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1. Introduction. Let E/Q be an elliptic curve given by y? = 23 +ax+b,
Ep a quadratic twist Dy? = 23+ ax +b, and SeI(Q)(ED) the 2-Selmer group
of Ep. In this paper, we prove

TuEOREM 1.1 (1). Let E/Q be an elliptic curve with no nontrivial ra-
tional 2-torsion points. Then

#{|D| < X : D square-free, dim Sel® (Ep) < 1} > X/(log X)®
for some 0 < a < 1.

This result will follow from [, Theorem 1.2] once we prove the existence
of D such that dim Sel®® (Ep) < 1. Let III(Ep)[2] and rank Ep(Q) denote
the 2-part of the Tate-Shafarevich group and the Mordell-Weil rank, re-
spectively. Since Sel® (Ep) = Ep(Q)/2Ep(Q) @ II(Ep)[2], our theorem
implies the obvious distribution results for #1(Ep)[2] and rank Ep(Q).
The distribution result for rank Fp(Q) = 0 is also obtained in [9] and [8] by
establishing the nonvanishing of L-functions, but the one for #II1(Ep)|2]
seems new when E has no nontrivial rational 2-torsion points.

COROLLARY 1.2. Assume the finiteness of the Tate—Shafarevich group
of all elliptic curves over Q. Let E/Q be an elliptic curve with no nontrivial

rational 2-torsion points such that E has multiplicative reduction at v 1 600.
Then

#{|D| < X : D square-free, rank Ep(Q) =1 and dimIII(Ep)[2] = 0}
> X/(log X)“
for some 0 < a < 1 which depends on E.
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If we assume the finiteness of the Tate—Shafarevich group, the parity
conjecture for elliptic curves over Q can be proved using the 2-parity con-
jecture which was proved in [7], and our corollary follows from this result
and the assumption. The proof is given at the end of Section

Our original goal was to (unconditionally) prove the existence of D with
dim Se|(2)(ED) = 0, but we were not able to push our method to obtain
such a result. In fact, the finiteness of the Tate-Shafarevich group and the
nondegeneracy of the Cassels—Tate pairing imply that our method of twist-
ing by large primes will fail to produce a D such that dimSel®(E) = a
and dim Sel® (Ep) = b where a + b = 1. Our current goal is to remove the
finiteness hypothesis in the corollary.

In [2], for E : y*> = 23 — x and a positive integer n, Heath-Brown com-
putes the proportion of D up to X as X — oo, for which dim Sel(® (Ep) = n,
and in [I1], Sir Peter Swinnerton-Dyer obtains a similar result for far more
general elliptic curves with full 2-torsion points as the number of prime fac-
tors of D approaches infinity. In [I3], using the 2-Selmer groups of quadratic
twists of F¥ where E is any elliptic curve with full rational 2-torsion points,
Yu proves conditional and unconditional results on the existence of a pos-
itive proportion of D up to X with rank Ep(Q) = a where a < 1, and in
[12], using a result of [13], Xing and Zaharescu compute the average size of
# HI(E/B)[QZB] where Ep is the dual 2-isogeny of E considered in [13]. Via the
modularity of elliptic curves over Q and Kolyvagin’s result, James and Ono
in [4] obtain results about the distribution of D with the trivial p-Selmer
group of Ep where p > 3 and F is a fairly general elliptic curve. Our method
is rather direct and similar to [I1]. Using Schaefer’s framework [10], we nat-
urally identify each Sel®® (Ep) with a subgroup of L*/(L*)? where L is an
étale algebra over Q that does not depend on D, and we do a rather explicit
computation in this fixed space L*/(L*)2.

In Section [2| we briefly summarize Schaefer’s description of a Selmer
group, and sketch the proof of our result. Section (3| consists of rather tech-
nical lemmas which will be used to choose a prime number with properties
required in the proof of our theorem. The phenomena of the quadratic reci-
procity law and the Chebotarev density theorem are the main tools for the
proof of the lemmas in that section. In Section [4] we prove our theorem and
corollary.

2. Computing the 2-Selmer group. Recall that F/Q is given by
y? = 2® + ax + b, and does not have nontrivial rational 2-torsion points.
Let 21, 22, and 23 be the z-coordinates of the 2-torsion points in Q, i.e., the
roots of 3 + ax + b. Let L = Lg be the field extension Q(z1). For each

place p, let us denote by n, the number of places of &7, lying over p. Let Sg
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be the set of places of Q consisting of co and 2, and places of bad reduction
of E/Q. By [10], Proposition 3.4], we have the following isomorphism:

(1) HY(Q, B[2))s, = ker(Npq : L(SE,2) — Q(SE, 2)).
We refer to [10] for the definition of L(Sg,2). For each finite or infinite

place p, let L, := L ® Q,. Then, we also have an isomorphism for the
completion Q,:

(2) HY(Qp, B[2]) 2 ker(N, g, : Ly/(L;)? — Qp/(Q})%).

