A note on the fourth moment of Dirichlet L-functions

by
H. M. Bui and D. R. Heath-Brown (Oxford)

1. Introduction. For χ a Dirichlet character $(\bmod q)$, the moments of $L(s, \chi)$ have many applications, for example to the distribution of primes in the arithmetic progressions to modulus q. The asymptotic formula of the fourth power moment in the q-aspect has been obtained by Heath-Brown [1], for q prime, and more recently by Soundararajan [5] for general q. Following Soundararajan's work, Young 7 pushed the result much further by computing the fourth moment for prime moduli q with a power saving in the error term. The problem essentially reduces to the analysis of a particular divisor sum. To this end, Young used various techniques to estimate the off-diagonal terms.

In the case that the t-aspect is also included, a result of Montgomery (2) states that

$$
\sum_{\chi(\bmod q)}^{*} \int_{0}^{T}|L(1 / 2+i t, \chi)|^{4} d t \ll \varphi(q) T(\log q T)^{4}
$$

for $q, T \geq 2$, where $\sum_{\chi(\bmod q)}^{*}$ indicates that the sum is restricted to the primitive characters modulo q. As we shall see, the upper bound is too large by a factor $(q / \varphi(q))^{5}$. A second result of relevance is due to Rane [4]. After correcting a misprint it states that

$$
\begin{aligned}
\sum_{\chi(\bmod q)}^{*} \int_{T}^{2 T}|L(1 / 2+i t, \chi)|^{4} d t= & \frac{\varphi^{*}(q) T}{2 \pi^{2}} \prod_{p \mid q} \frac{\left(1-p^{-1}\right)^{3}}{1+p^{-1}}(\log q T)^{4} \\
& +O\left(2^{\omega(q)} \varphi^{*}(q) T(\log q T)^{3}(\log \log 3 q)^{5}\right)
\end{aligned}
$$

where $\varphi^{*}(q)$ is the number of primitive characters modulo q and $\omega(q)$ is the number of distinct prime factors of q. This can only give an asymptotic relation when $2^{\omega(q)} \leq \log q$, which holds for some values of q, but not others.

[^0]Finally, we mention the work of Wang [6], where an asymptotic formula is proved for $q \leq T^{1-\delta}$, for any fixed $\delta>0$.

The goal of the present note is to establish an asymptotic formula, valid for all $q, T \geq 2$, as soon as $q \rightarrow \infty$.

Theorem 1. For $q, T \geq 2$ we have, in the notation above,
$\sum_{\chi(\bmod q)}^{*} \int_{0}^{T}|L(1 / 2+i t, \chi)|^{4} d t$
$=\left(1+O\left(\frac{\omega(q)}{\log q} \sqrt{\frac{q}{\varphi(q)}}\right)\right) \frac{\varphi^{*}(q) T}{2 \pi^{2}} \prod_{p \mid q} \frac{\left(1-p^{-1}\right)^{3}}{1+p^{-1}}(\log q T)^{4}+O\left(q T(\log q T)^{7 / 2}\right)$.
Our proof uses ideas from the works of Heath-Brown 1 and Soundararajan (5), but there is extra work to do to handle the integration over t.

Remark 1. It is possible, with only a little more effort, to extend the range to cover all $T>0$. In this case the term $\varphi^{*}(q) T$ in the main term remains the same, as does the factor $q T$ in the error term, but one must replace $\log q T$ by $\log q(T+2)$ both in the main term and in the error term.

Remark 2. One may readily verify that our result provides an asymptotic formula, as soon as $q \rightarrow \infty$, with an error term which saves at least a factor $O\left((\log \log q)^{-1 / 2}\right)$.

Remark 3. The literature appears not to contain a precise analogue of this for the second moment. However, Motohashi 3 has considered a uniform mean value in t-aspect. He proved that if χ is a primitive character modulo a prime q, then

$$
\begin{aligned}
\int_{0}^{T}|L(1 / 2+i t, \chi)|^{2} d t= & \frac{\varphi(q) T}{q}\left(\log \frac{q T}{2 \pi}+2 \gamma+2 \sum_{p \mid q} \frac{\log p}{p-1}\right) \\
& +O\left(\left(q^{1 / 3} T^{1 / 3}+q^{1 / 2}\right)(\log q T)^{4}\right)
\end{aligned}
$$

for $T \geq 2$. This provides an asymptotic formula when $q \leq T^{2-\delta}$ for any fixed $\delta>0$. Our theorem does not give a power saving in the error term, but it yields an asymptotic formula without any restrictions on q and T.

