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1. Introduction. Quasimodular forms were introduced by Kaneko and
Zagier in [5] and have been studied actively since then in connection with
various topics in number theory (see e.g. [1], [7], [9], [11]). They are also
linked to some problems in applied mathematics (cf. [4], [10]). Quasimodular
forms generalize modular forms, and one of their useful properties is that
their derivatives are also quasimodular forms. In particular, the derivatives
of modular forms are quasimodular forms. On the other hand, as shown in
this paper, each quasimodular form can be expressed in terms of derivatives
of some modular forms. In fact, it turns out that a quasimodular form can be
identified with a finite sequence of modular forms. This identification may
allow us to investigate certain aspects of quasimodular forms by studying
the corresponding sequences of modular forms.

Poincaré series provide examples of classical modular forms, and one of
the goals of this paper is to construct Poincaré series for quasimodular forms
by using an automorphism of the space of polynomials that is equivariant
under certain actions of SL(2,R). For this purpose we need to introduce two
types of actions of SL(2,R) on the space of polynomials over the ring of
holomorphic functions on the Poincaré upper half-plane as well as an equiv-
ariant automorphism. Given a discrete subgroup Γ of SL(2,R), quasimod-
ular polynomials and modular polynomials for Γ are invariant polynomials
under such actions restricted to Γ . Thus the equivariance property shows
that the above automorphism induces an isomorphism between the space of
quasimodular polynomials and that of modular polynomials.

The coefficients of modular polynomials are modular forms of certain
weights, so that a modular polynomial can be identified with a certain finite
sequence of modular forms. On the other hand, quasimodular polynomials
correspond to quasimodular forms. Indeed, given integers m and w with
m ≥ 0, a quasimodular form f of weight w and depth at mostm for a discrete
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subgroup Γ of SL(2,R) corresponds to holomorphic functions f0, f1, . . . , fm
on the Poincaré upper half-plane H in such a way that

(1.1)
1

(cz + d)w
f

(
az + b

cz + d

)
= f0(z) + f1(z)

(
c

cz + d

)
+ · · ·+ fm(z)

(
c

cz + d

)m
for all z ∈ H and

(
a b
c d

)
∈ Γ , and the corresponding quasimodular polyno-

mial has the functions fk as its coefficients.
In this paper we consider a particular automorphism of the space of

such polynomials and prove that it is SL(2,R)-equivariant with respect to
the above-mentioned actions. The resulting isomorphism between the space
of quasimodular polynomials and that of modular series determines a corre-
spondence between quasimodular forms and some finite sequences of classi-
cal modular forms. More specifically, if a quasimodular form f satisfies (1.1),
the corresponding holomorphic functions fk can be expressed as linear com-
binations of derivatives of some modular forms. Furthermore, such modular
forms can be written as linear combinations of derivatives of the functions fk.
We also use the equivariant automorphism to construct Poincaré series for
quasimodular forms.

2. Correspondences of polynomials. In this section we consider
polynomials whose coefficients are functions on the upper half-plane. We
construct a linear automorphism of the space of such polynomials associ-
ated to each integer, which will be used in Section 4 to obtain modular
forms corresponding to quasimodular forms.

Let H be the Poincaré upper half-plane, and let F be the ring of holo-
morphic functions f : H → C satisfying the growth condition

(2.1) |f(z)| �
(
=z

1 + |z|2

)−ν
for some ν > 0 (see e.g. [8, Section 17.1] for a more precise description of
this condition). We fix a nonnegative integer m and denote by Fm[X] the
complex vector space of polynomials in X over F of degree at most m. If
an element Φ(z,X) ∈ Fm[X] is a polynomial of the form

(2.2) Φ(z,X) =
m∑
r=0

φr(z)Xr

and if λ is an integer with λ ≥ 2m, we consider two other polynomials

(Ξm
λ Φ)(z,X), (Λmλ Φ)(z,X) ∈ Fm[X]
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defined by

(2.3) (Ξm
λ Φ)(z,X) =

m∑
r=0

φΞr (z)Xr, (Λmλ Φ)(z,X) =
m∑
r=0

φΛr (z)Xr

where

φΞk =
1
k!

m−k∑
r=0

1
r!(λ− 2k − r − 1)!

