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On sumfree subsets of hypercubes
by

DANIEL J. KATz (Providence, RI)

1. Introduction. Given an additive group Z, we refer to A C Z as a
sumfree set if x +y # z for all x,y, z € A. (Equivalently, using the notation
of sumsets, A is sumfree if (A+ A)NA = (.) These sets have been of interest
since at least 1916, when Schur [10] proved that the positive integers could
not be partitioned into finitely many such sets.

A common problem in this topic is as follows: given a particular additive
group Z (or perhaps a subset Z of an additive group), how large can a
sumfree subset of Z be, and further, what sort of structure do large sumfree
subsets have? This problem has been considered for Z = Z-o (see [2]),
Z/pZ (see [4, 9]), general finite groups (abelian [6] and non-abelian [7]), and
{1,...,n} C Z for arbitrary (usually large) n (see [1, 3, 11]).

The last of these cases suggests a study of the “discrete hypercube”
Z ={1,...,n}* c Z* for k > 1. In particular, we would like to know how
proportionately large a sumfree subset of {1, ... ,n}k can be when n is large.
For this purpose, we define

(1) ¢k = limsup ik max{#5S : S C {1,...,n}* is sumfree}.
n—oo N

Previous work on sumfree subsets of {1,...,n} has shown that ¢; = 1/2.
(For example, the set {|n/2] +1,...,n} is optimally large for all n, as is the
set of odd elements.) Let S be a sumfree subset of {1,...,n}* of size an®,
and let & > k. The inverse image S’ of S under a natural projection from
{1,... ,n}k/ to {1,...,n}* is also sumfree, and has size an®’. In view of this
fact, it is clear that ¢ > ¢ for K’ > k, and thus 1/2 < ¢, <1 for all k.

The largest sumfree subsets we have observed in the square {1,...,n}?
take the form of thick diagonal “stripes”; generalizing this construction, we
can construct large sumfree subsets in {1,...,n}* and thus prove a general
lower bound for cg.
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THEOREM 1.1. Define ¢ as in (1). Then

Lk/3] k
2 RN [k
=0

Analysis of this lower bound yields:
COROLLARY 1.2. Define ¢ as in (1). Then

kllngo cp = 1.
These statements are proved in Section 3.
We also prove a general upper bound for ¢, using a combinatorial method,
although it is difficult to write this bound as an explicit function of k.

THEOREM 1.3. Define ¢ as in (1), and let o be the unique root in
[1/2,1] of the equation

| 1Y
a:(2—2a)zi'<ln2_2a) .

=0

Then
cr < at.

Our approach to the upper bound depends on the idea that if an element
of a sumfree subset S € {1,...,n}" is the sum of many pairs of elements,
none of these pairs can be in S. This means that if S contains a certain
proportion of the full set, a certain number of elements cannot belong to .S,
which causes a contradiction if the proportion is large. This argument is
given in Section 4.

To give an idea of the distance between our lower and upper bounds,
here are the approximate bounds given by these theorems for 2 < k < 6:

0.5555 < ¢ < 0.7880, 0.7966< c5 < 0.9385,
0.6666 < c3 < 0.8613, 0.8388< cg < 0.9586.
0.7407 < ¢4 < 0.9080,

Our calculations for both the lower and upper bounds involve approxi-
mating numbers of lattice points in {1,...,n}* by integrating over subsets
of [0, n]*. This approximation is less than exact, but the error becomes small
compared to n¥ when n is large, and thus it ultimately does not affect the
value of ci. These integrals become more complicated as k grows, but they
can be calculated explicitly by induction, whereas counting the lattice points
directly becomes cumbersome in higher dimensions.

