2).

From (4.21) and (4.27), the last sum over q2 is

(5.9)
∏

p∤r′

s(p) +O(P−1q1k
2L500|a1 · · · a9|2).

By the multiplicativity of Z(q1;χ
′
1χ0, . . . , χ

′
9χ0) and Lemma 5.1(b) we see

that for r′ ‖ q1,
if 3 ∤ r′ then Z(q1;χ

′
1χ0, . . . , χ

′
9χ0) = 0 except for q1 = r

′,

if 3 | r′ then Z(q1;χ′1χ0, . . . , χ′9χ0) = 0 except for q1 = r′ and 3r′.
Now define

(5.10) σ := 1 or 3 according as 3 ∤ r′ or 3 | r′.
Then by (5.8) and (5.9) the main term of

∑
1 is

(∏

p∤r′

s(p)
)∑

u|σ

(
ϕ((k, ur′))

ϕ(ur′)

)9
Z(ur′;χ′1χ0, . . . , χ

′
9χ0)
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when σr′ ≤ P . As in [7, (3.14)], by Lemma 5.1(a),(c), the above last sum
over u is (

ϕ((k, σr′))

ϕ(σr′)

)9
Y (σr′;χ′1χ0, . . . , χ

′
9χ0).

Thus, when σr′ ≤ P , the main term of ∑1 can be written as

(5.11)

(
ϕ((k, σr′))

ϕ(σr′)

)9
Y (σr′;χ′1χ0, . . . , χ

′
9χ0)
∏

p∤r′

s(p).

Note that, by (5.6) and Lemma 4.2(c), for any q ≥ 1 we have
(5.12) Z(q)≪ q5.5|a1 · · · a9|1/229ω(q).
So by (5.8) and (5.9), and noting q1 = ur

′, u |σ, the error term of ∑1 can
be estimated as

≪ P−1r′k2L500|a1 · · · a9|2
(
ϕ(k)

ϕ(r′)

)9
r′5.5|a1 · · · a9|1/229ω(r

′)

≪ P−1k11L500|a1 · · · a9|2.5.
This together with (5.11) gives, when σr′ ≤ P ,

∑
1
=

(
ϕ((k, σr′))

ϕ(σr′)

)9
Y (σr′;χ′1χ0, . . . , χ

′
9χ0)
∏

p∤r′

s(p)(5.13)

+O(P−1k11L500|a1 · · · a9|2.5).
When σr′ > P (so r′ ≫ P ), the validity of (5.13) can be seen as follows:
firstly, from (5.5) and (5.12) we have

∑
1
≪
∑

1≤q≤P
r′|q

(
k

ϕ(q)

)9
q5.5|a1 · · · a9|1/229ω(q)(5.14)

≪ r′−1k9|a1 · · · a9|1/2,
which is≪ P−1k9|a1 · · · a9|1/2 if σr′ > P . Secondly, (4.17) and (4.21) imply,
for any integer n,

(5.15)
∏

p∤n

s(p)≪
∞∑

q=1

|A(q)| ≪ 11ω(a1···a9)k.

So in view of |Y (q)| having the same upper bound as |Z(q)| in (5.12), the
main term in (5.13) is

≪ k9ϕ(r′)−9r′5.5|a1 · · · a9|1/229ω(r
′)11ω(a1···a9)k ≪ P−1k10|a1 · · · a9|

if σr′ > P . From (5.13) and (5.14) we infer the following
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Lemma 5.2. Let
∑
1 be as in (5.5), and σ be as in (5.10). Then

∑
1
=

(
ϕ((k, σr′))

ϕ(σr′)

)9
Y (σr′;χ′1χ0, . . . , χ

′
9χ0)
∏

p∤r′

s(p)

+O(P−1k11L500|a1 · · · a9|2.5),
and ∑

1
≪ r′−1k9|a1 · · · a9|1/2.

6. The major arc integrals. In this section, we complete the estima-
tion for the major arc integrals

T
M
. We first estimate M3, defined in (3.10).