φ
(r)
m−k−r,(2.4)

φΛk = (λ+ 2k − 2m− 1)
k∑
r=0

(−1)r

r!
(m− k + r)!(2.5)

× (2k + λ− 2m− r − 2)!φ(r)
m−k+r

for each k ∈ {0, 1, . . . ,m}.
Lemma 2.1. Let u and v be positive integers with u ≤ v. Then

u∑
r=0

(−1)r
(
u

r

)(
v − r
u− 1

)
= 0.

Proof. See e.g. [6, Lemma 2.7].

Proposition 2.2. The maps Ξm
λ , Λ

m
λ : Fm[X]→ Fm[X] given by (2.3)

are complex linear isomorphisms with

(Λmλ )−1 = Ξm
λ for each λ > 2m.

Proof. Given λ > 2m, we first consider a polynomial Φ(z,X) and its
image (Ξm

λ Φ)(z,X) under Ξλ as in (2.2) and (2.3), respectively. Then from
(2.4), we obtain

φΞm−k+r =
1

(m− k + r)!

k−r∑
l=0

1
l!(λ− 2m+ 2k − 2r − l − 1)!

φ
(l)
k−l−r

for 0 ≤ r ≤ k ≤ m. Thus, if we set

((Λmλ ◦Ξm
λ )Φ)(z,X) =

∞∑
r=0

φ̂r(z)Xr,

then from (2.5) we see that

(2.6)
φ̂k

λ+ 2k − 2m− 1

=
k∑
r=0

(−1)r

r!
(m− k + r)!(λ+ 2k − 2m− r − 2)!(φΞm−k+r)

(r)

=
k∑
r=0

k−r∑
l=0

(−1)r(λ+ 2k − 2m− r − 2)!
r!l!(λ− 2m+ 2k − 2r − l − 1)!

φ
(l+r)
k−l−r



158 M. H. Lee

=
k∑

u=0

u∑
r=0

(−1)r(λ+ 2k − 2m− r − 2)!
r!(u− r)!(λ+ 2k − 2m− r − u− 1)!

φ
(u)
k−u

=
(λ+ 2k − 2m− 2)!
(λ+ 2k − 2m− 1)!

φk

+
k∑

u=1

1
u
φ

(u)
k−u

u∑
r=0

(−1)ru!(λ+ 2k − 2m− r − 2)!
r!(u− r)!(λ+ 2k − 2m− r − u− 1)!(u− 1)!

=
φk

λ+ 2k − 2m− 1
+

k∑
u=1

1
u
φ

(u)
k−u

u∑
r=0

(−1)r
(
u

r

)(
λ+ 2k − 2m− r − 2

u− 1

)
.

Since λ > 2m, if 1 ≤ u ≤ k, we have

λ+ 2k − 2m− 2 ≥ 2k − 1 ≥ k ≥ u.

Thus, using Lemma 2.1, we see that
u∑
r=0

(−1)r
(
u

r

)(
λ+ 2k − 2m− r − 2

u− 1

)
= 0

for 1 ≤ u ≤ k. Hence (2.6) can be written in the form

φ̂k
λ+ 2k − 2m− 1

=
φk

λ+ 2k − 2m− 1
,

and we obtain
((Λmλ ◦Ξm

λ )Φ)(z,X) = Φ(z,X).

We now assume that (Λmλ Φ)(z,X) is as in (2.3) and that

((Ξm
λ ◦ Λmλ )Φ)(z,X) =

m∑
r=0

φ̃r(z)Xr.