These isomorphisms are defined with a choice of representatives of
Gal(Q/Q)-orbits or Gal(Q,/Qj)-orbits in E[2]. With certain choices of rep-
resentatives, restriction maps res, : H'(Q, E[2]) — HY(Q,, E[2]) extend to
the natural maps L*/(L*)? — Ly/ (L;;)2 which we also denote by res, (see
[, Proposition 2.4]). Since Ly, = J]gy,, Ly, later in our calculation, the map:
L*/(L*)* — L%/(L%)? shall be interpreted as

(3) [a] = ([o] : B [ p).
The 2-Selmer group can be described as follows:
(4) SeI(Q)(E) = {a € L(SE,2) : Npjg(a) = 1, resp(a) € Im

for all p € Sg}
where 8, is the coboundary map E(Q,)/2E(Q,) — L%/(L})? induced by the
map H'(Q,, E[2]) — L /(L%)? in (2).

Let us identify the cohomology group H(Q, E[2])s, with the kernel
in (I). Let go = o0, and ¢ = 2, and write Sg := {qo,q1, - - -, qn}. Denote by
W_1 = WE| the subgroup HY(Q, E[2])s,, of L(Sg,2). For each k =0,...,n,
let W}, be the subgroup of Wj_; consisting of a such that resy, () € Imdy, .
Then the 2-Selmer group is isomorphic to W,,. Throughout the paper, by
“applying the local condition at g” we shall mean the process of obtaining
Wi_1 from Wj. Note that
(5) dim W, = dim W_y — ) " (dim Wy_; — dim Wy).

k=0
Note also that resy, (Wx_1) is a subgroup of H(Q,,, E[2]), and we can
write resg, (Wi—1) = resy, (W) & T for some subgroup T' of resy, (Wy_1).

Since T intersects Imdy, trivially, it follows that dim7 4+ dimImJ, <
dim HY(Qy, , E[2]), and hence

(6) dimT = dimWy_; — dim Wy < dim H(Q,,, E[2]) — dimTm 6, .

By [10, Corollary 3.6], we have the following possibilities for the upper
bounds in @: for all odd prime numbers p, we have dimImé, = n, — 1,
and dim H'(Q,, E[2]) = 2(n, — 1). When p = 2, we have dimIm dy = no,
dim L}/(L3)? = 2ng + 3, and dim Q}/(Q3)? = 3. By , examining each
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case of ny, we find that the description implies dim H!(Qs, E[2]) = 2n2.
Throughout the paper, we let € := 0 if L has a complex embedding, and
¢ := 1 if not. When p = oo, we have dim H' (R, E[2]) = 2¢ and dim 0, = €.
Hence,

n, —1, podd,
(7) dim H'(Q,, E[2]) — dimTm , = { na, p=2,
g, p = o0.

Let Clg,(L)[2] denote the 2-part of the Sg-class group of L. Then, by
the generalized Dirichlet unit theorem,

(8) dimW_; = dimH'(Q, E[2))s,,
—(14¢)+ (ank - 1) +dim Clg, (L)[2].
k=1

If the equality in @ holds forall £ =0, ..., n, then dim W,, = dim Clg,, (L)[2],
and hence dim Sel®? (E) = dim Clg,, (L)[2]. Our goal in this paper is to find
a twist Ep such that dim Clg, (L)[2] = 0 and dim W,f_Dl — dim W,CED (for
Ep) is maximized for each k =0,...,n.

By [I, Proposition 3.1], dimH"(Q, E[2])s, = dimH'(Q, E[2])g; where
St :={p € Sp : np > 1} U{2,00}. Moreover, H'(Q,, E[2]) = 0 if p is an
odd prime number with n, = 1. So, let us redefine Sk to be the set of places
consisting of co, 2, and places p of bad reduction of E with n, > 1.