2. Auxiliary lemmas

Lemma 1. Let χ be a primitive character $(\bmod q)$ such that $\chi(-1)=$ $(-1)^{\mathfrak{a}}$ with $\mathfrak{a}=0$ or 1 . Then

$$
|L(1 / 2+i t, \chi)|^{2}=2 \sum_{a, b \geq 1} \frac{\chi(a) \overline{\chi(b)}}{\sqrt{a b}}\left(\frac{a}{b}\right)^{-i t} W_{\mathfrak{a}}\left(\frac{\pi a b}{q} ; t\right),
$$

where

$$
\begin{aligned}
& W_{\mathfrak{a}}(x ; t) \\
& \quad=\frac{1}{2 \pi i} \int_{(2)} \frac{\Gamma(1 / 4+i t / 2+z / 2+\mathfrak{a} / 2) \Gamma(1 / 4-i t / 2+z / 2+\mathfrak{a} / 2)}{|\Gamma(1 / 4+i t / 2+\mathfrak{a} / 2)|^{2}} e^{z^{2}} x^{-z} \frac{d z}{z} .
\end{aligned}
$$

Proof. Let

$$
\begin{equation*}
I:=\frac{1}{2 \pi i} \int_{(2)} \frac{\Lambda(1 / 2+i t+z, \chi) \Lambda(1 / 2-i t+z, \bar{\chi})}{|\Gamma(1 / 4+i t / 2+\mathfrak{a} / 2)|^{2}} e^{z^{2}} \frac{d z}{z} \tag{2}
\end{equation*}
$$

where

$$
\Lambda(1 / 2+s, \chi)=\left(\frac{q}{\pi}\right)^{s / 2} \Gamma\left(\frac{1}{4}+\frac{s}{2}+\frac{\mathfrak{a}}{2}\right) L(1 / 2+s, \chi)
$$

We recall the functional equation

$$
\Lambda(1 / 2+s, \chi)=\frac{\tau(\chi)}{i^{\mathfrak{a}} \sqrt{q}} \Lambda(1 / 2-s, \bar{\chi})
$$

Hence, moving the line of integration to $\Re z=-2$ and applying Cauchy's theorem, we obtain $|L(1 / 2+i t, \chi)|^{2}=2 I$. Finally, expanding $L(1 / 2+i t$ $+z, \chi) L(1 / 2-i t+z, \bar{\chi})$ in a Dirichlet series and integrating termwise we obtain the lemma.

We decompose $|L(1 / 2+i t, \chi)|^{2}$ as $2(A(t, \chi)+B(t, \chi))$, where

$$
\begin{aligned}
& A(t, \chi)=\sum_{a b \leq Z} \frac{\chi(a) \overline{\chi(b)}}{\sqrt{a b}}\left(\frac{a}{b}\right)^{-i t} W_{\mathfrak{a}}\left(\frac{\pi a b}{q} ; t\right), \\
& B(t, \chi)=\sum_{a b>Z} \frac{\chi(a) \overline{\chi(b)}}{\sqrt{a b}}\left(\frac{a}{b}\right)^{-i t} W_{\mathfrak{a}}\left(\frac{\pi a b}{q} ; t\right),
\end{aligned}
$$

with $Z=q T / 2^{\omega(q)}$. In the next two sections, we evaluate the second moments of $A(t, \chi)$ and $B(t, \chi)$, after which our theorem will be an easy consequence.

The function $W_{\mathfrak{a}}(x ; t)$ approximates the characteristic function of the interval $[0,|t|]$. Indeed, we have the following.