Thus, in particular, (2.5) is valid for 0 ≤ k ≤ m. We shall verify that φ̃k = φk
for 0 ≤ k ≤ m using induction. Given a nonnegative integer n < m, we first
assume that

φk = φ̃k =
1
k!

m∑
r=0

1
r!(λ− 2k − r − 1)!

(φΛm−k−r)
(r)

for each k ∈ {m− n, . . . ,m}. Then from (2.5) we obtain

φΛn+1 = (2n− λ− 2m+ 1)

×
n+1∑
r=0

(−1)r

r!
(2n+ λ− 2m− r)!(m− n− 1 + r)!φ(r)

m−n−1+r
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= (2n− λ− 2m+ 1)!(m− n− 1)!φm−n−1 − (2n− λ− 2m+ 1)

×
n∑
r=0

(−1)r

(r + 1)!
(2n+ λ− 2m− r − 1)!(m− n+ r)!φ(r+1)

m−n+r,

which can be written in the form

(2.7) φm−n−1 =
φΛn+1

(2n− λ− 2m+ 1)!(m− n− 1)!

+
1

(2n− λ− 2m)!(m− n− 1)!

×
n∑
r=0

(−1)r

(r + 1)!
(2n+ λ− 2m− r − 1)!(m− n+ r)!φ(r+1)

m−n+r.

However, since (2.4) holds for k ∈ {m− n, . . . ,m}, we have

n∑
r=0

(−1)r

(r + 1)!
(2n+ λ− 2m− r − 1)!(m− n+ r)!φ(r+1)

m−n+r

=
n∑
r=0

n−r∑
l=0

(−1)r(2n+ λ− 2m− r − 1)!
(r + 1)!l!(λ− 2m+ 2n− 2r − l − 1)!

(φΛn−l−r)
(l+r+1)

=
n∑

w=0

w∑
r=0

(−1)r(2n+ λ− 2m− r − 1)!
(r + 1)!(w − r)!(λ− 2m+ 2n− r − w − 1)!

(φΛn−w)(w+1)

=
n∑

w=0

1
w + 1

w∑
r=0

(−1)r
(
w + 1
r + 1

)(
2n+ λ− 2m− r − 1

w

)
(φΛn−w)(w+1).

On the other hand, using Lemma 2.1, we deduce that
w∑
r=0

(−1)r
(
w + 1
r + 1

)(
2n+ λ− 2m− r − 1

w

)
=
(

2n+ λ− 2m
w

)
.

Thus (2.7) can now be written as

φm−n−1 =
φΛn+1

(2n− λ− 2m+ 1)!(m− n− 1)!
+

1
(2n− λ− 2m)!(m− n− 1)!

×
n∑

w=0

1
w + 1

(
2n+ λ− 2m

w

)
(φΛn−w)(w+1)

=
φΛn+1

(2n− λ− 2m+ 1)!(m− n− 1)!



160 M. H. Lee

+
1

(2n− λ− 2m)!(m− n− 1)!

n+1∑
w=1

1
w

(
2n+ λ− 2m

w − 1

)
(φΛn+1−w)(w)

=
1

(m− n− 1)!

n+1∑
w=0

1
w!(2n+ λ− 2m− w + 1)!

(φΛn+1−w)(w) = φ̃m−n−1.

Hence φ̃k = φk for all n ∈ {0, 1, . . . ,m} by induction. Thus

((Ξm
λ ◦ Λmλ )Φ)(z,X) = Φ(z,X),

and the proof of the proposition is complete.

3. Modular and quasimodular polynomials. In this section we in-
troduce two types of actions of SL(2,R) on the space of polynomials con-
sidered in Section 2. We show that the isomorphisms in Proposition 2.2 are
equivariant with respect to these actions. As an application, we establish a
correspondence between modular and quasimodular polynomials.