Now we describe the image of the local coboundary map in L,. First,
we fix an embedding Q — @p. Let p be a prime number, and suppose that

[Qp(21) : Qp] > [Qp(zi) : Qp] for i = 2,3. Then
QpXQpXva np:37
L, Qp(z1) x Qp, n, =2,
Qp(zl), np = 1.
Hence, if p is an odd prime number, then
Q/(Qp)? x Qp/(Qp)? mp =3,
(9) HY(Qp, E[2]) = § Qp(21)/(Qp(21)")?,  mp=2,
0, ny = 1.
In practice, these products are interpreted as in . If p =2 with n, > 1,
then the description of H!(Q,, E[2]) is the same as above. To give the de-
scription for the case p = 2 with n, = 1, let F' := Q,(21). Let Up be the
group of unit integers in F, and Ug, be the group of unit integers in Q.
Then H'(Q,, E[2]) is isomorphic to the kernel of the norm from U /(Us)?
to U@p/(U@p)? Since this norm map is surjective, and dim U} /(Us)? = 4
and dim U@p/(U@D)2 = 2, we have dim H}(Q,, E[2]) = 2.
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If HY(Qy, E[2]) is identified as in @, then by [10, Theorem 2.3], for each
prime number p, the local coboundary map E(Q,)/2E(Q,) — H'(Q,, E[2])
is given as follows:

(,y)— (r—2z:i=1,...,n,—1)
provided that x # z; fori =1,...,n, — 1.
LEMMA 2.1. If n, = 3, then under the local coboundary map at p,

(21,0) = ((21 — 22)(21 — 23), 21 — 22),
(22,0) = (22 — 21, (22 — 21) (22 — 23))-
If np, =2 and z3 € Qp, then (23,0) — (23 — 21).
Proof. The proof is left to the reader. u

Let us conclude this section by sketching the proof of our main result.
Recall that E[2](Q) is trivial. Then the cohomology groups H'(Q, Ep[2])
for all D are naturally identified in L*/(L*)? where the étale algebra L/Q
is a field extension of degree 3, and similarly the local cohomology groups
H'(Qq, Ep[2]) for all D are identified in L}/(L%)? where Ly = L ® Qg;
see below. Moreover, we have the natural maps L*/(L*)* — L /(L%)?
which restrict to the maps res, : H'(Q, Ep[2]) — HY(Qy, Ep[2]) for all D:

HY(Q, Ep(2]) L* /(L)
(10) resql iresq
H(Qq, Ep[2]) Ly/(Ly)?

For each D, let Sp denote the set of places consisting of oo, 2, and places
of bad reduction of Ep, and let S = S7. We find D such that S C Sp, which
implies

(11) H'(Q, E[2))s € HY(Q, Ep[2))s,

as subgroups of L*/(L*)?, and such that for each ¢ € S, the local coboundary
images for £ and Ep identified in the space L% /(L})? are equal to each other
(see [Il, Proposition 2.5]). By and the description (4)), what survives in
HY(Q, Ep[2])s, after applying local conditions over S is a subgroup W¥ of
L*/(L*)? containing Sel® (E) because of the second condition we impose
above on D (see in Section. At each stage of applying local conditions
as illustrated in , the size of the subgroups surviving is decreased by at
most the numbers given in . We find such D as a product of two primes
p and r, where p splits completely and r remains prime in L, and

(12) dimH'(Q, E[2])s + 2 = dim H'(Q, Ep[2])s,,
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(see (8)). The role of the prime r will be explained in the following para-
graph. Putting more conditions on D, we shall have, at some intermediate
step of applying local conditions over S, the size of a subgroup surviv-
ing in HY(Q, Ep[2])s, decreased by at least one more dimension than in
HY(Q, E[2])s; this is served by an element « contained in HY(Q, Ep[2])s, \
H1(Q, E[2])s. Then it follows from (12)) that

(13) dim WP < dim Sel® (E) + 1.

To compute dim Sel® (Ep), we only need to apply the local condition at
p to WP since H'(Q,, E[2]) = 0. With more conditions imposed on D,
we can map, via res,, the subgroup Sel(z)(E) of WP outside the local
coboundary image, and it follows that dim W2 —2 < (dim Sel®® (E) 4 1) — 2,
provided that dimSel®(E) > 2 (see Figure 1 in Section W). That is,
dim Sel® (Ep) < dimSel®® (E). By induction, we prove that there is some
D such that dim Sel® (Ep) < 1.

It gets very technical to show that there is a D satisfying all the prop-
erties we want, but the main tool is the generalized Dirichlet theorem. Re-
call that H'(Q, Ep[2]) — HY(Qq, Ep[2]) extends to the map L*/(L*)? —
Ly/ (L;)Q, the essence of which is the Legendre symbol over places of L ly-
ing over ¢. Let us remark here that the “quadratic residue properties” of
the element «, which serves , over the places ¢ € S more or less de-
termine the image of Sel®® (E) in H'(Q,, E[2]), via a quadratic reciprocity
law; see Lemma below—this lemma is proved easily by Hecke’s version
of quadratic reciprocity for a number field [3, Theorem 167]. In the previous
paragraph, we claimed that Sel(z)(E ) lands outside the local coboundary im-
age of Ep at p, and it turns out that via quadratic reciprocity this property
pleasantly follows from the condition imposed on D and hence on «, which
serves . Recall that D = pr. In this very technical context, the inert
prime r serves to keep all local coboundary images of E and Ep over ¢ € S
being equal to each other, and this prime does not contribute to the size of
HYQ, Ep[2])s,; see . When E[2](Q) # 0, we do not have this prime, and
it posed the main difficulty to extending our proof to the general case.