Lemma 2. The function $W_{\mathfrak{a}}(x ; t)$ satisfies

$$
W_{\mathfrak{a}}(x ; t)= \begin{cases}O\left((\tau / x)^{2}\right) & \text { for } x \geq \tau \\ 1+O\left((x / \tau)^{1 / 4}\right) & \text { for } 0<x<\tau\end{cases}
$$

and

$$
\frac{\partial}{\partial t} W_{\mathfrak{a}}(x ; t) \ll \begin{cases}\tau^{-1}(\tau / x)^{2} & \text { for } x \geq \tau \\ \tau^{-1}(x / \tau)^{1 / 4} & \text { for } 0<x<\tau\end{cases}
$$

where $\tau=|t|+2$.

Proof. The first estimate is a direct consequence of Stirling's formula, while for the second one merely shifts the line of integration to $\Re z=-1 / 4$ before employing Stirling's formula. To handle the derivative one proceeds as before, differentiates under the integral sign and uses the estimate

$$
\Gamma^{\prime}(w) / \Gamma(w)=\log w+O\left(|w|^{-1}\right)
$$

which holds for $1 / 8 \leq \Re w \leq 2$.
The next lemma concerns the orthogonality of primitive Dirichlet characters.

Lemma 3. For $(m n, q)=1$, we have

$$
\sum_{\chi(\bmod q)}^{*} \chi(m) \bar{\chi}(n)=\sum_{k \mid(q, m-n)} \varphi(k) \mu(q / k) .
$$

Moreover,

$$
\sum_{\substack{\chi(\bmod q) \\ \chi(-1)=(-1)^{\mathfrak{a}}}}^{*} \chi(m) \bar{\chi}(n)=\frac{1}{2} \sum_{k \mid(q, m-n)} \varphi(k) \mu(q / k)+\frac{(-1)^{\mathfrak{a}}}{2} \sum_{k \mid(q, m+n)} \varphi(k) \mu(q / k) .
$$

Proof. This follows from [1, p. 27].
To handle the off-diagonal term we shall use the following bounds.
Lemma 4. Let k be a positive integer and $Z_{1}, Z_{2} \geq 2$. If $Z_{1} Z_{2} \leq k^{19 / 10}$ then

$$
E:=\sum_{\substack{Z_{1} \leq a b<2 Z_{1} \\ Z_{2} \leq c d<2 Z_{2} \\ a c \equiv \pm b d(\bmod k) \\ a c \neq b d \\(a b c d, k)=1}} \frac{1}{\left|\log \frac{a c}{b d}\right|} \ll \frac{\left(Z_{1} Z_{2}\right)^{1+\varepsilon}}{k}
$$

for any fixed $\varepsilon>0$, while if $Z_{1} Z_{2}>k^{19 / 10}$ then

$$
\begin{equation*}
E \ll \frac{Z_{1} Z_{2}}{k}\left(\log Z_{1} Z_{2}\right)^{3} . \tag{2.1}
\end{equation*}
$$

Proof. We note that in each case the contribution of the terms with $|\log a c / b d|>\log 2$ is satisfactory, by the corresponding lemma of Soundararajan [5, Lemma 3]. Thus, by symmetry, it is enough to consider the terms with $b d<a c \leq 2 b d$. We shall show how to handle the terms in which $a c \equiv b d(\bmod k)$, the alternative case being dealt with similarly. We write $n=b d$ and $a c=k l+b d$ and observe that $k l \leq b d$. We deduce that $n \leq 2 \sqrt{Z_{1} Z_{2}}$ and $1 \leq l \leq 2 \sqrt{Z_{1} Z_{2}} / k$. Since $\log a c / b d \gg k l / n$ the contribution of these terms to E is

$$
\ll \frac{1}{k} \sum_{l \leq 2 \sqrt{Z_{1} Z_{2}} / k} \frac{1}{l} \sum_{\substack{n \leq 2 \sqrt{Z_{1} Z_{2}} \\(n, k)=1}} n d(n) d(k l+n) .
$$

We estimate the sum over n using a bound from Heath-Brown's paper [1, (17)]. This shows that the above expression is

$$
\ll \frac{Z_{1} Z_{2}\left(\log Z_{1} Z_{2}\right)^{2}}{k} \sum_{l \leq 2 \sqrt{Z_{1} Z_{2}} / k} \frac{1}{l} \sum_{d \mid l} d^{-1} \ll \frac{Z_{1} Z_{2}}{k}\left(\log Z_{1} Z_{2}\right)^{3}
$$

This suffices to complete the proof. The reader will observe that when $Z_{1} Z_{2} \leq k^{19 / 10}$ it is only the terms with $|\log a c / b d|>\log 2$ which prevent us from achieving the bound (2.1).