The group SL(2,R) acts on the Poincaré upper half-plane H as usual by
linear fractional transformations, so that

γz =
az + b

cz + d

for all z ∈ H and γ =
(
a b
c d

)
∈ SL(2,R). For the same z and γ, we set

(3.1) J(γ, z) = cz + d, K(γ, z) =
c

cz + d
.

These formulas determine the maps J,K : SL(2,R) × H → C of which the
first map is the usual automorphy factor satisfying the cocycle condition

(3.2) J(γγ′, z) = J(γ, γ′z)J(γ′, z)

for all γ, γ′ ∈ SL(2,R) and z ∈ H. On the other hand, it can be shown that
the second map satisfies

(3.3) K(γγ′, z) = K(γ′, z) + J(γ′, z)−2K(γ, γ′z).

Let F be the ring of holomorphic functions f : H → C satisfying (2.1),
as in Section 2. If γ ∈ SL(2,R), λ ∈ Z, f ∈ F and

(3.4) Φ(z,X) =
m∑
r=0

φr(z)Xr ∈ Fm[X],

we set

(f |λ γ)(z) = J(γ, z)−λf(γz),(3.5)
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(Φ |Xλ γ)(z,X) =
m∑
r=0

(φr |λ+2r γ)(z)Xr,(3.6)

(Φ ‖λ γ)(z,X) = J(γ, z)−λΦ(γz, J(γ, z)2(X − K(γ, z)))(3.7)

for all z ∈ H. If γ′ is another element of SL(2,R), then it can be shown that

(f |λ (γγ′))(z) = ((f |λ γ) |λ γ′)(z),
(Φ |Xλ (γγ′))(z,X) = ((Φ |Xλ γ) ‖λ γ

′)(z,X),
(Φ ‖λ(γγ′))(z,X) = ((Φ ‖λ γ) ‖λ γ

′)(z,X).

Thus the above operations determine right actions of SL(2,R), one action
on F and the other two on Fm[X]. We note that

(3.8) (f |λ γ)(r)(z) =
r∑
l=0

(−1)r−l
r!
l!

(
λ+ r − 1
r − l

)
K(γ, z)r−l

J(γ, z)λ+2l
f (l)(γz)

for f ∈ F , z ∈ H, γ ∈ SL(2,R) and r ≥ 0 (cf. [3, (1.9)]).

Theorem 3.1. Given a polynomial Φ(z,X) ∈ Fm[X] and an integer λ,
we have

((Ξm
λ Φ) ‖λ γ)(z,X) = Ξm

λ (Φ |Xλ−2m γ)(z,X),(3.9)

((Λmλ Φ) |Xλ−2m γ)(z,X) = Λmλ (Φ ‖λ γ)(z,X)(3.10)

for all γ ∈ SL(2,R), where Ξm
λ and Λmλ are the isomorphisms in Proposi-

tion 2.2.

Proof. Let Φ(z,X) ∈ Fm[X] be given by (3.4), so that

(Ξm
λ Φ)(z,X) =

m∑
r=0

φΞr (z)Xr

for λ ∈ Z, where the coefficients φΞr (z) are as in (2.4). If γ ∈ SL(2,R), from
(3.7) we obtain

((Ξm
λ Φ) ‖λ γ)(z,X) = J(γ, z)−λ

m∑
l=0

φΞl (γz)J(γ, z)2l(X − K(γ, z))l

=
m∑
l=0

l∑
r=0

(
l

r

)
φΞl (γz)J(γ, z)2l−λ(−1)l−rK(γ, z)l−rXr

=
m∑
r=0

m∑
l=r

(−1)l−r
(
l

r

)
φΞl (γz)J(γ, z)2l−λK(γ, z)l−rXr.

Thus we may write

((Ξm
λ Φ) ‖λ γ)(z,X) =

m∑
r=0

ξΞr (γ, z)Xr,
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where

ξΞr (γ, z) =
m−r∑
l=0

(−1)l
(
l + r

r

)
φΞl+r(γz)J(γ, z)2l+2r−λK(γ, z)l

for each r ≥ 0. Using (2.4), we have

φΞl+r(γz) =
1

(l + r)!

m−r−l∑
k=0

1
k!(λ− 2r − 2l − k − 1)!