3. Lemmas. In this section, we introduce several lemmas which will be
used in the proof of Theorem[I.1] and a slight generalization of the Legendre
symbol. Let L be a field extension of Q with degree 3, and let M be the
Galois closure of L over Q. Let K/Q denote the quadratic extension in M if
L/Q is not Galois. For an odd prime ideal p of &); and an element « of Oy
relatively prime to p, we denote the Legendre symbol by («/p), and for an
odd element f relatively prime to «, denote the Jacobi symbol by (a /). If
v is a real embedding of M, then (a/v) is defined to be 1 if v(a) > 0, and
—1 if not.
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We define an extension of the Legendre symbol over even primes as
follows: Let p be a prime ideal dividing 20,. For a € O); coprime to p, we
define the symbol (a /p) to be the class of « in U,/(Up)? where U, is the
group of unit integers in the completion of M at p. Suppose that p and p’ are
prime ideals dividing 20, and up’ = p for some p € Gal(M/Q). Then there
is a canonical isomorphism Uy /(Uy)? — Uy,/(Up)? such that the following
diagram is commutative:

(Ont ) (p')")* —= (O (p)™)*

Uy /(Uy)? Up/(Up)?
where the vertical maps are surjective for sufficiently large n, and given by
the Legendre symbols. Let us denote by («/p’), the image of (a/p’) in
Up/(Up)?. This definition is consistent with the usual Legendre symbol over
an odd prime ideal p since Uy /(Uy)? = Z/2Z, and (o /p)(a /p'), can be
simply denoted by (a /p)(a/p’).

Suppose that L/Q is not Galois. If 3 is an even prime of L, and Q C Oy
is an unramified prime over ‘B with residue degree f(Q/9) = 1, then we have
a canonical isomorphism Uss/(Ugp)? — Uq/(Ugq)?. Under this isomorphism,
we may write (a/Q) = (a/P) for a € L*, and this abuse of notation is
used in Lemma [3.41

LEMMA 3.1. Let T be the set consisting of 2 and the prime divisors
of the square-free part of Ay g = (21 — 22)*(22 — 23)*(23 — 21)*. Let R =
{rii=1,...,m} and {t; : i =1,...,m} be a sequence of prime numbers
and a sequence of +1, respectively, such that R does not intersect T. Then
there is an odd prime number p such that n, = 1 and (p/r;) = t; for
i=1,...,m, and such that (p/q) =1 for all g€ T.

Proof. Suppose that L/Q is not Galois. Let K be the quadratic exten-
sion in the Galois closure of L, and let K := K (\/q,v/—1:q € T). Let F/K’
be the field extension K'(,/r; : i = 1,...,m). Then, since R intersects T'
trivially, Gal(F/K') = @ | Z/2Z. Write T = {2, q1, . .., gs}. Note that K is
Q(v*d) where d is 2[5, ¢; or [[;_; ¢i, and that LK’/K’ and F/K’ are lin-
early disjoint and Galois. Hence, Gal(LF/K') = Gal(LK'/K')® Gal(F/K").
Let Fj := K'(,/r;). Then there is an automorphism 7 in Gal(LF/K') such
that resp k() is a generator of Gal(LK'/K') and such that resg, (1) = (¢;)
for each ¢ = 1,...,m. By the Chebotarev density theorem, there is a prime
number p # 2 whose Frobenius automorphism in Gal(LF/Q) is 7. Since
K'/Q is Galois, p splits completely in K. By our choice of 7, it follows that
np, =1, and (r; /p) = t; for all 4. Since (—=1/p) =1 (i.e.,, p = 1 mod 4), we
have t; = (p / r;). Moreover, 1 = (¢ /p) = (p/ q) for all odd primes ¢ € T. If
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q = 2, then by the supplementary reciprocity law, p = 1 mod 8 if and only
if (2/p) = 1 (provided that p = 1 mod 4). Since 2 is contained in 7', and
p splits completely in K’, we have (2 /p) = 1, and hence (p/2) = 1. The
proof of the case that L/Q is Galois is similar, and rather simpler. =
REMARK 3.2. Let T be a finite set of infinite or finite places of M. It
is well-known that for any modulus m and a prime power decomposition

m = HQeT mg,
(14) My /M1 2 @D Mg /Mg 1
QeT

where My, = {a € M* coprime to n}, and M, ; denotes the ray mod n (i.e.,
{a € My : a =* 1modn}). If H is the Hilbert class field of M, then by
the class field theory, Gal(R/H) = (Mu/Mwm1)/ O}y, as shown below, where
O’y is identified with its image in My/My 1