Finally, we shall require the following two lemmas [5, Lemmas 4 and 5].
Lemma 5. For $q \geq 2$ we have

$$
\sum_{\substack{n \leq x \\(n, q)=1}} \frac{1}{n}=\frac{\varphi(q)}{q}(\log x+O(1+\log \omega(q)))+O\left(\frac{2^{\omega(q)} \log x}{x}\right)
$$

Lemma 6. For $x \geq \sqrt{q}$ we have

$$
\sum_{\substack{n \leq x \\(n, q)=1}} \frac{2^{\omega(n)}}{n} \ll\left(\frac{\varphi(q)}{q}\right)^{2}(\log x)^{2}
$$

and

$$
\sum_{\substack{n \leq x \\(n, q)=1}} \frac{2^{\omega(n)}}{n}\left(\log \frac{x}{n}\right)^{2}=\left(1+O\left(\frac{1+\log \omega(q)}{\log q}\right)\right) \frac{(\log x)^{4}}{12 \zeta(2)} \prod_{p \mid q} \frac{1-1 / p}{1+1 / p}
$$

3. The main term. Applying Lemma 3 we have

$$
\sum_{\chi(\bmod q)}^{*} \int_{0}^{T} A(t, \chi)^{2} d t=M+E
$$

where

$$
M=\frac{\varphi^{*}(q)}{2} \sum_{\substack{\mathfrak{a}=0,1}} \sum_{\substack{a b, c d \leq Z \\ a c=b d \\(a b c d, q)=1}} \frac{1}{\sqrt{a b c d}} \int_{0}^{T} W_{\mathfrak{a}}\left(\frac{\pi a b}{q} ; t\right) W_{\mathfrak{a}}\left(\frac{\pi c d}{q} ; t\right) d t
$$

and

$$
E=\sum_{k \mid q} \varphi(k) \mu(q / k) E(k)
$$

with

$$
E(k)=\sum_{\substack{\mathfrak{a}=0,1}} \sum_{\substack{a b b, c d \leq Z \\ a c \equiv \pm d \bmod k) \\ a c b d \\(a b c c, q)=1}} \frac{1}{\sqrt{a b c d}} \int_{0}^{T}\left(\frac{a c}{b d}\right)^{-i t} W_{\mathfrak{a}}\left(\frac{\pi a b}{q} ; t\right) W_{\mathfrak{a}}\left(\frac{\pi c d}{q} ; t\right) d t .
$$

We first estimate the error term E. We integrate by parts, using Lemma 2 . This produces

$$
E(k) \ll \sum_{\substack{a b, c d \leq Z \\ a c \equiv \pm b d(\bmod k) \\ a c \neq b d \\(a b c d, q)=1}} \frac{1}{\sqrt{a b c d}\left|\log \frac{a c}{b d}\right|} .
$$

We divide the terms $a b, c d \leq Z$ into dyadic blocks $Z_{1} \leq a b<2 Z_{1}$ and $Z_{2} \leq c d<2 Z_{2}$. From Lemma 4, the contribution of this range to $E(k)$ is

$$
\ll \frac{1}{\sqrt{Z_{1} Z_{2}}} \frac{Z_{1} Z_{2}}{k}\left(\log Z_{1} Z_{2}\right)^{3}=\frac{\sqrt{Z_{1} Z_{2}}}{k}\left(\log Z_{1} Z_{2}\right)^{3}
$$

if $Z_{1} Z_{2}>k^{19 / 10}$, and is $O\left(\left(Z_{1} Z_{2}\right)^{1 / 2+\varepsilon} k^{-1}\right)$ if $Z_{1} Z_{2} \leq k^{19 / 10}$. Summing over all such dyadic blocks we have

$$
E(k) \ll \frac{Z}{k}(\log Z)^{3}+k^{-1 / 20+2 \varepsilon} .
$$

Thus

$$
\begin{equation*}
E \ll Z 2^{\omega(q)}(\log Z)^{3} \ll q T(\log q T)^{3} . \tag{3.1}
\end{equation*}
$$