φ
(k)
m−r−l−k(γz),

and therefore we obtain

(3.11) ξΞr (γ, z) =
m−r∑
l=0

m−r−l∑
k=0

(−1)lJ(γ, z)2l+2r−λK(γ, z)l

k!r!l!(λ− 2r − 2l − k − 1)!
φ

(k)
m−r−l−k(γz).

On the other hand, from (2.3), (2.4) and (3.6) we see that

Ξm
λ (Φ |Xλ−2m γ)(z,X) =

m∑
r=0

ηΞr (γ, z)Xr,

where

ηΞr (γ, z) =
1
r!

m−r∑
k=0

1
k!(λ− 2r − k − 1)!

(φm−r−k |λ−2r−2k γ)(k)(z)

for r ≥ 0. Using (3.8), we have

(φm−r−k |λ−2r−2k γ)(k)(z)

=
k∑
l=0

(−1)k−l
k!
l!

(
λ− 2r − k − 1

k − l

)
K(γ, z)k−l

J(γ, z)λ−2r−2k+2l
φ

(l)
m−r−k(γz).

Thus we obtain

ηr(γ, z) =
m−r∑
k=0

k∑
l=0

(−1)k−lK(γ, z)k−lJ(γ, z)−λ+2r+2k−2l

r!l!(k − l)!(λ− 2r − 2k + l − 1)!
φ

(l)
m−r−k(γz)

=
m−r∑
l=0

m−r∑
k=l

(−1)k−lK(γ, z)k−lJ(γ, z)−λ+2r+2k−2l

r!l!(k − l)!(λ− 2r − 2k + l − 1)!
φ

(l)
m−r−k(γz)

=
m−r∑
l=0

m−l−r∑
k=0

(−1)kK(γ, z)kJ(γ, z)−λ+2r+2k

r!l!k!(λ− 2r − 2k − l − 1)!
φ

(l)
m−r−k−l(γz).

Comparing this with (3.11), we have

ξr(γ, z) = ηr(γ, z)

for each r ∈ {0, . . . ,m}, which verifies (3.9). The relation (3.10) follows from
this and Proposition 2.2.
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Definition 3.2. Let Γ be a discrete subgroup of SL(2,R), and let |λ,
|Xλ and ‖λ with λ ∈ Z be the operations in (3.5)–(3.7).

(i) An element f ∈ F is a modular form for Γ of weight λ if it satisfies

f |λ γ = f

for all γ ∈ Γ . We denote by Mλ(Γ ) the space of modular forms for
Γ of weight λ.

(ii) An element F (z,X) ∈ Fm[X] is a modular polynomial for Γ of
weight λ and degree at most m if it satisfies

F |Xλ γ = F

for all γ ∈ Γ . We use MPmλ (Γ ) to denote the space of modular
polynomials for Γ of weight λ and degree at most m.

(iii) An element Φ(z,X) ∈ Fm[X] is a quasimodular polynomial for Γ of
weight λ and degree at most m if it satisfies

Φ ‖λ γ = Φ

for all γ ∈ Γ . We denote by QPmλ (Γ ) the space of quasimodular
polynomials for Γ of weight λ and degree at most m.

If a polynomial F (z,X) ∈ Fm[X] of the form

F (z,X) =
m∑
r=0

fr(z)Xr

belongs to MPmλ (Γ ), from (3.6) and Definition 3.2(ii) we see that

(3.12) fr ∈Mλ+2r(Γ )

for 0 ≤ r ≤ m.

Proposition 3.3. The isomorphisms Ξm
λ and Λmλ in Proposition 2.2

induce the isomorphisms

Ξm
λ : MPmλ−2m(Γ )→ QPmλ (Γ ), Λmλ : QPmλ (Γ )→MPmλ−2m(Γ )

for each λ ∈ Z.