1 —— Gal(R/H) — Gal(R/M) — Gal(H/M) —> 1

o 1T

1 J I'n/ P I/pP 1

where J = (Mw/Mwn1)/O%;, Im is the group of fractional ideals of &)
coprime to m, Py 1 is the group of principal fractional ideals 3 such that
B =*1mod m, and I/P is the ideal class group of &);.

LEMMA 3.3. Let M, H, and m be as above. Then there is a prime ele-
ment p of Oy lying over a prime number p which splits completely in M
such that p belongs to any class in My/Mp 1.

Proof. Let R be the ray class field of M mod m, and R’ be the Galois
closure of R over Q, so Gal(R'/M) C Gal(R'/Q). Let a be a number in My,
belonging to an arbitrary class in My/My 1, and let o be an automorphism
in Gal(R/H) corresponding to the class [o] € My /M1 via the map in (15)).
Let ¢’ be the automorphism in Gal(R'/Q) which restricts to o. By the
Chebotarev density theorem, there are a prime ideal " of Or and a prime
number p such that Frob(P'/p) = ¢’ € Gal(R'/H). Let B := P’ ' N Or be
the prime ideal of R, and p := P N Oy, the prime ideal of &j;. Then
id = Frob(P’/p)|asr = Frob(p/p), and hence the residue degree f(p/p) is 1.
Thus, p splits completely in M.

Note that o’ = Frob(’/p) = Frob(’/p)/#/P) = Frob('/p), and hence
o = Frob(B/p). By (1), the prime ideal p is a principal ideal p'@y; such
that [p'] = [a] in (Mw/Mw1)/0r. So, p/ =* aX mod m for some \ € O7F,.
Let p:= p'A~'. Then p=* a mod m. m

Let Ty := {p1,...,p¢} be the set of all places of M over 2. Let T :=
{Q1,...,9Q,} be a finite set of (finite or infinite) places of M outside 2, and
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let {eq: Q € T} be a sequence of 1 indexed over T'. Let m be a modulus
supported by T'UTy with large exponents over places in Ty. By Lemma |3.3
we can choose a prime element p of & lying over a prime number p which
splits completely in M such that

(p/Q)=eq forall QeT,

16
(16) (p/p)=1 for all p € Tp.

LEMMA 3.4. Suppose that L/Q is not Galois. Let o be an automorphism
in Gal(M/Q) with order 3. Let T be the generator of Gal(M/L). Let p1 be
a prime element of Oy over an odd prime p which splits completely in M,
and py = opy and p3 := o%p1. Let a; = Nar/r(pi) = pi- 7pi- Let Qi be
a prime ideal of Oy; over an even or odd prime q not equal to p. Suppose
that q splits completely in M, and let Qo = 0y and Q3 := 0°Q,. Let
PBiOn = Q; - 7Q; for some prime ideal B; of Op. Then Ny g(aras) and
Ny g(azas) are contained in (Q*)?, and

(1 /PB1) = (p1/Q1)(p1/TQ1)7, (2 /P1) = (p1/Q3)s(p1/T2) 70,
(1 /PB2) = (p1/Q2)(p1/TQ2)7, (a2/P2) = (p1/Q1)o(p1/T7Q3)70,
(1 /PBs) = (p1/3)(p1 /T3)7, (2 /PB3) = (p1/Q2)s(p1 / TQ1) 70,

(as/P1) = (2 / Bs)o (o1 / Pr) (o2 / P2) o2,
(as /P2) = (a2 / P1)o(ar / B2) (o2 / Bs) 2,
(a3 /PB3) = (a1 / P1)o(az / Bs) (a1 / Ba) 2.
Suppose that q has ng = 2, i.e., qO0 = PIBy or qOp = P1Pa with

f(B1/q) = 2. Hence, P10y = Q1 - 721 and Pa2Opr = Q3 or PaOyyr = Q.
Then

{ (1 /PB1) = (p1 /1) (p1/ TQ1)r or { (1 /PB1) = (p1 /1) (p1/ TQ1)r
(a2 /PB1) = (p1/Q3)0(p1 /1) (a2 /PB1) = (p1/Q3)0(p1 /Q2)
if 0Q1 =701 or Q1 = N, respectively.