This integral method suggests a non-discrete version of the problem:
maximizing the volume of Lebesgue-measurable sumfree subsets of the “con-
tinuous hypercube” |0, 1]k C R*. In Section 5, we will see that the bounds
we calculated in Theorems 1.1 and 1.3 hold in this setting as well.
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By applying an iterative process to the upper-bound argument, we can
improve the result of Theorem 1.3 as follows:

THEOREM 1.4. Define ci, as in (1), and let o™* be the unique root in
(1/2,1) of the equation

:_O‘+sz< 2—2a>i

cp < oat*

Then

This theorem is proved in Section 6, and yields the following improved
bounds for ¢:
0.5555 < ¢ < 0.7274, 0.7966< c5 < 0.9351,
0.6666 < c3 < 0.8407, 0.8388< ¢g < 0.9572.
0.7407 < ¢4 < 0.9000,
This result, like Theorem 1.3, is also applicable in the continuous setting.
We will also discuss in Section 7 some results that generalize our pro-
cesses to [-fold-sumfree sets, that is, sets A such that x1 + --- 4+ x; # z for
all z1,...,x;,2z € A. The lower bound for sumfree sets extends easily to
[ > 2; the upper bound is difficult to apply when [ > 4, but interestingly in
the [ = 3 case it gives a bound which is explicit rather than the root of an
equation.
Finally, in Section 8, we will present some concluding remarks, suggesting
two divergent paths for future investigation in the subject.

2. Introductory lemmas. In order to bound the constants under con-
sideration, we will need the following volume formula.

LEMMA 2.1. Given a € [0, k], the volume of the region
{(z1,...,21) €[0,1) : 21+ -+ 2, < a} CR"

LaJ
1
k' < > a—z)k

Proof. This is a special case of Theorem 1 in Section 1.9 of [5]. =

s equal to

REMARK 2.1. The proof in [5] uses probability theory, but the formula
can also be obtained directly using an inclusion-exclusion argument. The
latter proof is useful in that it can easily be adapted to count the number
of lattice points in the region; however, we will not use this application, so
we omit the alternative proof.

We will also need the following integral formula, easily proven by induc-
tion.
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LEMMA 2.2. Given c € (0, 1], we have the following equality:
1 1 1 1 k=1 1\
Sdm S dxo S dxsg--- S dxk:l_cZz' (lnc> .
c c/x1 c/x1T c/T1Tp—1 1=0

REMARK 2.2. In a sense, the domain of integration is a multiplicative
analogue of the k-simplex. Also note that the right side of the equation
approaches 0 as k — oo, since the sum is a truncated Maclaurin series for
e” evaluated at x = —Inc.

Proof of Lemma 2.2. Let J(k,c) represent the left side of the equation.
The assertion is clearly true when k = 1, so we proceed by induction on k.
Assume the statement is true for k; then

1 1 k—1

c c 1 .
kE+1,¢) = k,—)dey=\({1-——>» —(lnz;—Inc)")d
J(k+1,¢) EJ( ’x1> x1 §< xl;i!(nxl nc)) x1

kfll—lnc .
:(1—0)—02—' S (Inzg —Ine)'d(Inz; —Inc)
OZ 0
-1 k 11 7
—c) — i+l il -
(I1-¢) C,LZ; z+1 —Inc) 1-— c;“< )

and thus the assertion holds for all k. =

Finally, we quote a theorem from Lang, adapted for our purposes, which
will allow us to use integrals to approximate subsets of lattices.

THEOREM 2.3 (Lang). Let D be a subset of [0,1]* such that the boundary
of D has a Lipschitz-continuous parametrization in k — 1 variables, and let

nD = {nx :x € D}. Then
#({1,...,nY* nnD) = nF Vol(D) + O(nF1).

Proof. Apply [8, Theorem 2, p. 128] with L = ZF and F = (0, 1]*. There
are fewer than k(n 4+ 1)*~! lattice points in the intersection of nD and
({0,...,n}*\{1,...,n}¥), and these can be absorbed into the error term. =

3. Bounding ¢; from below. One method of generating sumfree sets
in {1,...,n} is to consider “cross-section” sets

(2) Ko:={(x1,...,z1) €{l,....,n}* 21 + - + 23 = a}.