Proof. This follows immediately from Theorem 3.1 and Definition 3.2.

4. Quasimodular forms. In this section we study some of the prop-
erties of quasimodular forms including their correspondence with finite se-
quences of modular forms. We also construct Poincaré series for quasimod-
ular forms.

Let Γ be a discrete subgroup of SL(2,R), and let F be as in Section 2.
Given a nonnegative integer m, let Fm[X] be as in Section 3.
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Definition 4.1. Given an integer λ, an element f ∈ F is a quasimod-
ular form for Γ of weight λ and depth at most m if there are functions
f0, . . . , fm ∈ F such that

(4.1) (f |λ γ)(z) =
m∑
r=0

fr(z)K(γ, z)r

for all z ∈ H and γ ∈ Γ , where K(γ, z) is as in (3.1) and |λ is the operation
in (3.5). We denote by QMm

λ (Γ ) the space of quasimodular forms for Γ of
weight λ and depth at most m.

Remark 4.2.
(i) If γ ∈ Γ is the identity matrix in (4.1), then K(γ, z) = 0, and therefore

it follows that
f = f0.

On the other hand, if m = 0, the relation (4.1) can be written in the form

f |λ γ = f0 = f ;

hence we see that QM0
λ(Γ ) coincides with the space Mλ(Γ ) of modular

forms.
(ii) If (4.1) is satisfied for another set of functions f̂0, . . . , f̂m ∈ F , then

we have
m∑
r=0

(f̂r(z)− fr(z))K(γ, z)r = 0

for all γ belonging to the infinite set Γ ; hence it follows that f̂r = fr for
each r. Thus we see that the quasimodular form f determines the associated
functions f0, . . . , fm ∈ F uniquely.

Let f ∈ F be a quasimodular form belonging to QMm
λ (Γ ) satisfying

(4.1). Then we define the corresponding polynomial (Qmλ f)(z,X) ∈ Fm[X]
by

(4.2) (Qmλ f)(z,X) =
m∑
r=0

fr(z)Xr

for all z ∈ H. From Remark 4.2(ii) we see that Qmλ f is well-defined; hence
we obtain the complex linear map

Qmλ : QMm
λ (Γ )→ Fm[X]

for each λ ∈ Z.

Lemma 4.3. Let F (z,X) =
∑m

r=0 fr(z)X
r ∈ Fm[X]. Then F (z,X) is

a quasimodular polynomial belonging to QPmλ (Γ ) if and only if for each
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r ∈ {0, 1, . . . ,m} the coefficient fr satisfies

(4.3) (fr |λ−2r γ)(z) =
m−r∑
l=0

(
l + r

r

)
fl+r(z)K(γ, z)l

for all z ∈ H and γ ∈ Γ . In particular , fr is a quasimodular form belonging
to QMm−r

λ−2r(Γ ).

Proof. See e.g. [2].

If 0 ≤ l ≤ m, we consider the complex linear map

Sl : Fm[X]→ F defined by Sl

( m∑
r=0

fr(z)Xr
)

= fl(z)

for all z ∈ H. Then from Lemma 4.3 we see that

Sl(QPmλ (Γ )) ⊂ QMm−l
λ−2l(Γ );

hence we obtain the map

(4.4) Sl : QPmλ (Γ )→ QMm−l
λ−2l(Γ )

for each l. On the other hand, using (4.2) and (4.3), we also have

(Qm−rλ−2r(SrF ))(z,X) =
m−r∑
l=0

(
l + r

r

)
(Sl+rF )(z)X l ∈ QPm−rλ−2r(Γ )

for F (z,X) ∈ QMm
λ (Γ ) and 0 ≤ r ≤ m. In particular, the map Qmλ given

by (4.2) determines the complex linear map

(4.5) Qmλ : QMm
λ (Γ )→ QPmλ (Γ )

for each λ ∈ Z.

