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1. Introduction. First, we introduce the notion of additive comple-
ment. For a set A ⊆ N = {0, 1, 2, . . .}, we say that a set B ⊆ N is an additive
complement of A if for every sufficiently large n ∈ N, there exist a ∈ A and
b ∈ B such that n = a+ b, i.e., the sumset

A+B = {a+ b : a ∈ A, b ∈ B}
contains all sufficiently large integers.

Morever, for A,B ⊆ N, if A + B has lower density 1, i.e., almost all
positive integers n can be represented as n = a + b with a ∈ A and b ∈ B,
then we say B is an almost additive complement of A.

The additive properties of primes are among the most fascinating topics
in number theory. Let P denote the set of all primes. It is natural to ask
what the additive complements of P are. By the prime number theorem, we
know

P(x) =
x

log x
(1 + o(1)),

where A(x) = |A∩ [1, x]| for a set A ⊆ N. So if A is an additive complement
of P, we must have A(x) � log x. Unfortunately, no one knows whether
there exists an additive complement A of P satisfying A(x) � log x. How-
ever, using probabilistic methods, Erdős [2] showed that such an additive
complement exists if log x is replaced by (log x)2. That is,

• there exists a set A ⊆ N with A(x) = O((log x)2) such that the sumset
A+ P contains every sufficiently large integer.

The main tool of Erdős’ proof is the polynomial method. For more ap-
plications of the polynomial method, the readers may refer to [1].
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In 1998, Ruzsa [7] improved the results of Wolke [10] and Kolountza-
kis [6], and showed that for every function w(x) with limx→∞w(x) = ∞,
there exists an almost additive complementA ofP withA(x)=O(w(x) log x),
i.e.,

• there exists a set A ⊆ N with A(x) = O(w(x) log x) such that almost
all positive integers can be represented as sums of an element of A and
a prime.

In 2001, Vu [9] proved that P has an additive complement A of order 2
with A(x) = O(log x), i.e.,

• there exists a set A ⊆ N with A(x) = O(log x) such that every suffi-
ciently large integer n can be represented as n = a1 + a2 + p, where
a1, a2 ∈ A and p is a prime.

Clearly Vu’s result implies Erdős’, since (A+A)(x)� (A(x))2.
Next, let us turn to the Goldbach problem. As early as 1937, using the

circle method, Vinogradov [8] solved the ternary Goldbach problem and
showed that

• every sufficiently large odd integer can be represented as the sum of
three primes.

Subsequently, with a similar discussion, Estermann [3] solved the binary
Goldbach problem for almost all positive even integers:

• almost all positive even integers can be represented as sums of two
primes.

In this note, we shall combine the results of Ruzsa and Vu with Gold-
bach’s problem.

Theorem 1.1. There exists a set A ⊆ P with A(x) = O(log x) such that
every sufficiently large odd integer can be represented as a1 + a2 + p, where
a1, a2 ∈ A and p ∈ P.

Theorem 1.2. For every function w(x) with limx→∞w(x) = ∞, there
exists a set B ⊆ P with B(x) = O(w(x) log x) such that almost all even
positive integers can be represented as b+ p, where b ∈ B and p ∈ P.

Note that Theorems 1.1 and 1.2 contain Vu’s and Ruzsa’s results, re-
spectively. In fact, if we set A = A ∪ (A + {1}) and B = B ∪ (B + {1}),
then clearly the sumset A + A + P contains all sufficiently large integers,
and B + P has lower density 1.

The proofs of Theorems 1.1 and 1.2 will be given in the next sections.

2. Proof of Theorem 1.1. The key to our proofs is the following
lemma.
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Lemma 2.1. There exists a positive constant c0 such that if x is suffi-
ciently large, and if x1−c0 ≤ M ≤ x and 0 ≤ y ≤ x − M , then for all
even integers n with x ≤ n ≤ x+M , except for O(M(log x)−2) exceptional
values, we have

(2.1)
∑

n=p1+p2
y≤p1≤y+M

x−y−M≤p2≤x−y+M

1 ≥ C(n)
C∗M

(log x)2

where

(2.2) C(n) =
∏
p-n

(
1− 1

(p− 1)2

)∏
p|n

(
1 +

1

p− 1

)
and C∗ is a constant only depending on c0.

Proof. This lemma can be proved by the method of Jia [5], although he
only discussed the case y = x/2. In fact, Jia proved that Lemma 2.1 holds
whenever c0 < 5/12.