Note that if β̃ does not exist then M3 = 0. So in the following we assume β̃
does indeed exist, hence Ẽ = 1. We decompose r̃ as follows:

(6.1) r̃ = r̃′r̃′′, r̃′ =
∏

ordp(r̃)>ordp(k)

pordp(r̃), r̃′′ =
∏

ordp(r̃)≤ordp(k)
pordp(r̃).

Then (r̃′, r̃′′) = 1. So we can split χ̃ (mod r̃) as

(6.2) χ̃ (mod r̃) = χ̃′ (mod r̃′)χ̃′′ (mod r̃′′),

where χ̃′ and χ̃′′ are primitive characters. Here we have regarded χ0 (mod 1)
as primitive character. We define

(6.3) σ̃ := 3 or 1 according as 3 | r̃′ or not.
For distinct integers m1,m2, . . . , taken from the set {1, . . . , 9}, let
(6.4) L(m1,m2, . . .) := (χ̃′′(cm1)χ̃′′(cm2) · · ·)(σ̃r̃′)−1Y (σ̃r̃′;χ1, . . . , χ9),
where for 1 ≤ j ≤ 9,

χj =

{
χ̃′χ0 (mod σ̃r̃′) for j ∈ {m1,m2, . . .},
χ0 (mod σ̃r̃

′) otherwise,

and let

(6.5) P(m1,m2, . . .)

:= N2(39|a9|)−1
\
D

( 9∏

j=1

x
−2/3
j

)
(Nxm1Nxm2 · · ·)(β̃−1)/3 dx1 · · · dx8,

where D is defined as in (4.3). Then by (5.7) we get
(6.6) L(m1,m2, . . .) =

∑

(σ̃r̃′)

(χ̃′(ℓm1)χ̃
′′(cm1)χ̃

′(ℓm2)χ̃
′′(cm2) · · ·)

where for any q ≥ 1,∑(q) denotes the sum over ℓ1, . . . , ℓ9 with 1 ≤ ℓj ≤ q,
ℓj ≡ cj (mod (k, q)) for 1 ≤ j ≤ 9 and a1ℓ31 + · · ·+ a9ℓ39 ≡ b (mod q).
Now we can estimate M3. By the definition of Hj(a, q, η) in (3.9), the

511 terms in J3 can be classified into nine types with the vth (1≤v≤9)
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type consisting of
(
9
v

)
terms, each of which is a product of v pieces of

−Gj(χ̃χ0, a)Ĩj(η) and 9− v pieces of Gj(q, a)Ij(η). So if we define, for 1 ≤
v ≤ 9,

M3v :=
∑

1≤q≤P

1

ϕ(D)9

q∑

a=1
(a,q)=1

e

(
−ab
q

)

×
∞\
−∞
e(−bη){sum of the terms in the vth type} dη,

then by (3.10) we have

(6.7) M3 =
∑

1≤v≤9
M3v.

For 1 ≤ v ≤ 9, the contributions to M3v from the terms of the vth type can
be estimated in precisely the same way. So we only consider the contribution,
denoted by M3v1, from the typical term

v∏

j=1

(−Gj(χ̃χ0, a)Ĩj(η))
9∏

j=v+1

(Gj(q, a)Ij(η)).

We have by definition,

M3v1 = (−1)v
∑

1≤q≤P
r̃|D

1

ϕ(D)9

q∑

a=1
(a,q)=1

e

(
−ab
q

)
(6.8)

×
v∏

j=1

Gj(χ̃χ0, a)

9∏

j=v+1

Gj(q, a)

×
∞\
−∞
e(−bη)

v∏

j=1

Ĩj(η)
9∏

j=v+1

Ij(η) dη.