We now turn to the main term M. Since $a c=b d$, we can write $a=g r$, $b=g s, c=h s$ and $d=h r$, where $(r, s)=1$. We put $n=r s$. Hence

$$
M=\frac{\varphi^{*}(q)}{2} \sum_{\mathfrak{a}=0,1} \sum_{\substack{n \leq Z \\(n, q)=1}} \frac{2^{\omega(n)}}{n} \sum_{\substack{g, h \leq \sqrt{Z / n} \\(g h, q)=1}} \frac{1}{g h} \int_{0}^{T} W_{\mathfrak{a}}\left(\frac{\pi g^{2} n}{q} ; t\right) W_{\mathfrak{a}}\left(\frac{\pi h^{2} n}{q} ; t\right) d t .
$$

From Lemma 2 we have $W_{\mathfrak{a}}\left(\pi g^{2} n / q ; t\right)=1+O\left(g^{1 / 2}(n / q t)^{1 / 4}\right)$, whence

$$
M=\varphi^{*}(q) T \sum_{\substack{n \leq Z \\(n, q)=1}} \frac{2^{\omega(n)}}{n}\left(\sum_{\substack{g \leq \sqrt{Z / n} \\(g, q)=1}} \frac{1}{g}+O(1)\right)^{2}
$$

We split the terms $n \leq Z$ into the cases $n \leq Z_{0}$ and $Z_{0}<n \leq Z$, where $Z_{0}=Z / 9^{\omega(q)}$. In the first case, from Lemma 5 the sum over g is

$$
\frac{\varphi(q)}{2 q} \log \frac{Z_{0}}{n}+O(1+\log \omega(q)),
$$

since the first error term in Lemma 5 dominates the second. Hence the contribution of such values of n to M is

$$
\varphi^{*}(q) T\left(\frac{\varphi(q)}{2 q}\right)^{2} \sum_{\substack{n \leq Z_{0} \\(n, q)=1}} \frac{2^{\omega(n)}}{n}\left(\left(\log \frac{Z_{0}}{n}\right)^{2}+O(\omega(q) \log Z)\right)
$$

Here we use the fact that $q / \varphi(q) \ll 1+\log \omega(q)$. This estimate will be employed a number of times in what follows, without further comment. In view of Lemma 6 the contribution from terms with $n \leq Z_{0}$ is now seen to be

$$
\begin{equation*}
\frac{\varphi^{*}(q) T}{8 \pi^{2}} \prod_{p \mid q} \frac{(1-1 / p)^{3}}{1+1 / p}\left(\log Z_{0}\right)^{4}\left(1+O\left(\frac{\omega(q)}{\log q}\right)\right) \tag{3.2}
\end{equation*}
$$

For $Z_{0} \leq n \leq Z$, we extend the sum over g to all $g \leq 3^{\omega(q)}$ that are coprime to q. By Lemma 5 , this sum is $\ll \omega(q) \varphi(q) / q$. Hence the contribution of these terms to M is

$$
\ll \varphi^{*}(q) T\left(\omega(q) \frac{\varphi(q)}{q}\right)^{2} \sum_{Z_{0} \leq n \leq Z} \frac{2^{\omega(n)}}{n} \ll \varphi^{*}(q) T\left(\frac{\varphi(q)}{q}\right)^{4} \omega(q)^{2}(\log Z)^{2} .
$$

Combining this with (3.1) and (3.2) we obtain

$$
\begin{align*}
& \sum_{\chi(\bmod q)}^{*} \int_{0}^{T} A(t, \chi)^{2} d t \tag{3.3}\\
& \quad=\left(1+O\left(\frac{\omega(q)}{\log q}\right)\right) \frac{\varphi^{*}(q) T}{8 \pi^{2}} \prod_{p \mid q} \frac{(1-1 / p)^{3}}{1+1 / p}(\log q T)^{4}
\end{align*}
$$