Now suppose that n is a sufficiently large odd integer. For each x ∈ P,
we choose x to be in A with probability

%x =
c log x

x
,

where c > 0 is a constant to be chosen later.
Let tx be the binary random variable representing the choice of x, i.e.,

tx = 1 with probability %x and 0 with probability 1−%x. Then with the help
of the Borel–Cantelli lemma, we almost surely have

A(n) =
∑

x∈P∩[1,n]

tx = O(log n)

for every n, since ∑
p≤n

p is prime

log p

p
= log n (1 + o(1)).

Now consider

Yn =
∑
p<n

p is prime

∑
i+j=n−p
i,j are prime

titj .

We need to prove that there exists n0 > 0 such that

P(Yn > 0 for every n ≥ n0) ≥ 1/2.

Choose 0 < ε < c0/2 and let M = n1−2ε; here and later, c0 is a num-
ber admissible in Lemma 2.1. In the remainder of this section, the implied
constants of O(·), � and � will only depend on ε.
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Let

Y ∗n =
∑

p≤n−n1−ε

p is prime

∑
i+j=n−p
i,j≥M

i,j are prime

titj .

Clearly P(Yn > 0) is not less than P(Y ∗n > 0) for every n.

Next, we need a probabilistic result of Janson [4]. Let {Ji}i∈R be a set of
independent random indicator variables, and let X be a collection of subsets
of R. For α ∈ X, define

Iα =
∏
i∈α

Ji.

Lemma 2.2 ([4, (1.9)]). Let

Y =
∑
α∈X

Iα and ∆ =
∑
α,β∈X
α∼β

E(IαIβ)

where α ∼ β means α 6= β and α ∩ β 6= ∅. Then for any ε > 0,

P
(
Y ≤ (1− ε)E(Y )

)
≤ exp

(
− (εE(Y ))2

2(E(Y ) +∆)

)
.

Let

X = {(i, j) : i, j ≥M, i+ j ≥ n1−ε and i, j, n− i− j are prime}.

Then

Y ∗n =
∑

(i,j)∈X

titj =
∑
α∈X

Iα,

where Iα = titj for α = (i, j). In view of Lemma 2.2 we only need to estimate

E(Y ∗n ) = E
(∑
α∈X

Iα

)
and ∆ = E

( ∑
α,β∈X
α∼β

IαIβ

)
.

By Lemma 2.1, we have

E
(∑
α∈X

Iα

)
= E

( ∑
p≤n−n1−ε

p is prime

∑
i+j=n−p
i,j≥M

i,j are prime

titj

)

≥ E
( ∑

0≤t≤n1−ε/M
tM≤n−n1−ε−p<(t+1)M

p is prime

∑
1≤s≤(n−p)/M−2

i+j=n−p
sM≤i<(s+1)M
i,j are prime

titj

)
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≥ E
( ∑

0≤t≤n1−ε/M
1≤s≤n1−ε/M+t−2

∑
tM≤n−n1−ε−p<(t+1)M

p is prime

∑
i+j=n−p

sM≤i<(s+1)M
i,j are prime

titj

)

�
∑

0≤t≤n1−ε/M
1≤s≤n1−ε/M+t−2

M

logM

M

(logM)2
c2(logM)2

sM(n1−ε + (t+ 1)M − sM)
.

Clearly,∑
0≤t≤n1−ε/M

1≤s≤n1−ε/M+t−2

1

sM(n1−ε + (t+ 1)M − sM)

�
n1−ε/M�

1

( n1−ε/M+t−2�

1

1

sM(n1−ε + tM − sM)
ds

)
dt

�
n1−ε/M�

1

1

n1−ε + tM

( n1−ε/M+t−2�

1

(
1

sM
+

1

n1−ε + tM − sM

)
ds

)
dt

�
n1−ε/M�

1

log(n1−ε + tM)

M(n1−ε + tM)
dt� (log(2n1−ε))2

M2
� (log n)2

M2
.

Thus

E(Y ∗n )� c2 log n.