Proof. Note that

3 3 3
Npjglanas) = [[ o' (raa) = [[ o' (o1 - 7o1) [ o' (01 - Topm)
=1 =1 =1

=< 11 u(ﬂ1))2=p2-

neGal(M/Q)

Similarly, N, /q(azas3) is a square in Q*.
Since (a1 /P1) = (a1 /Q1), it follows that

(a1 /P1) = (pr/ Q1) (rp1 /1) = (p1/ Q1) (p1 / 7Q1)r
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As the proof of the other results is very similar, we leave the details to the
reader. m

The relationship between the Legendre symbols for the case of L/Q being
Galois is simpler, and we state it below without proof.

LEMMA 3.5. Suppose that L/Q is Galois, i.e., M = L. Let o be a non-
trivial automorphism (of order 3) in Gal(L/Q). Let oy be a prime element
of O, over an odd prime p which splits completely in L, and oo := oy and
asz = o?ay. Let Py be a prime ideal of Or, over an even or odd prime q not
equal to p. Suppose that q splits completely in L, and let Po := Py and

Ps := 0?P1. Then N jg(raz) and Ny, jg(azas) are contained in (Q*)?, and

(a1 /P1) = (a2 /Pa)oz = (@3 /B3)o,
(a1 /Pa) = (a2 /P3)o2 = (@3 /P1)o,
(a1 /Ps) = (a2 /P1)y2 = (a3 / P2)o-

REMARK 3.6. If L/Q is not Galois, the symbols (p; / Q;) and (p1 / 72;)
in Lemma can be treated as free variables as explained in . Then the
matrix over Z/27 associated with the system of the first six equations in
Lemmahas rank 5, and H§:1 H?Zl(ai /B;) = 1is the (only) constraint.
Thus, the five variables («; /B;) for i < 2 or j < 3 can be treated as free
variables.

If L/Q is Galois, by Lemma (o /PB;) for j =1,2,3 can be treated
as free variables.

A similar result is available for real places of L if there are three real
embeddings of L. Suppose that L has three real embeddings, and that
Gal(M/Q) = (o, 7) where o has order 3, and 7 has order 2. Then M must
have six real embeddings, and we let v be a real embedding of M. All six
embeddings are in the form of vy for some p € Gal(M/Q). It is clear that
(x /op) = (u(z) /v) for all p € Gal(M/Q), and if u is a real embedding of
M and v’ is the restriction of u to L, then (x /u) = (z /u) for all z € L. Tt
follows that

(arag /) = (p1/v)(pr /vT)(p1 [ vo)(p1 [ vTO).

Likewise, (ajcj / u), where u is a real embedding of M, are written in terms
of the Legendre symbols of p; over real embeddings, and we can obtain,
by imposing values on (p1 /u)’s, the desired values of (ajo /u) which are
required for the proof of our theorem. The case M = L (with three real
embeddings) is simpler. When there is only one real embedding of L, the
restriction map H'(Q, E[2]) — HY(R, E[2]) is trivial as HY(R, E[2]) is trivial
by .

LEMMA 3.7 (Reciprocity law). Let M/Q be a Galois extension. Let x
and y be elements of Oy such that 2Oy = Qi ---Qga% and yOy =
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Q) -+ Q6% where Q; and Q; are primes, and such that xyOy; is not a
square. Let my be the product of Q; which are odd, fori=1,...,s, and m,
the product of Q) which are odd, for i =1,...,t. If p is a totally positive
prime element p € Oy, coprime to xy, lying above an odd prime number p
splitting completely in M such that p =* 1 mod 8cc Oy, then

@/p)= [/, w/e)=1]]k/2.
Q|my Qlmy
Proof. Let m be the lem of m; and my, and o be any integer in M
coprime to m such that
a="1mod 8co0)y.

Then sgn(oca) = 1 for all real embeddings o : M — R, and by [3, The-
orem 167], we have

(/o) =(a/mg), (y/a)=(a/my). =
Note that L ® Qo is a product of local fields. Let H!(Qa, F[2])o denote
the subgroup generated by tuples in L ® Qo whose entries are unit integers
of the local fields.

PROPOSITION 3.8. There are totally positive elements (1,...,0; in L*
lying over primes p with n, = 3, representing elements in H(Q, E[2]) such
that (31, ..., 3) surjects down to H(Qq, E[2])o under the restriction map.