If Ais asumfree set in {k,k+1,...,kn}, theset S = J,c 4 Kq is sumfree,
because if (z1,...,2) and (y1,...,yx) are both contained in S, then

(T14+y)+- -+ (@ +uy) =@+ +ap)+ (1 +-+u) &€ A,

so the sum of these two elements is not in S.



Sumfree subsets of hypercubes 143

We will determine a lower bound for ¢ using sets of the form
S(n,k,a) = {(x1,...,z5) €{1,....n}F ra<ay 4+ 413, < 2a}.

Since {a,...,2a — 1} is clearly sumfree in {k,k + 1,...,kn}, S(n,k,a) is
sumfree. To obtain an optimal lower bound for this method, we need to
choose a value of a that maximizes the size of S(n,k,a). We approximate
this size using the region

S(n,k,a) :=={(z1,...,xx) € [O,n]k CRF:ra<a 4+ < 2a}.

Note that since §(1, k,a) is just a scaled-down copy of §(n, k,an), we
have

S(n, k,an) = nFS(1,k, a).
Proof of Theorem 1.1. By Lemma 2.1, the volume of
{(x1,...,21) €[0, 1] CR* 1 2y + - + 23, < a}

is equal to

1 la] Lk .
Vi(k,a) = ;(—1) (Z)(a — )",
Changing variables, we see that the volume of
{(z1,...,21) €[0,1]F CR* : 2y + - - + 2, > 2a}

is equal to
|k—2a|

Va(k,a) := % > (-1 (’j) (k — 2a — i)~

=0

We wish to choose a value of a (for each k) which maximizes

Vol(S(1,k,a)) =1 —Vi(k,a) — Va(k,a).

A computer search (for k£ < 60) suggests the optimal choice satisfies a =
k/3 + O(1), although it is difficult to determine an exact formula. For our
lower bound, we choose a = k/3; this value appears to be close to opti-
mal, and it gives a concise expression for Vol(S(1, k,a)) (since Vi (k, k/3) =
Va(k, k/3)). The regions S(1,k,k/3) for k = 2,3 are shown in Figures 1
and 2.

By Theorem 2.3, #S(n, k, kn/3) = Vol(S(n, k, kn/3)) + O(n*1), since
all of the boundaries of the region are hyperplanes and are thus Lipschitz
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SS=—=

.

Fig. 1. Sumfree region for k = 2 Fig. 2. Sumfree region for k = 3

parametrizable. Then we have
1 . 1 ~ _
e #S(n, k, kn/3) = limsup e (Vol(S(n, k, kn/3)) +O(n*~1))

¢ > limsup
n—oo

— lim sup % (n* Vol(S(1, k, k/3)) + O(n*~1))

n—oo

[k/3] k
~ 2 NIANE
= Vol(S(1,k,k/3)) =1— — (=D == .
k! — i1/ \ 3
This last expression is the lower bound we wished to prove. =

To determine the behavior of this bound, we need the following lemma

LEMMA 3.1. Let a,b satisfy 0 < a <b<1/3 and
1 bo(1 — )10
Al

Then
[bk]

Proof. We compute

Lbk] k Lbk) k
. 1 (k. . 1 kN [k
s 3 () (5) <t 3 () (5-o4)
i=[ak
. b—a+1Dk (1 k
<1 b—at Dk p (1 N
< limsup e e~ (3 ¢

k—o0

k—o0 Y [ak]
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By Stirling’s approximation, this last expression is equal to

, b—a+1 [ (1/3—a)e \*
lim sup (bb(l — )b =0.

k—oo 2T/ b(]. — b)

Since the upper limit is equal to zero, the limit is as well. =

Proof of Corollary 1.2. Define a sequence {a;} as follows:

1 1 af(1- a;)t—%
ap=-, Qg1 =-— +r——""——.
0 3 i+1 3 c
Calculating the initial terms of this sequence, we find that aq,...,ag are

positive and a7 is negative. Thus we can split the sum as follows:

[k/3] N [k k Laok] laik] lack]
i .
Sn()(5-1) £ X e ¥ e )
=0 i=[a1k] i=[a2k] 1=0

By Lemma 3.1, each of these partial sums approaches zero as k approaches
infinity, and so the entire sum does as well. This means that the lower
bound determined in Theorem 1.1 approaches 1 as k grows, and therefore
so does ¢i,. =

REMARK 3.1. We can alternatively consider the constants
1
¢ »= liminf — max{#5: 5 C {1,... ,n}* is sumfree},
— n—oo N

using the limit inferior rather than the limit superior. It is worth noting that
Theorem 1.1 and Corollary 1.2 remain true if ¢ is replaced by ¢, which
results in stronger statements.

4. Bounding c; from above. The process of finding an upper bound
for ¢, is a bit more complicated, since we cannot do so simply by exhibiting
a sumfree set. Here our procedure is to assume that our sumfree set has a
certain size, and from this we force a contradiction if the set is too large.

Proof of Theorem 1.3. Let S be a sumfree subset of {1,...,n}* with
#S > an®. Suppose that b = (by,...,b) is an element of S. There are

%Hle(bi — 1) disjoint pairs of elements in {1,...,n}* which sum to b,
unless all of the b;’s are even, in which case there are %(Hle(bi —1)+1) of

them, to account for the point (by/2,...,b;/2). Either way, the number of
pairs is equal to by -+ by + O(n*1).
At least one element from each of these pairs must be absent from S, so
1
an® < #5 <nF — ibl-nbk—i—O(nk*l)

and thus
by by < (2= 2a)n" + O(n*1) = pnF,

where = (2 —2a) + O(1/n).
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This “disqualifies” a number of lattice points from being contained in S,
namely

T(n,k,a) = {(by,...,bp) € {1,...,n}* : by ---bp > pn*}.
As in the last section, we will approximate this collection of lattice points
by the region

T(n,k,) == {(b1,...,bg) € [0,n)" CR¥:by---by > BnF}.

We can calculate the volume of T'(n, k, o) using an integral:

Vol(T'(n, k, ) = 7§ dxy 7§ dxs 7§ dzs - - 7§ dxy,
pn ﬂn/m 5”/9019[»‘2 Bn/z1TR—1
d
=nf\z, S S Ty S Tk
B/x1 ﬁ/mxz B/x1-TK_1

ﬁ
)

using Lemma 2.2 with ¢ = 8 in the final step. Since, by Theorem 2.3,
Vol(T'(n, k,a)) = Vol(T(n, k,a)) + O(n*F~1), this indicates that for any «
such that

1 S IV A
3) o =1-13+00/m)> f(3) :=ﬁiz;ﬂ<1nﬁ),

k is simultaneously smaller than an”, yielding a con-

any set larger than an
tradiction.

Observe that

=3 08)) (4L H ) -y o) o

Thus, as [ increases from 0 to 1, f(3) increases monotonically from 0 to 1,
while 1—3/2 decreases monotonically from 1 to 1/2. Therefore, the equation
1— /2 = f(B) has a unique root §* € [0,1], and letting o* = 1 — 3*/2, we
must have o < o + O(1/n) to avoid a contradiction. Letting n approach
infinity, we conclude that ¢y < a*. =

5. A continuous analogue. In the previous two sections, we used the
volume of continuous regions to estimate the size of discrete sets. Alterna-
tively, we could have asked our question about the continuous regions in the
first place. Let us consider

(4) & = max{Vol(S) : S € [0,1]* is measurable and sumfree}.
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THEOREM 5.1. Define ¢ as in (4). Then