Now we turn to ∆. One has

E
( ∑
α,β∈X
α∼β

IαIβ

)
= E

( ∑
i≥M

i is prime

∑
p1+j1=p2+j2=n−i
p1,p2≤n−n1−ε

j1 6=j2, j1,j2≥M
p1,p2,j1,j2 are prime

(titj1)(titj2)

)

= E
( ∑

i≥M
i is prime

ti
∑

p1+j1=p2+j2=n−i
p1,p2≤n−n1−ε

j1 6=j2, j1,j2≥M
p1,p2,j1,j2 are prime

tj1tj2

)

= c3
∑
i≥M

i is prime

log i

i

∑
p1+j1=p2+j2=n−i
p1,p2≤n−n1−ε

j1 6=j2, j1,j2≥M
p1,p2,j1,j2 are prime

log j1 log j2
j1j2

.

Clearly,
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∑
p1+j1=p2+j2=n−i
p1,p2≤n−n1−ε

j1 6=j2, j1,j2≥M
p1,p2,j1,j2 are prime

log j1 log j2
j1j2

≤
∑

p1+j1=p2+j2=n−i
p1,p2≤n−n1−ε

j1,j2≥M
p1,p2,j1,j2 are prime

log j1 log j2
j1j2

≤
( ∑

p+j=n−i
j≥M

p,j are prime

log n

j

)2

.

For a set U of positive integers, using partial summation, we have∑
M≤j≤x
j∈U

1

j
� U(x)

x
− U(M)

M
+

∑
M<y≤x

U(y)

y2
.

Since t/(log t)2 is increasing for t > M + e, by the sieve method, we have

|{M ≤ j ≤ y : both j and m− j are primes}| � C(m)(y −M)

(log(y −M))2
� C(m)y

(log y)2
,

where C(m) is as in Lemma 2.1. Therefore∑
p+j=n−i
j≥M

p,j are prime

1

j
� 1

n− i
C(n− i)(n− i)

(log(n− i))2
+

1

M
+

∑
M+e<y≤n−i

C(n− i)
y(log y)2

� C(n− i)
log n

.

It follows that

E
(∑
α∼β

IαIβ

)
� c3 log n

∑
M≤i≤n−n1−ε

i is prime

C(n− i)2

i
.

Note that

C(n− i)2 �
∏
p|n−i

(
1 +

1

p− 1

)2

�
∏
p|n−i

(
1 +

2

p

)
=

∑
d|n−i

d is square-free

2ω(d)

d
,

where ω(d) denotes the number of distinct prime factors of d. Hence,∑
M≤i≤n−n1−ε

i is prime

C(n− i)2

i
�

∑
d<n−n1−ε−M
d is square-free

2ω(d)

d

∑
M≤i≤n−n1−ε

i is prime
i≡n (mod d)

1

i
.
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By the Brun–Titchmarsh theorem, we know that

|{M ≤ i ≤ y : i is prime and i ≡ n (mod d)}| � y −M
φ(d) log((y −M)/d)

,

provided that y −M ≥ 11
10d. By partial summation, whenever

d ≤ 10

11
(n− n1−ε −M),

one finds that∑
M≤i≤n−n1−ε

i is prime
i≡n (mod d)

1

i
� 1

n− n1−ε
n

φ(d) log(n/d)
+

1

M
+

∑
M<y<M+ 11

10
d

2

y2

+
∑

M+ 11
10
d≤y≤n−n1−ε

1

φ(d)y log(y/d)

� 1

φ(d)
+

1

M
+

log log(n/d)− log log(M/d)

φ(d)
.

If d ≤
√
M , then

log log(n/d)− log log(M/d) ≤ log logn− log log
√
M � 1.

If
√
M < d ≤ 10

11(n− n1−ε −M), then

log log(n/d)− log log(M/d)

φ(d)
� log logn

d1−ε
� 1

M1/2−ε .

Thus we have

(2.3)
∑

d≤ 10
11

(n−n1−ε−M)
d is square-free

2ω(d)

d

∑
M≤i≤n−n1−ε

i is prime
i≡n (mod d)

1

i
�
∑
d<n

2ω(d)

d

(
1

M1/2−ε +
1

φ(d)

)

� 1

M1/2−ε

∑
d<n

1

d1−ε
+
∑
d<n

1

d2−ε
� nε

M1/2−ε +O(1) = O(1).