Lemma 4.4. The map S0 : QPmλ (Γ )→ QMm
λ (Γ ) in (4.4) is an isomor-

phism whose inverse is the map Qmλ in (4.5).

Proof. See [2].

Let φ ∈ QMm
λ (Γ ) be a quasimodular form satisfying

(4.6) (φ |λ γ)(z) =
m∑
r=0

φr(z)K(γ, z)r

for all γ ∈ Γ and z ∈ H, so that

(Qmλ φ)(z,X) =
m∑
r=0

φr(z)Xr ∈ QPmλ (Γ )

by (4.2). We then set

(4.7) Λ̃mλ (φ) = (φΛ0 , φ
Λ
1 , . . . , φ

Λ
m) ∈ Fm+1,
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where the functions φΛr ∈ F are the coefficients of the modular polynomial

((Λmλ ◦ Qmλ )φ)(z,X) ∈MPmλ (Γ )

given by (2.5).

Proposition 4.5. The formula (4.7) determines an isomorphism

Λ̃mλ : QMm
λ (Γ )→

m⊕
k=0

Mλ+2k−2m(Γ )

of complex vector spaces for λ > 2m.

Proof. From (3.12) we see that φΛr ∈Mλ+2r(Γ ) for each r∈{0, 1, . . . ,m};
hence the proposition follows from Lemma 4.4.

Example 4.6. We consider modular forms g ∈ M2(Γ ) and p ∈ Mξ(Γ )
with ξ ∈ Z. Then we see that gkp ∈Mξ+2k(Γ ) for 0 ≤ k ≤ m; hence

(p, gp, . . . , gmp) ∈
m⊕
k=0

Mλ+2k−2m(Γ ).

Thus we obtain

(Λ̃mξ+2m)−1(p, gp, . . . , gmp) =
m∑
r=0

1
r!(λ− r − 1)!

(gm−rp)(r)

=
m∑
r=0

r∑
l=0

1
r!(λ− r − 1)!

(
r

l

)
(gm−r)(l)p(r−l)

=
m∑
r=0

r∑
l=0

(gm−r)(l)p(r−l)

l!(r − l)!(λ− r − 1)!
,

and it is a quasimodular form belonging to QMm
ξ+2m(Γ ).

In order to discuss Poincaré series we now assume that x is a cusp of Γ ,
so that there is an element σ ∈ SL(2,R) such that

(4.8) σΓxσ
−1 · {±1} =

{
±
(

1 h

0 1

)n ∣∣∣∣n ∈ Z
}

for some positive real number h. Given integers w ≥ 3 and u ≥ 0, we set

(4.9) Pxw,u(z) =
∑

γ∈Γx\Γ

J(σγ, z)−weu/h(σγz) = (eu/h |2(ξ−m+r) σγ)(z)

for all z ∈ H, where eµ(·) = exp(2πiµ(·)) for µ ∈ C. Then it is well-known
that the series in (4.9) converges absolutely and uniformly on any compact
subset of H, and the resulting function Pxw,u : H → C is a Poincaré series
for modular forms belonging to Mw(Γ ).
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If α, u ∈ Z, we set

ηα,u(z) = J(σ, z)−αeu/h(σz)

for all z ∈ H, where h is as in (4.8). Then, using (3.2), we have

(ηα,u |α γ)(z) = J(γ, z)−αJ(σ, γz)−αeu/h(σγz) = J(σγ, z)−αeu/h(σγz).

Thus the Poincaré series (4.8) can be written in the form

(4.10) Pxw,u(z) =
∑

γ∈Γx\Γ

(ηα,u |α γ)(z).

Given ξ ∈ Z, we consider the polynomial

(4.11) Gξ,u(z,X) =
m∑
r=0

η2(ξ−m+r),u(z)Xr ∈ Fm[X],

and set

(4.12) P̂x2ξ,u(z,X) =
∑

γ∈Γx\Γ

((Ξm
2ξGξ,u) ‖2ξ−2m γ)(z,X)

for z ∈ H, where x is a cusp of Γ as above and Ξm
2ξ is as in (2.3).