Lk/3] k
2 R\ (K
=0

COROLLARY 5.2. Define ¢ as in (4). Then

lim ¢, = 1.
k—o0

THEOREM b5.3. Define ¢ as in (4), and let a* be the unique root in
[1/2,1] of the equation

kll i
(2-2 - .
a;ﬂ( 2—2a>

Ek < ot

Then

Proof. The proofs of these statements are virtually identical to the proofs
of Theorem 1.1, Corollary 1.2, and Theorem 1.3 respectively. The only dif-
ference is that S(n k,a) = S(n k,a) and T'(n,k,a) = T(n,k,a), so there
are no error terms to incorporate.

The proof of Theorem 5.3 warrants one additional comment. If S is a
Lebesgue-measurable sumfree set, and (by,...,b;) € S, then

Sb1,~~~,bk = Sﬁ([(), bl] X e X [0, bk]), S{,17...’bk = {(bl, - ,bk)—.%‘ 1xr e Sblwuybk}

are disjoint sets of equal volume and contained in [0, b;] x - - - X [0, bg]. There-
fore we have

1
VOI(Sbl,...,bk) S 5 b1 e bk.

This substitutes for the combinatorial argument that begins the proof of
Theorem 1.3. =

It should be noted that while the constants ¢, and ¢, are similar in
nature (and indeed we apply similar methods when bounding them), there
is no obvious relation between them; it is not even clear which of these values
is larger for a given k.

6. Improving the upper bound. The upper bound for ¢; and ¢
may be improved by a slightly different approach. Recall the definition of
f(B) from (3) in the proof of Theorem 1.3, and suppose Vol(S) = «, where
a = f(c). This would require S to consist of all of [0, 1]¥ except the “integral
wedge” Tv(n, k,a) that we removed from the upper right corner. But this
would mean that S contains all of a smaller set [0, m]*. Scaling by a factor
of 1/m then violates the upper bound we have just determined. We can
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improve our upper bound by exploiting this condition and iterating the
process. We deal with the continuous setting first.

THEOREM 6.1. Define ¢ as in (4), and let o™** be the unique root in
(1/2,1) of the equation

:_O”Lzz'( 2—2a>i'

Ekfg ot

Proof. If Vol(S) = a, consider the set R = [0, (2 — 2a)/*]% € [0,n]*,
which is disjoint from T'(n, k, o) except for a single point. Since S cannot
intersect T'(n, k, ), the smallest density Vol(SNR)/ Vol(R) we can achieve is

a—(1=Vol(T(n,k,a)) — (2 —2a)) _ Vol(T(n,k,a)) 1
(@) = 2 2a ~ T 22 2

i
ZQ—QaZz'< 2—2a>

where we apply Lemma 2.2 in the final step.
If any ¢'(c) > 1 (that is, the mth iterate of ¢y, not the mth power),
we have a contradiction. We wish to show that the function

Yr(a) = gr(a) —
has a unique root o™ in the interval (0.5,1), and that any a > o™ will
grow larger than 1 through repeated application of ¢j. First we observe
that 1% (0.5) = 0. On the interval (1/2,1),

~ o 1 21 1
T’Z)k(a)_2—2a_<2—2a_1_§z'<1n2—2a)>_a
——a—i—ZZ'( 2—2a>

Next we compute the first and second derivatives:

~, 1 1 1\’
vhle) = 75 2 i!<ln22a> -1

i=k—1

o= (o) ) rtan (3 ) )

1=RK—

Then

Inspecting these derivatives, we see that zf/;%(l /2) =—-1<0, and wk is posi-
tive on the interval (1/2,1). Thus, 1% has at most one root in the interval.
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1
22«

Finally, since the quantity In approaches infinity as « approaches 1

from below, it is clear that
lim () = oo.

a—1—

This implies that ¢y(e) = 3r(e) — o has a unique root o** € (1/2,1),
and furthermore, since vy is increasing for o > «**, iteration of @) on any
a > o will eventually give a result larger than 1. Thus we must have

L <a™. m

Figure 3 illustrates the method applied to prove Theorem 5.3, in which
one region of the hypercube is ruled out, while Figure 4 illustrates the
method of Theorem 6.1, in which successive regions are removed from hy-
percubes of decreasing size.