On the other hand,∑
10
11

(n−n1−ε−M)<d≤n−n1−ε−M
d is square-free

2ω(d)

d

∑
M≤i≤n−n1−ε

i is prime
i≡n (mod d)

1

i

�
∑

10
11

(n−n1−ε−M)<d≤n−n1−ε−M
d is square-free

2ω(d)

n

∑
M≤i≤n−n1−ε

i is prime
i=n−d

1 ≤ 1

n

∑
i<n

i is prime

τ(n− i),
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where τ is the divisor function. Recall that τ(d) = 2ω(d) for d square-free.
Now ∑

i<n
i is prime

τ(n− i) =
∑
i<n

i is prime

∑
k|n−i

1 ≤ 2
∑
i<n

i is prime

∑
k≤
√
n−i

k|n−i

1

≤
∑
k≤
√
n

∑
i<n

i is prime
i≡n (mod k)

1�
∑
k≤
√
n

n

φ(k) log n
.

It is well known that ∑
k≤x

1

φ(k)
� log x.

It follows that

(2.4)
∑

10
11

(n−n1−ε−M)<d≤n−n1−ε−M
d is square-free

2ω(d)

d

∑
M≤i≤n−n1−ε

i is prime
i≡n (mod d)

1

i
� 1.

Thus we get

∆� c3 log n.

Now
E(Y ∗n )2

E(Y ∗n ) +∆
=

E(Y ∗n )

1 +∆/E(Y ∗n )
� c2 log n

1 + c3 logn
c2 logn

=
c2

1 + c
log n.

Therefore we may choose c sufficiently large so that

E(Y ∗n )2

E(Y ∗n ) +∆
≥ 100 log n.

Applying Lemma 2.2, we have

P(Y ∗n = 0) ≤ P
(
Y ∗n ≤

1

2
E(Y ∗n )

)
≤ exp

(
−
−(12E(Y ∗n ))2

2(E(Y ∗n ) +∆)

)
≤ exp(−2 log n) = 1/n2.

Hence for a sufficiently large n0,

P(Y ∗n = 0 for some n ≥ n0) ≤
∑
n≥n0

P(Y ∗n = 0) ≤
∑
n≥n0

1

n2
≤ 1

2
.

This completes the proof of Theorem 1.1.

3.Proof ofTheorem1.2. Let c0 be the constant appearing in Lemma 2.1
and c1 be another fixed constant with c0 < c1 < 1.
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Lemma 3.1. For every 0 < ε < 1, there are K = K(ε) and N0 = N0(ε)
such that for N > N0 we can always find a set

B ⊂ [N c0 , 2N c0 ]

of primes such that

(3.1) |B| ≤ K logN

and the set S = P +B satisfies

(3.2) S(x) ≥ (1− ε)x for all N c1 ≤ x ≤ N.

Proof. Let

K = max

{
10

c0C∗
log

16

ε2
, 20

}
, M = N c0 ,

I = [M, 2M ] ∩ P, L = |I| = (1 + o(1))
M

logM
,

where C∗ is as in (2.1). For x ∈ I, choose x to be in B with probability

% =
K logN

2L
.

It suffices to show that

(3.3) P((3.2) holds) > P(|B| > K logN).

Let tx be the binary random variable representing the choice of x. Evi-
dently,

E(e|B|) = E
(

exp

(∑
x∈I

tx

))
=
∏
x∈I

E(etx) = ((1− %) · e0 + % · e1)L

= (1 + %(e− 1))L ≤ exp(%(e− 1)L) < exp

(
K(e− 1)

19/10
logN

)
.

Thus from Markov’s inequality we get

P(|B| > K logN) = P(e|B| > eK logN ) ≤ E(e|B|)/exp(K logN)

≤ exp

(
K(e− 1)

19/10
logN −K logN

)
= N

K(e−29/10)
19/10 <

1

N
.

Below we shall show that P((3.2) holds) ≥ N−1. Let η = 1 + ε/2 and let
xj = N/ηj for 0 ≤ j ≤ (1−c1) logN/log η+1. Obviously, for xj ≤ x ≤ xj−1,
the inequality S(xj) > (1−ε/2)xj implies that S(x) > (1−ε)x. So it suffices
to show that

P
(
S(xj) > (1− ε/2)xj for all j

)
> 1/N.

Let

T (x) = x− S(x).
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Clearly, S(xj) > (1− ε/2)xj is equivalent to T (xj) < (ε/2)xj . Let

z(n) =
∑

n=p1+p2
p1∈I, p2∈P

1

and

Qj =

{
M ≤ n ≤ xj : z(n) <

C∗C(n)M

3 log2 n

}
.

By Lemma 2.1, we have

|Qj | ≤
∑

1≤k≤xj/M

|Qj ∩ [kM, (k + 1)M ]|

=
∑

1≤k≤xj/M

O

(
M

(log(kM))2

)
= O

(
xj

(logM)2

)
.