Proof. Suppose that ng > 1, and that L/Q is not Galois. Using Lem-
ma [3.4] we have

1. if QﬁM = mlmQ‘Bg, then
(arag /PB1) = (p1/Q1)(p1/ 7Q1)-(p1 / Q3)o(p1 / TQ2) 70,
(arag /PBa2) = (p1/Q2)(p1/ TQ2)-(p1 / Q1)o(p1 / TQ3) 703
2. if QﬁM = m%mg or &Blmg, then
~ [ (pr/7Q1)7(p1/ Q3)o,
(crag /PB1) =
(p1 /1) (p1/TQ1)-(p1/ Q3)e(p1 / Q2).
Note that (O /B")* — Ug/ (U{{g)2 is surjective for n sufficiently large.
Consider the modulus m = 2”000}, and the isomorphism
My /M1 = @D Mgne /Magne y & @D My /M, 1.
Plm v]oo
Suppose that 2 splits completely in L. As mentioned earlier in Remark
all (p1/ Qi) and (p1 / 79Q;) can be treated as free variables. Moreover, p; can

be chosen to be a totally positive prime element lying over a prime number
with n, = 3. So, recall the case |I| above, and let

(p1 /1) =(p/7Q2) = 1.
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Then

(naz /P1) = (p1/ 7Q1)(p1 / Q3)o,
(naz /[ Pa) = (p1/Q2)(p1 / 723) 70,

and it is clear that we can impose any pair of values on (ajag /B1) and
(a1g / P2). Recall that ajas represents an element in H(Q, E[2]), and
also recall the description and @D Then it can hit an arbitrary element
in HY(Q2, E[2])o by choosing values of the Legendre symbols on p;. Thus, we
can find the (;’s claimed in the proposition. The proof of case 2 is similar.

Suppose that L/Q is Galois, and that 2¢) splits completely. In this
case, we have only three free variables as shown in Lemma (3.5} and

(naz /P1) = (a1 /P1)(ar /PBs)o, (a2 /Pa) = (a1 / Pa2)(aa /PBi1)o-

So, let (ay /PB1) = 1. Then it is clear that any pair of values can be imposed
on (ajae /P1) and (agaz / P2), which proves the result for the case of Galois
extensions.

Suppose that no = 1. Note that there are only two extensions of Qg of
degree 3, namely, .4 := Qq[z]/(2% — 2) and % := Qq[x]/(2x® — 2 + 1). The
local field .2} corresponds to the case where 2 is totally ramified in L, and
%5 to the case where 2 is inert in L. Consider the case 20 = B. Regardless
of whether or not L/Q is Galois, the completion Ly is Galois over Qo, and it
is %. Let POy = Q-79 be the factorization of B in M if L/Q is not Galois.
Then an automorphism o € Gal(M/Q) of order 3 acts trivially on {Q, 79},
and it can be considered as one in Gal(%/Q2). Note that o € Gal(%/Q2)
acts on U%/U% =~ Uq/U3 while this was not the case for ny > 1. Since
ny = 1, the kernel of the map Ny, q, : Z5/(%5)* — Q5/(Q3)? is the
kernel of

Ng,/q, : Up/Ug — Uz/U3,

which we denote by V, and dim V' = 2. We claim that ¢ acts nontrivially
on V', and hence nontrivially on the corresponding subgroup of Ugy/ Ué,
which we denote by V’. Suppose that o acts trivially on V so that for each
a € Usp representing an element of V, there is some 2 € Ugp such that

oa = az?. Then since [a] € V, there is y € Us such that y? = a - ca - 02«

= a-az?-az’o(x)?, and hence a = (y(az?o(z))~1)? € U%. This proves the
claim. Note that

(p1/Q)(p1 [ 7)+(p1 / Q)o(p1 [ TQ) 7 if L/Q is not Galois,
(a1a /P) _{ : . .

(a1 /B)(a1/B)s if L/Q is Galois.
Recall that we can treat (p1 /Q), (p1/7Q), and (o /*B) as free variables on
Uq/ Ug or on Uyp/ U%. If we write these vector spaces over Fy additively, the
tranformation 1+ o is invertible on V' since (1 +0) =0 + 02 = -1 = 1.
This means that each of (p1/Q)(p1/9Q)s and (p1/7Q):(p1/7Q)7s can
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assume any value in V’; and so does (a1 / B) (a1 /B)o in V. Thus, using the
Chebotarev density theorem as in , we obtain the result.

