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The Lehmer strength bounds for total ramification
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1. Introduction. Mahler’s measure of a polynomial f , denoted by
M(f), is defined as the product of the absolute values of those roots of f
that lie outside the unit disk, multiplied by the absolute value of the leading
coefficient. If f(x) = b

∏d
i=1(x− αi), then

M(f) = |b|
d∏
i=1

max{1, |αi|}.

If f ∈ Z[x], then M(f) ≥ 1 and it is a result of Kronecker that for f ∈ Z[x],
M(f) = 1 if and only if f is a product of a power of x and cyclotomic
polynomials. In 1933, D. H. Lehmer [1] asked if for every ε > 0 there exists
fε ∈ Z[x] such that 1 < M(fε) < 1 + ε. This is known as Lehmer’s question
and remains an open problem. For an algebraic number α, we let mα,Z be
the minimal polynomial of α over Z and define M(α) ≡ M(mα,Z). It follows
that for an algebraic number α that is not an integer, M(α) ≥ 2.

Lehmer identified l(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1
as having lowest known Mahler measure and to this day l has the lowest
known Mahler measure (other than 1) amongst polynomials in Z[x], M(l) ≈
1.176. If a lower bound for the Mahler measure of a polynomial in Z[x] is
greater than M(l) then we say that the lower bound is of Lehmer strength.
Mossinghoff, Rhin and Wu [3] have determined that for algebraic numbers
different from zero and the roots of unity and of degree ≤ 54, M(α) ≥ M(l).
An algebraic integer, α 6∈ Z, is said to be reciprocal if 1/α is a Galois
conjugate of α. C. Smyth [5] proved that amongst all nonreciprocal, nonzero
algebraic integers the smallest Mahler measure is attained by the roots of
x3 − x− 1. Schinzel [4] has proven that if f is monic of degree d satisfying
f(0) = ±1, f(±1) 6= 0, and all roots of f real, then M(f) ≥ ((1 +

√
5)/2)d/2.

For a rational prime p, an algebraic number α is said to be totally p-adic
if the Galois closure of Q(α) can be embedded into Qp. This is equivalent to
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saying that the rational prime p splits completely in Q(α) or that p is un-
ramified in Q(α) and that all the prime ideal divisors of pOQ(α) have residue
class degree 1. Mignotte [2] has proven that given an algebraic number α
of degree d such that there exists a rational prime p ≤ d log d that splits
completely in Q(α), M(α) > M(l). This result was quoted by Smyth [6] in
a recent survey article.

The purpose of this article is to identify the corresponding lower bounds
of Lehmer strength for the case of total ramification. We establish the fol-
lowing companions to the results of Mignotte and Schinzel.

Theorem 1. Let α be an algebraic number different from zero and the
roots of unity. Let p > [Q(α) : Q] be a prime that ramifies completely in
Q(α). Then M(α) ≥

√
5− 1 > M(l).

Theorem 2. Let α be an algebraic number different from zero and the
roots of unity. If 2 ramifies completely in Q(α) then M(α) ≥ 4

√
2 > M(l).

2. The absolute Weil height. Amongst the absolute values in a place
v of an algebraic number field, K, two will play a role in the development of
Theorems 1 and 2. If v is Archimedean, let ‖ · ‖v denote the unique absolute
value in v which restricts to the usual Archimedean absolute value on Q. If
v is non-Archimedean and v | p, let ‖ · ‖v denote the unique absolute value
in v restricting to the usual p-adic absolute value on Q. For each place v of
K, let Kv and Qv denote the completions of K and Q with respect to v and
define the local degree as dv ≡ [Kv : Qv]. Let | · |v = ‖ · ‖dv/d

v .
The absolute values | · |v satisfy the product formula: if α ∈ K×, then∏

v |α|v = 1. The absolute (logarithmic) Weil height of α is defined as h(α) =∑
v log+ |α|v where the sum is over all places v of K. Because of the way

in which the absolute values | · |v are normalised, the absolute Weil height
of α does not depend on the field K in which α is contained. If αi and
αj are algebraic numbers, h(αi · αj) ≤ h(αi) + h(αj) and if αi and αj are
Galois conjugates then h(αi) = h(αj). For a root of unity ζ and an algebraic
number α, h(ζ · α) = h(α). For an algebraic number α, [Q(α) : Q] · h(α)
= M(α).