Theorem 4.7.

(i) The series P̂x2ξ,u(z,X) given by (4.12) is a quasimodular polynomial
belonging to QPm2ξ (Γ ).

(ii) The series P̂x2ξ,u(z,X) can be written in the form

(4.13) P̂x2ξ,u(z,X)

=
∑

γ∈Γx\Γ

m∑
r=0

m−r∑
l=0

l∑
j=0

(−1)l−j(2πiu)jl!
hjj!r!(2ξ − 2m− l − 1)!

×
(

2ξ − 2r − l − 1
l − j

)
K(σγ, z)l−j

J(σγ, z)2ξ−2r−2l+2j
eu/h(σγz)Xr.

(iii) The function P̂x,02ξ,u ∈ F given by

P̂x,02ξ,u(z) =
∑

γ∈Γx\Γ

m∑
l=0

l∑
j=0

(−1)l−j(2πiu)jl!
hjj!(2ξ − 2m− l − 1)!

×
(

2ξ − l − 1
l − j

)
K(σγ, z)l−j

J(σγ, z)2ξ−2r−2l+2j
eu/h(σγz)

for z ∈ H is a quasimodular form belonging to QMm
2ξ(Γ ).
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Proof. Using (3.6), (4.10)–(4.12) and Theorem 3.1, we have

P̂x2ξ,u(z,X) =
∑

γ∈Γx\Γ

Ξm
2ξ(Gξ,u |X2ξ−2m γ)(z,X)

=
∑

γ∈Γx\Γ

Ξm
2ξ

( m∑
r=0

(η2(ξ−m+r),u |2(ξ−m+r) γ)(z)Xr
)

= Ξm
2ξ

( m∑
r=0

P2(ξ−m+r),u(z)Xr
)
.

Since P2(ξ−m+r),u ∈M2(ξ−m+r)(Γ ) for each r ≥ 0, from (3.6) and Definition
3.2 we see that the sum

(4.14) F (z,X) =
m∑
r=0

P2(ξ−m+r),u(z)Xr

is a modular polynomial belonging to MPm2ξ−2m(Γ ), and therefore by Propo-
sition 3.3 its image

(4.15) P̂x2ξ,u(z,X) = (Ξm
2ξF )(z,X)

under Ξm
2ξ is a quasimodular polynomial belonging to QPm2ξ (Γ ); hence (i)

follows. On the other hand, using (2.3) (4.9), (4.14) and (4.15), we have

(Ξm
2ξF )(z,X) =

∑
γ∈Γx\Γ

Ξm
2ξ

( m∑
r=0

(eu/h |2(ξ−m+r) σγ)(z)Xr
)

(4.16)

=
∑

γ∈Γx\Γ

m∑
r=0

φ̂r(z)Xr,

where

(4.17) φ̂r =
1
r!

m−r∑
l=0

1
(2ξ − 2r − l − 1)!

(eu/h |2(ξ−r−l) σγ)(l).

However, from (3.8) we see that

(4.18) (eu/h |2(ξ−r−l) σγ)(l)(z)

=
l∑

j=0

(−1)l−j
l!
j!

(
2ξ − 2r − l − 1

l − j

)
K(σγ, z)l−j

J(σγ, z)2ξ−2r−2l+2j
(eu/h)(j)(σγz)

=
l∑

j=0

(−1)l−j(2πiu)jl!
hjj!

(
2ξ − 2r − l − 1

l − j

)
K(σγ, z)l−j

J(σγ, z)2ξ−2r−2l+2j
eu/h(σγz).

Thus we obtain (4.15) by combining (4.16)–(4.18), which proves (ii). Finally,
(iii) follows from (ii), Remark 4.2, and Lemma 4.4.
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