By (5.4) and the first equality for
∑
1 in Lemma 5.2, and then the definition

of L(m1,m2, . . .) in (6.4), the sum over q in (6.8) is

(6.9) ϕ(k)−9σ̃r̃′
(
ϕ((k, σ̃r̃′))

ϕ(σ̃r̃′)

)9
L(1, 2, . . . , v)

∏

p∤r̃′

s(p)

+O(P−1k11ϕ(k)−9L500|a1 · · · a9|2.5).
Note that by (6.5) and (4.4) we have

(6.10) P(m1,m2, . . .)≪ N2|a1 · · · a9|−1/3.
From (6.5) and Lemma 4.1 we see that the integral with respect to η in (6.8)
is precisely P(1, 2, . . . , v). This together with (6.8)–(6.10) gives
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M3v1 = (−1)vϕ(k)−9L(1, 2, . . . , v)P(1, 2, . . . , v)(6.11)

× σ̃r̃′
(
ϕ((k, σ̃r̃′))

ϕ(σ̃r̃′)

)9∏

p∤r̃′

s(p)

+O(N2P−1k11ϕ(k)−9L500|a1 · · · a9|7/3).

Now gathering together all the results similar to (6.11) for all 1 ≤ v ≤ 9,
and using (6.7), we arrive at

M3 = ϕ(k)
−9σ̃r̃′

(
ϕ((k, σ̃r̃′))

ϕ(σ̃r̃′)

)9(∏

p∤r̃′

s(p)
){
−
∑

1≤m1≤9
L(m1)P(m1)(6.12)

+
∑

1≤m1<m2≤9
L(m1,m2)P(m1,m2) + · · ·

+ (−1)t
∑

1≤m1<···<mt≤9
L(m1, . . . ,mt)P(m1, . . . ,mt) + · · ·

− L(1, . . . , 9)P(1, . . . , 9)
}

+O(N2P−1k11ϕ(k)−9L500|a1 · · · a9|7/3).

On the other hand, by (5.4) and the second inequality for
∑
1 in Lemma 5.2,

the sum over q in (6.8) is≪ ϕ(k)−9r̃′−1k9|a1 · · · a9|1/2. This in combination
with (6.8) and (6.10) yields

M3v1 ≪ ϕ(k)−9k9r̃′−1|a1 · · · a9|1/2N2|a1 · · · a9|−1/3

≪ N2ϕ(k)−9k9r̃′−1|a1 · · · a9|1/6,

and consequently by (6.7),

(6.13) M3 ≪ N2ϕ(k)−9k9r̃′−1|a1 · · · a9|1/6.

Moreover, similar to [10, (6.12)] we have

(6.14)
∏

p|r̃′
s(p) = σ̃r̃′

(
ϕ((k, σ̃r̃′))

ϕ(σ̃r̃′)

)9∑

(σ̃r̃′)

1.

By (4.18), (4.21) and (6.14),

S(b) =
∏

p

s(p) =
∏

p|r̃′
s(p)
∏

p∤r̃′

s(p)(6.15)

= σ̃r̃′
(
ϕ((k, σ̃r̃′))

ϕ(σ̃r̃′)

)9(∏

p∤r̃′

s(p)
) ∑

(σ̃r̃′)

1.



Equations with prime variables in arithmetic progressions 189

Substituting this into (4.28), by (4.29), (6.12) and (6.5) we get

(6.16) M1 +M3

= N2(39|a9|)−1ϕ(k)−9σ̃r̃′
(
ϕ((k, σ̃r̃′))

ϕ(σ̃r̃′)

)9(∏

p∤r̃′

s(p)
)

×
\
D

( 9∏

j=1

x
−2/3
j

){ ∑

(σ̃r̃′)

1−
∑

1≤m1≤9
L(m1)(Nxm1)(β̃−1)/3

+
∑

1≤m1<m2≤9
L(m1,m2)(Nxm1Nxm2)(β̃−1)/3 + · · ·

+ (−1)t
∑

1≤m1<···<mt≤9
L(m1, . . . ,mt)(Nxm1 · · ·Nxmt)(β̃−1)/3

+ · · · − L(1, . . . , 9)(Nx1 · · ·Nx9)(β̃−1)/3
}
dx1 · · · dx8

+O(N2ϕ(k)−9k11P−1L500|a1 · · · a9|7/3)

+O(N2ϕ(k)−9P−1k2L500|a1 · · · a9|5/3).
By (6.6) we see that the quantity in the above curly brackets equals

∑

(σ̃r̃′)

9∏

j=1

(1− χ̃′(ℓj)χ̃′′(cj)(Nxj)(β̃−1)/3) ≥ ((1− β̃) logP )9
∑

(σ̃r̃′)

1.