An algebraic integer α is a unit if and only if NormQ(α) = 1. Since we are
considering Lehmer’s question, it follows that we may restrict to consider-
ation of units. In this case,

∑
v-∞ log+ |α|v = 0 and h(α) =

∑
v|∞ log+ |α|v.

It follows from the product formula that for an algebraic number α,∑
v|∞

log+ |α|v ≥ −
∑
v-∞

log |α|v.

3. Preliminary lemmas. This section establishes Lemmas 1 and 2
which are used in the proofs of Theorems 1 and 2.
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Lemma 1. Let α 6= 1 be an algebraic number whose trace is greater than
or equal to its degree. Then M(α) ≥

√
5− 1 > M(l).

Proof. Suppose that M(α) <
√

5 − 1. Let d = [Q(α) : Q]. Let A =
{α1, . . . , αd} be the set of Galois conjugates of α and let K be the Galois
closure of Q(α). Fix an embedding η : K ↪→ C and let ‖ · ‖∞ be the usual
Archimedean absolute value on C. Since

M(α) ≥
∏
A

max{1, ‖Re η(ω)‖∞} ≥ 1 +
∑
A

max{0, Re η(ω)− 1}

and
∑

A Re η(ω) ≥ d it follows that for all ω ∈ A, 3−
√

5 < Re η(ω) <
√

5−1.
Consequently,

‖Im η(ω)− 1‖2∞ = ‖Im η(ω)‖2∞ = ‖η(ω)‖2∞ − ‖Re η(ω)‖2∞
< (
√

5− 1)2 − (3−
√

5)2,

‖Re η(ω)− 1‖2∞ ≤ (
√

5− 2)2,
‖η(ω)− 1‖2∞ = ‖Re η(ω)− 1‖2∞ + ‖Im η(ω)− 1‖2∞

≤ (
√

5− 2)2 + (
√

5− 1)2 − (3−
√

5)2

< 1.

As a result, the rational integer
∏

A ‖η(ω)−1‖∞ lies strictly between 0 and 1.
This contradicts the Fundamental Principle of Number Theory.

Lemma 2. Let α be an algebraic number. Let p be a rational prime that
ramifies completely in Q(α). Let K be the Galois closure of Q(α), let B be
a prime ideal divisor of pOK, let HQ(α) be the subgroup of Aut(K/Q) fixing
the field Q(α) and let G0 be the ramification group of B. Then Aut(K/Q) =
G0HQ(α).

Proof. Let GB be the decomposition group of B. Let Rα = {g1, . . . , gt}
be a set of representatives for the double cosets of Aut(K/Q) with respect
to HQ(α) and G0. Then

Aut(K/Q) =
t⋃
i=1

HQ(α)giGB.

The distinct prime ideal divisors of pOQ(α) are given by

giB ∩ OQ(α).

The ramification index e′i of giB ∩ OQ(α) is given by

e′i =
|G0|

|giG0g
−1
i ∩HQ(α)|

.

Since p is completely ramified in Q(α) there exists a unique prime ideal
divisor B∩OQ(α) of pOQ(α). As a result, |Rα| = 1 and we may suppose that
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Rα = {1}. It thus follows that Aut(K/Q) = GBHQ(α). Furthermore, the
ramification index e′ of B ∩ OQ(α) is

e′ =
|G0|

|G0 ∩HQ(α)|
= [Q(α) : Q],

which implies that

|G0HQ(α)| =
|G0| · |HQ(α)|
|G0 ∩HQ(α)|

= |HQ(α)| · [Q(α) : Q] = |Aut(K/Q)|.