Fig. 3. Method of Theorem 5.3 Fig. 4. Method of Theorem 6.1

When we attempt to adapt the proof of Theorem 6.1 to the discrete
case (already stated as Theorem 1.4), we encounter several obstacles. First,
the side lengths of the smaller cubes are not integers for most choices of a.
Second, continuous approximation introduces an additional error term for
each iteration. And third, after some number of iterations, we will run out
of lattice points. However, all of these problems can be addressed by making
n sufficiently large.

Proof of Theorem 1.4. We follow the proof of Theorem 6.1, but for each
iteration we must replace Vol(T'(n,k,)) with Vol(T'(n,k,)) + O(n*~1),
and (2 — 20)"* with (2 — 2a)'/* + O(1), to adjust for the continuous ap-
proximation step.

The consequence is that if a sumfree set S C {1,... ,n}k has volume
an®, there exists a smaller cube R of side length (2 — 2a)Y*n 4+ O(1) such
that the density Vol(S N R)/ Vol(R) is at least

or(a) == gr(a) + O(1/n).
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We similarly define
Ur(@) = pi(a) — a = () + O(1/n).

Now, let @ > a**. Since 1y, (@) is positive, the same is true of Yy (@) if we
choose n large enough. It follows from the proof of Theorem 6.1 that some
iterate ¢’ (@) is greater than 1, yielding a contradiction.

We must still ensure that the decreasing side length does not reach zero
before we reach our contradiction. However, the number of necessary itera-
tions for a fixed @ does not change if we increase n, so we are free to choose
n large enough to avoid this situation. Thus, any initial density @ > o**
results in a contradiction for sufficiently large n; therefore, ¢ < a**. =

7. Generalization to [-fold-sumfree sets. A sumfree set S is, by
definition, a set such that L(z,y,z) = x+y — 2z # 0 for all z,y,z € S. We
can generalize this definition by replacing = + y — z with any other linear
form L(z1,...,z,) and considering sets such that this form is non-zero for
all x1,...,2, € S.

As a natural generalization, we call S an [-fold-sumfree set if

Vry,...,x5,2€8, x1+---+x—2#0,
or equivalently, using sumset notation, if
IANA=0.
We define
1

(5) ¢k :=limsup — max{#S: S5 C {1,... ,n}* is I-fold sumfree},

n—oo T
or in the continuous setting,
(6) €y :=max{Vol(S): S C [0,1]* is measurable and I-fold-sumfree}.

REMARK 7.1. In some of the literature (]2], for instance), these sets
are simply referred to as [-sumfree. However, this description is used with
various meanings (see [11]), so we will use the term [-fold-sumfree for added
clarity.

As in the sumfree (I = 2) case, we can construct large sumfree sets using
“diagonal stripes”, leading to a similar lower bound.

THEOREM 7.1. Define ci; and cx; as in (5) and (6). Then

L/ (1+1)] K
2 RNk
>1-= Y (=) .
chi = 1= (1) <i><l+1 Z> ’

1=0

L/ (+1)) K
_ 2 OV
>1-= E —1) — i) .
et =1 (=1) (z) <z+ z)

1=0
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Proof. We follow the proof of Theorem 1.1, except now we use the [-
fold-sumfree set

1 l
S(n,k,a) = {($1,...,$k) S [O,n]k : m §x1++xk<m}

The given bound is the volume of this set, by Lemma 2.1. =
COROLLARY 7.2. Define cx; and ¢y as in (5) and (6). Then

e, et = o =

Proof. The lower bound for c; and ¢ given in Theorem 7.1 is larger
than the lower bound for ¢j given in Theorem 1.1 (as it is the volume of a
larger region). Since the previous bound approaches 1 as k grows large, this
one does as well. m

Our upper bound does not extend as easily. Adapting our methods, we
can deal with the [ = 3 case, and in fact find an upper bound which is both
explicit and reasonably effective; however, it is not evident how to deal with
any of the cases where [ > 4.