Thus (6.16) together with (6.15) and (4.4) leads to

M1 +M3 ≥ c1N2ϕ(k)−9S(b)((1− β̃) logP )9|a1 · · · a9|−1/3(6.17)

+O(N2ϕ(k)−9k11P−1L500|a1 · · · a9|7/3),
where c1 is an absolute positive constant. On the other hand, the combina-
tion of (4.28), (4.29), (6.13) and (4.4) yields

M1 +M3 ≥ c2N2ϕ(k)−9S(b)|a1 · · · a9|−1/3(6.18)

+O(N2ϕ(k)−9P−1k2L500|a1 · · · a9|5/3)
+O(N2ϕ(k)−9k9r̃′−1|a1 · · · a9|1/6),

where c2 is an absolute positive constant.

Now we turn to the estimation of M2, defined in (3.10). By definition
there are 19171 terms in J2. The contribution to M2 from each of them can
be estimated in precisely the same way. So in view of (3.9) we only give the
details for the contribution from the typical term

ẼC1(a, q, η)C2(a, q, η) · · ·C7(a, q, η)G8(q, a)I8(η)G9(χ̃χ0, a)Ĩ9(η)
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to illustrate the method. We denote this contribution to M2 as M27. Note
that if χ (mod q) is induced by a primitive χ∗ (mod q∗) with q∗ | q then the
corresponding L-function L(s, χ∗) has the same set of nontrivial zeros. So
in view of (3.7) we have Ij(χ, η) = Ij(χ

∗, η) for 1 ≤ j ≤ 9. Then in view of
(3.10) and (3.8) we have

M27 =
∑

r1≤kP

∑∗

χ1 (mod r1)

· · ·
∑

r7≤kP

∑∗

χ7 (mod r7)

∑

1≤q≤P
[r1,...,r7,r̃]|D

1

ϕ(D)9
(6.19)

×
q∑

a=1
(a,q)=1

e

(
−ab
q

)( 7∏

j=1

Gj(χjχ0, a)
)
G8(q, a)G9(χ̃χ0, a)

×
∞\
−∞
e(−bη)

( 7∏

j=1

Ij(χj , η)
)
I8(η)Ĩ9(η) dη,

where the * indicates that the sums over χj (mod rj) run through all the
primitive characters. By the definition of Y (q) in (5.7), it is trivial that
|Y (q)| ≤ q∑(q) 1. Thus Lemma 5.2 implies

∣∣∣
∑
1

∣∣∣ ≤ σr′
(
ϕ((k, σr′))

ϕ(σr′)

)9( ∑

(σr′)

1
)∏

p∤r′

s(p)(6.20)

≤
∏

p|r′
s(p)
∏

p∤r′

s(p) =
∏

p

s(p) = S(b).

From this and (5.4) we see that the absolute value of the sum over q in
(6.19) is ≤ ϕ(k)−9S(b). So in view of the definition of Ij(χ, η) in (3.7), we
obtain from (6.19), and Lemma 4.1,

(6.21) |M27| ≤ N2ϕ(k)−9S(b)(39|a9|)−1

×
\
D

( 9∏

j=1

x
−2/3
j

) 7∏

j=1

∑

rj≤kP

∑∗

χj (mod rj)

∑′

|γj |≤T
(Nxj)

(βj−1)/3 dx1 · · · dx8,

where βj + iγj are the nontrivial zeros of L(s, χj). The last triple sum can

be estimated as ≪ Ω9 exp(−c/
√
δ), where Ω = (1− β̃) logP or 1 according

as β̃ exists or not, and c > 0 is an absolute constant. This in combination
with (6.21) and (4.4) gives

M27 ≪ exp(−c/
√
δ)Ω63N2ϕ(k)−9S(b)|a1 · · · a9|−1/3,

and consequently,

(6.22) M2 ≪ exp(−c/
√
δ)Ω9N2ϕ(k)−9S(b)|a1 · · · a9|−1/3.