For a given n ∈ [2M,xj ] \Qj , we can have n 6∈ S only in those cases where
none of the primes p1 ∈ I for which n−p1 is also prime happens to be in B.
The probability of this event is

P(n 6∈ S) = (1− %)z(n) ≤ exp(−%z(n)).

Note that

%z(n) ≥ K logN

2L
C∗C(n)

M

3 log2 n
≥ C∗C(n)KM

6L logN
≥ C∗c0K

10
,

where we set

C(n) ≥
∏

p≥3 is prime

(
1− 1

(p− 1)2

)
>

6

10
.

Hence,

(3.4) P(n 6∈ S) ≤ exp(−c0C∗K/10).

Thus the expectation of T (xj) satisfies

E(T (xj)) ≤ exp(−c0C∗K/10)xj + 2M +O(xj(logM)−2)(3.5)

≤ 2 exp(−c0C∗K/10)xj ,

by noting that xj ≥ N c1 . From Markov’s inequality,

(3.6) P
(
T (xj) ≥ (ε/2)xj

)
≤ E(T (xj))

(ε/2)xj
<

4

ε
exp

(
−c0C

∗K

10

)
≤ 1− 1

η
,

since

(3.7) K ≥ 10

c0C∗
log

4

ε(1− η−1)
.
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So letting J = b(1− c1) logN/log η + 1c, we get

P
(
S(xj) > (1− ε/2)xj for all j

)
≥

J∏
j=0

P(S(xj) > (1− ε/2)xj)(3.8)

≥ η−J−1 ≥ 1

η2N1−c1 ≥
1

N
,

where bαc = max{z ∈ Z : z ≤ α}. Thus the proof of Lemma 3.1 is com-
plete.

Lemma 3.2. For every ε > 0, let K = K(ε) and N0 = N0(ε) be as in
Lemma 3.1. Then there exists a set B ⊆ P such that for every x > N0, we
have

B(x) ≤ 2K

c0c1(1− c1)
log x

and the sumset S = P +B satisfies

S(x) ≥ (1− ε)x.

Proof. Let Ni+1 = bN1/c1
i c + 1 for i ≥ 0. Applying Lemma 3.1 to each

N = Ni, we get a set Bi ⊂ [N c0
i , 2N

c0
i ] with |Bi| ≤ K logNi satisfying

Si(x) ≥ (1− ε)x for any N c1
i ≤ x ≤ Ni, where Si = P +Bi. We put

B =
⋃
Bi.

Suppose that x ∈ [N c1
i , Ni]. Clearly, for S = P +B, we have

S(x) ≥ Si(x) ≥ (1− ε)x.

Let

k = min{i : N c0
i > x and N c0

i−1 ≤ x}.

Note that

logNi−1 ≤ c1 logNi,

i.e., logNi grows exponentially. So we get

B(x) ≤
∑

0≤i≤k
|Bi| ≤ K(logN0 + logN1 + · · ·+ logNk)

≤ K logNk

k∑
j=0

cj1 ≤
2K log(x1/c0c1)

1− c1
.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let εi = 1/(i+1). Let Bi be the set satisfying the
requirements of Lemma 3.2 for ε = εi. Let N1 = N0(ε1). Since w(x)→∞ as
x→∞, for every i ≥ 2, let Ni ≥ max{N0(εi), e

2Ni−1/εi} be an integer such
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that

2

c0c1(1− c1)

i+1∑
j=1

K(εj) ≤ w(x)

for every x ≥ Ni. Let

B =

∞⋃
i=1

(Bi ∩ [Ni−1, Ni+1]).

Note that for any Ni < x ≤ Ni+1, we have

|{n ≤ x : n = p+ b, p ∈ P, b ∈ B}|
≥ |{n ≤ x : n = p+ b, p ∈ P, b ∈ Bi ∩ [Ni−1, Ni+1]}|
> |{n ≤ x : n = p+ b, p ∈ P, b ∈ Bi}| −Ni−1 · P(x)

≥ (1− εi)x−Ni−12x/ log x ≥ (1− 2εi)x.

So P + B has lower density 1. Also, for every Ni < x ≤ Ni+1,

B(x) ≤
i+1∑
j=1

|Bj ∩ [1, x]| ≤
(

2

c0c1(1− c1)

i+1∑
j=1

K(εj)

)
log x ≤ w(x) log x.
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