THEOREM 7.3. Define ci; and ¢ as in (5) and (6). Then

1 s <1 1
— ' 3<1l-——.
(14 21/kyk> T3 (14 21/F)k

Proof. Let S be an I-fold-sumfree subset of [0,1]* with Vol(S) = o

Suppose that

k3 <1—

1
Let 1
y=(01—a)/F 1, whereO<6<§—(1—a)1/k.
Note that

a>1-—+" and fy<%.
We define two sets
A =5n0100,9" Ay=8n[1—-~,1"
and consider the element
a:=1—-7v1-=v,...,1—7).
Suppose that the sets A and the translation A; +a C [L—+, 1]* are disjoint.
Then

a <1 —29% 4 Vol(Ay) + Vol(Ag) = 1 — 2% 4 Vol(A; + a) + Vol(Ay)
S1-20F+4F=1-19F,

which contradicts our assumption on ~.
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Thus, there exist elements w, z € S such that w + a = z. This means S
cannot contain any pair of elements x,y € S such that z +y = a, or else we
would have w + = + y = z, a contradiction since S is 3-fold-sumfree. Then,
as in the proof of Theorem 5.3, we must have

1
Vol(S N1 =~1%) < 5 (1=~
Using this result we obtain

1
1—'yk<a§1—§(1—7)k,

and consequently

k
1 ko k _ 1/k 1
5(1—’}/) <, W<’7—(1—0&) +e, a<l-— W—E .

Letting € approach zero, we achieve the stated bound for ¢ 3.

We obtain the upper bound for ¢ 3 using the same sort of integral ap-
proximation technique we applied to Theorems 1.1, 1.3, and 1.4. The process
is virtually identical, so we omit the details here. m

Theorems 7.1 and 7.3 give us lower and upper bounds for ¢ 3; looking
at the cases where 2 < k < 6, we get the following results:

0.7500 < c23 < 0.8285, 0.9492< ¢53 < 0.9782,
0.8593 < ¢33 <0.9134, 0.9686< cg3 < 0.9891.
0.9166 < c43 < 0.9565,

These bounds illustrate that for 3-fold-sumfree sets, the largest “diagonal
stripe” sets have close to maximal size.

8. Concluding remarks. All of the large sumfree (and I-fold-sumfree)
sets we have constructed are unions of sets of the form K|, as defined in (2)
in Section 3. These are certainly the simplest sets to grasp, but there is no
guarantee that the largest sumfree sets have this structure.

If we limit ourselves to these K,-unions, the problem is simplified to
choosing an optimal sumfree set A C {k,k+1,...,kn}. (To conserve space in
this section, we will use the discrete notation to discuss both the continuous
and discrete problems.) Since the sets K, are not of equal size, this is a
different task than finding a large sumfree set A. This suggests a more
general combinatorial problem.

QUESTION 8.1. Given an additive set with a weight assigned to each
element, what methods can we use to construct sumfree (resp. l-fold-sumfree)
sets that maximize the sum of the weights of the elements?

On the other hand, if we relax this structural constraint, we know vir-
tually nothing about whether the upper bound on the size increases.
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QUESTION 8.2. Are there optimally large sumfree (resp. l-fold-sumfree)

subsets of {1,...,n}* which are not the union of “cross-section” sets?

Addressing both of these questions would solve the problems we have

been studying. Question 8.1 is unlikely to have an answer in full general-
ity, although if the weight distribution is highly structured, as it is in this
context, there may be methods of approach.
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