4. The error term. We have

$$
\begin{aligned}
& \sum_{\chi(\bmod q)}^{*} \int_{0}^{T} B(t, \chi)^{2} d t \leq \sum_{\chi(\bmod q)} \int_{0}^{T} B(t, \chi)^{2} d t \\
& \quad=\frac{\varphi(q)}{2} \sum_{\substack{a=0,1}} \sum_{\substack{a b, c d>Z \\
a c= \pm b d(\bmod q) \\
(a b c d, q)=1}} \frac{1}{\sqrt{a b c d}} \int_{0}^{T}\left(\frac{a c}{b d}\right)^{-i t} W_{\mathfrak{a}}\left(\frac{\pi a b}{q} ; t\right) W_{\mathfrak{a}}\left(\frac{\pi c d}{q} ; t\right) d t .
\end{aligned}
$$

Using Lemma 2 and integration by parts, the integral over t is

$$
\ll \frac{1}{\left|\log \frac{a c}{b d}\right|}\left(1+\frac{a b}{q T}\right)^{-2}\left(1+\frac{c d}{q T}\right)^{-2}
$$

if $a c \neq b d$, and is

$$
\ll T\left(1+\frac{a b}{q T}\right)^{-2}\left(1+\frac{c d}{q T}\right)^{-2}
$$

if $a c=b d$. Hence

$$
\sum_{\chi(\bmod q)}^{*} \int_{0}^{T} B(t, \chi)^{2} d t=O\left(R_{1}+R_{2}\right)
$$

where

$$
\begin{aligned}
& R_{1}=\varphi(q) T \sum_{\substack{a b, c d>Z \\
a c=b d \\
(a b c d, q)=1}} \frac{1}{\sqrt{a b c d}}\left(1+\frac{a b}{q T}\right)^{-2}\left(1+\frac{c d}{q T}\right)^{-2}, \\
& R_{2}=\varphi(q) \sum_{\substack{a b, c d>Z \\
a c \equiv \pm b d(\bmod q) \\
a c \neq b d \\
(a b c d, q)=1}} \frac{1}{\sqrt{a b c d}\left|\log \frac{a c}{b d}\right|}\left(1+\frac{a b}{q T}\right)^{-2}\left(1+\frac{c d}{q T}\right)^{-2} .
\end{aligned}
$$

To estimate R_{2}, we again break the terms into dyadic ranges $Z_{1} \leq a b<$ $2 Z_{1}$ and $Z_{2} \leq c d<2 Z_{2}$, where $Z_{1}, Z_{2}>Z$. By Lemma 4, the contribution of each such block is

$$
\ll \frac{\varphi(q)}{\sqrt{Z_{1} Z_{2}}}\left(1+\frac{Z_{1}}{q T}\right)^{-2}\left(1+\frac{Z_{2}}{q T}\right)^{-2} \frac{Z_{1} Z_{2}}{q}\left(\log Z_{1} Z_{2}\right)^{3} .
$$

Summing over all the dyadic ranges we obtain

$$
\begin{equation*}
R_{2} \ll \varphi(q) T(\log q T)^{3} \tag{4.1}
\end{equation*}
$$

To handle R_{1} we argue as in the previous section. We write $a=g r$, $b=g s, c=h s$ and $d=h r$, where $(r, s)=1$, and we put $n=r s$. Then

$$
\begin{equation*}
R_{1} \ll \varphi(q) T \sum_{(n, q)=1} \frac{2^{\omega(n)}}{n}\left(\sum_{\substack{g>\sqrt{Z / n} \\(g, q)=1}} \frac{1}{g}\left(1+\frac{g^{2} n}{q T}\right)^{-2}\right)^{2} \tag{4.2}
\end{equation*}
$$

We split the sum over n into the ranges $n \leq q T$ and $n>q T$. In the first case, the sum over g is

$$
\ll 1+\sum_{\substack{\sqrt{Z / n} \leq g \leq \sqrt{q T / n} \\(g, q)=1}} \frac{1}{g} .
$$