Equations with prime variables in arithmetic progressions 191

Now we can complete the estimation of the major arc integrals. We
separate the argument into three cases:

(i) If β̃ does not exist, then M3 = 0. So by (3.11), (4.26), (4.28), (4.29),
(6.22), (2.2) and (4.4) we get, for δ small enough,\

M

= N2ϕ(k)−9S(b)(39|a9|)−1
\
D

9∏

j=1

x
−2/3
j dx1 · · · dx4(6.23)

+O(N2|a1 · · · a9|−1/3P−27)
+O(exp(−c/

√
δ)N2ϕ(k)−9S(b)|a1 · · · a9|−1/3)

+O(N2ϕ(k)−9P−1k2L500|a1 · · · a9|5/3)
≥ cN2ϕ(k)−9S(b)|a1 · · · a9|−1/3.

(ii) If β̃ exists with r̃′ ≥ P 1/100, then the combination of (3.11), (4.26),
(6.18), (6.22) and (2.2) gives\

M

≥ cN2ϕ(k)−9S(b)|a1 · · · a9|−1/3(6.24)

+O(N2ϕ(k)−9P−1k2L500|a1 · · · a9|5/3)
+O(N2ϕ(k)−9k9P−1/100|a1 · · · a9|1/6)
+O(N2|a1 · · · a9|−1/3P−27)
+O(exp(−c/

√
δ)Ω5N2ϕ(k)−9S(b)|a1 · · · a9|−1/3)

≥ cN2ϕ(k)−9S(b)|a1 · · · a9|−1/3.

(iii) If β̃ exists with r̃′ ≤ P 1/100, then by (6.1) we have r̃ = r̃′r̃′′ ≤
kP 1/100 ≤ P 1/99. Thus by (3.5) we get

(6.25) Ω = (1− β̃) logP ≥ c

r̃1/2 log2 r̃
≥ P−1/197.

Thus by (3.11), (2.2), (4.26), (6.17) and (6.22) we get\
M

≥ cN2ϕ(k)−9S(b)Ω9|a1 · · · a9|−1/3(6.26)

+O(N2ϕ(k)−9k11P−1L500|a1 · · · a9|7/3)
+O(exp(−c/

√
δ)Ω9N2ϕ(k)−9S(b)|a1 · · · a9|−1/3)

+O(N2|a1 · · · a9|−1/3P−27)
≥ cN2ϕ(k)−9S(b)Ω9|a1 · · · a9|−1/3.

Finally, we conclude that (6.26) always holds with Ω having lower bound as
in (6.25), and so we have
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Lemma 6.1. Let M be as defined in (2.4). Then\
M

e(−bα)
9∏

j=1

Sj(α) dα≫ N2ϕ(k)−9S(b)P−9/197|a1 · · · a9|−1/3.

7. Proof of Theorems 1 and 2

Lemma 7.1. Let ℓ and k be integers satisfying (ℓ, k) = 1. For any positive
integer λ and any real α with |α− a/q| ≤ q−2 and (a, q) = 1, define

Sλ(α) :=
∑

n≤N
n≡ℓ (mod k)

Λ(n)e(αnλ).

Then for any absolute ε > 0, we have

(7.1) Sλ(α)≪
N1+ε

k1−λ21−λ

(
1

q
+
1

N1/3
+
q

Nλ

)22−2λ
.

For a proof, one can see, e.g., [12, Theorem 4].

Lemma 7.2. Let C(M) be defined as in (2.4). Then for any positive ε
we have

(7.2)
\

C(M)

≪ N2+εP−1/16.

Proof. Using Lemma 7.1, this lemma can be proved in precisely the same
way as [10, Lemma 2.1].

Finally, the combination of (6.26), (7.2) and the definition of r(b) in (2.6)
proves Theorems 1 and 2.
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