4. Proof of Theorem 1. By the result of Mossinghoff, Rhin and Wu [3],
we may suppose that p > [Q(α) : Q] > 54. Let K be the Galois closure of
Q(α), let α1, . . . , αd be the Galois conjugates of α and let HQ(α) be the
subgroup of Aut(K/Q) fixing the field Q(α). Let B be a prime ideal divisor
of pOK and let G0 be the ramification group of B. By the result of Smyth [5],
we may suppose that there exists σ ∈ Aut(K/Q) such that σ(α) = 1/α. By
Lemma 2, Aut(K/Q) = G0HQ(α). There thus exist τ ∈ HQ(α) and γ ∈ G0

such that σ = γτ . Since p ramifies completely in Q(α), there exists a unique
prime ideal divisor B′ of pOQ(α) and pOQ(α) = B′[Q(α):Q]. It follows that

α− σ(α) = α− γ(τ(α)) = α− γ(α) ∈ B′.

As a result

α− σ(α) ∈ B′, α− 1/α ∈ B′.

Since α is a unit and by the difference of squares formula,

α2 − 1 ∈ B′, (α+ 1)(α− 1) ∈ B′.

Since B′ is a prime ideal we may suppose that α− 1 ∈ B′ or α+ 1 ∈ B′. In
the following arguments it will not matter whether α−1 ∈ B′ or α+1 ∈ B′.
We will thus suppose that α− 1 ∈ B′.

Case 1: p > 3 · [Q(α) : Q]. Let B1, . . . ,Bt be the distinct prime ideal
divisors of pOK. It follows that for all conjugates αi of α,

αi − 1 ∈
t∏

j=1

Bj ,

so that( d∑
i=1

αi

)
− [Q(α) : Q] ∈ pZ, TrQ(α)/Q(α)− [Q(α) : Q] ∈ pZ.

Since 3 · [Q(α) : Q] < p we may suppose that [Q(α) : Q] ≤ |TrQ(α)/Q(α)|∞.
By Lemma 1 (considering −α if necessary), M(α) ≥

√
5− 1.

Case 2: p < 3 · [Q(α) : Q]. From the inclusion α − 1 ∈ B′ and the
Binomial Theorem it follows that αp − 1 ∈ pOQ(α). Since αp − 1 ∈ OQ(α) it
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follows that ∑
v-∞

log |αp − 1|v < − log p

and from the last paragraph of Section 2,∑
v|∞

log |αp − 1|v > log p.

Since [Q(α) : Q] ·h(α) = log M(α) and 59 < p < 3 · [Q(α) : Q] it follows from∑
v|∞

log |αp − 1|∞ ≤ log 2 + p ·
∑
v|∞

log+ |α|v

that
1
p

log
p

2
≤
∑
v|∞

log+ |α|v = h(α)

and
√

5− 1 <
1
3

log
p

2
≤ log M(α).

5. Proof of Theorem 2. Let K be the Galois closure of Q(α) and
let HQ(α) be the subgroup of Aut(K/Q) fixing the field Q(α). Let B be a
prime ideal divisor of 2OK and let G0 be the ramification group of B. By the
result of Smyth we may suppose that there exists σ ∈ Aut(K/Q) such that
σ(α) = 1/α. By Lemma 2, Aut(K/Q) = G0HQ(α). There thus exist τ ∈ HQ(α)

and γ ∈ G0 such that σ = γτ . Since 2 ramifies completely in Q(α) there
exists a unique prime ideal divisor B′ of 2OQ(α) and 2OQ(α) = (B′)[Q(α):Q].
It follows from these remarks that α−σ(α) = α−γ(τ(α)) = α−γ(α) ∈ B′.
Since α is a unit, by the difference of squares formula and since B′ is a
prime ideal α− σ(α) ∈ B′, α− 1/α ∈ B′, α2− 1 ∈ B′, (α+ 1)(α− 1) ∈ B′,
α − 1 ∈ B′. Let r ∈ N be minimal such that 2r ≥ [Q(α) : Q]. Then
2r+1 < 4 · [Q(α) : Q]. By the last inclusion, the difference of squares formula
and the last paragraph of Section 2,

α2r+1 − 1 ∈ (B′)2·[Q(α):Q] = 4OQ(α),∑
v-∞

log |α2r+1 − 1|v ≤ − log 4,

log 4 < log 2 + 2r+1 ·
∑
v|∞

log+ |α|v,

1
2r+1

· log 2 ≤ h(α),

M(l) < 4
√

2 ≤ M(α).
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