When $n \leq Z_{0}$ this is

$$
\ll \frac{\varphi(q)}{q} \omega(q)
$$

by Lemma 5 . In the alternative case $n>Z_{0}$ we extend the sum over g to include all $g \leq 3^{\omega(q)}$ that are coprime to q. Lemma 5 then gives the same bound as before. Thus the contribution of the terms $n \leq q T$ to (4.2), using

Lemma 6, is

$$
\begin{equation*}
\ll \varphi(q) T\left(\frac{\varphi(q)}{q} \omega(q)\right)^{2} \sum_{\substack{n \leq q T \\(n, q)=1}} \frac{2^{\omega(n)}}{n} \ll q T\left(\frac{\varphi(q)}{q}\right)^{5} \omega(q)^{2}(\log q T)^{2} \tag{4.3}
\end{equation*}
$$

In the remaining case $n>q T$, the sum over g in 4.2 is $O\left(q^{2} T^{2} / n^{2}\right)$. Hence the contribution of such terms is

$$
\ll \varphi(q) T \sum_{n>q T} \frac{2^{\omega(n)}}{n} \frac{q^{4} T^{4}}{n^{4}} \ll \varphi(q) T \log q T .
$$

In view of 4.1 and 4.3 we now have

$$
\begin{equation*}
\sum_{\chi(\bmod q)}^{*} \int_{0}^{T} B(t, \chi)^{2} d t \ll q T\left(\frac{\varphi(q)}{q}\right)^{5} \omega(q)^{2}(\log q T)^{2}+\varphi(q) T(\log q T)^{3} \tag{4.4}
\end{equation*}
$$

5. Deduction of Theorem 1. From Lemma 1 we have

$$
\begin{aligned}
& \sum_{\chi(\bmod q)}^{*} \int_{0}^{T}|L(1 / 2+i t, \chi)|^{4} d t \\
&=4 \sum_{\chi(\bmod q)}^{*} \int_{0}^{T}\left(A(t, \chi)^{2}+2 A(t, \chi) B(t, \chi)+B(t, \chi)^{2}\right) d t
\end{aligned}
$$

The first and third terms on the right hand side are handled by (3.3) and (4.4). Also, by Cauchy's inequality we have
$\sum_{\chi(\bmod q)}^{*} \int_{0}^{T} A(t, \chi) B(t, \chi) d t$

$$
\leq\left(\sum_{\chi(\bmod q)}^{*} \int_{0}^{T} A(t, \chi)^{2} d t\right)^{1 / 2}\left(\sum_{\chi(\bmod q)}^{*} \int_{0}^{T} B(t, \chi)^{2} d t\right)^{1 / 2}
$$

Hence (3.3) and (4.4) also yield an estimate for the cross term. Combining these results leads to the theorem.

Acknowledgements. The first author is supported by an EPSRC Postdoctoral Fellowship.

References

[1] D. R. Heath-Brown, The fourth power mean of Dirichlet's L-functions, Analysis 1 (1981), 25-32.
[2] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971.
[3] Y. Motohashi, A note on the mean value of the zeta and L-functions. II, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), 313-316.
[4] V. V. Rane, A note on the mean value of L-series, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), 273-286.
[5] K. Soundararajan, The fourth moment of Dirichlet L-functions, in: Analytic Number Theory: A Tribute to Gauss and Dirichlet, Clay Math. Proc. 7, Amer. Math. Soc., Providence, RI, 2007, 239-246.
[6] W. Wang, Fourth power mean value of Dirichlet's L-functions, in: Int. Sympos. in Memory of Hua Loo Keng, Vol. I (Beijing, 1988), Springer, Berlin, 1991, 293-321.
[7] M. P. Young, The fourth moment of Dirichlet L-functions, http://arxiv.org/abs/ math/0610335.
H. M. Bui, D. R. Heath-Brown

Mathematical Institute
University of Oxford
Oxford, OX1 3LB, UK
E-mail: hung.bui@maths.ox.ac.uk rhb@maths.ox.ac.uk

[^0]: 2010 Mathematics Subject Classification: Primary 11M06.
 Key words and phrases: Dirichlet L-functions, moments.