Consider the case 207, = 3. As in the previous case, for H!(Qy, E[2]),
we only need to consider the kernel, denoted also by V', of

NPT ng/U% — Uy /U3,

Then dim V' = 2. Note that Py, = 2, and that the natural map ng/U%3 —
Uq/ Ug is not injective. It has kernel of dimension 1, which is the subgroup
of Up/ U% generated by the class represented by —3 as Ugq has a primitive
third root of unity. Since U/ U% =V @ ([-3],[3]), it follows that V injects
into UQ/U%; we denote by V'’ the image of V. Let .# be the completion of
M at Q. Let Gal(.# /Q2) be generated by ¢ of order 3 and 7 which generates
Gal(.# | £1). Note that Gal(.# /Q2) acts on Un/U%. As in the previous case,
involved in computing (ajag /*B) is the transformation 1 + 7+ o + 70 on
Un/U. Note that 1+ 7+ 0 4 70 restricted to V' is 1 +1+0 + 0% = 0 4 0*
since 7 acts trivially on V’. As in the previous case, it turns out that o
acts nontrivially on each of the three nontrivial elements of V', and hence
0+ 02 = —1 =1 on V'. Therefore, if we choose a totally positive prime
element p; of Oy such that (p; /Q) is any value z in V' C Ug/U%, then

(a2 /9Q) = (p1/Q)(p1 / Q)= (p1/ Q)o(p1 / Q)ro = 2.

Since V' is naturally isomorphic to V' and [ajag] € V, it means that
(g /PB) can be any value in V' C Usp/U%. .

COROLLARY 3.9. There is a set S consisting of 0o, 2, and primes p
with n, = 3 such that HY(Q, E[2])s surjects down to H'(Qq, E[2]) under the
restriction map.

Proof. Let B be a prime ideal of &7. If L/Q is not Galois, then M /L
is ramified, and hence the Hilbert class field H of L and M/L are lin-
early disjoint. It follows that Gal(HM /M) = Gal(H/L), which is true for
the case M = L, as well. Then, by choosing a Frobenius automorphism in
Gal(HM /M), we can find a prime ideal p; of &7 representing the class of
B in C1(OL) such that the prime number p := p; NZ splits completely in L.
From pOr, = p1paps, it follows that PBpops is a principal ideal.

Suppose that 207 = PB1P2P3. Then there are prime numbers p and
p’ splitting completely in L, i.e., pOr, = pipap3 and p'Of = pip5Hps, such
that Pipaps and Paop,Hps are generated by o and 3, respectively. Note that
Nz jolaB) = +(2pp’)%. So, either of # := 4af represents an element of
H(Q, E[2]) since [L : Q] = 3. Then it is clear that we can find an ele-
ment y representing an element in H'(Q, E[2]) such that y&; = P2Psa
where a is square-free and supported only by prime ideals lying over primes
splitting completely. The two elements resy(x) and ress(y) together with
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H1(Q2, E[2])o generate H'(Q2, E[2]), and by the previous proposition, we
get the result. The proof for the other cases of splitting of 207, is similar.

4. Proof. We prove Theorem in this section. Let E and L be as in
Section [2| From now on, when ¢ is an odd prime number, we say that Im 4,
is unramified if Im &, is contained in HY(Qq, E[2])unr = Lq(0,2), and totally
ramified if Im ¢, contains no nontrivial elements of L,((), 2). For example, if
n, = 3, then a subgroup ((pa,b), (c,pd)) in H(Q,, E[2]) as identified in (9)
is totally ramified where a,b, c,d are unit integers, while ((pa,b), (pc,d)) is
not totally ramified. Let S be the set consisting of 2, oo, and places g of
bad reduction of E/Q such that ¢ is ramified in L with n, = 2. This set
S depends only on L. In this section, our elliptic curve is replaced by its
twists several times, but the set S is not replaced, and fized to be the one
just described here, once and for all. Let Ty be the set of places consisting
of 0o, 2, and places p of bad reduction of E with n, > 1, except for the odd
primes ¢ € S such that Im ¢, is unramified.

First, we shall argue that there is a quadratic twist £’ with the following
properties:

PROPERTY 4.1.

1. E’ has good reduction at odd places p with n, = 2 which are unramified
in L, and Im 6, is totally ramified at odd places p of bad reduction with
np = 3.

2. CI(L)[2] is generated by prime ideals over primes p with n, = 3 at

which E' has bad reduction.

Sel®(E") intersects H(Q, E'[2])g trivially.

4. As we apply the local conditions to Hl(Q,E’[Q])TE, over 0o, 2, and all
odd primes ¢ € S, the dimension drops by € at oo, and by 1 at odd
primes q € S if Imd, is ramified.

5. HY(Q, E'[2])r,, surjects onto H'(Qq, E'[2]).

Let us first show that if p is an odd prime number unramified in L such
that n, = 2 then either £ or the quadratic twist F), has good reduction
at p. Note that a twist Ep can be given by y? = 3 +aD?z + bD3. Twisting
by p, if necessary, we may assume that 2% + ax +b = ((z — 23))((z — 23) —
(21 — 23))((x — 23) — (22 — 23)) where z3 € Q) is such that ordgp(z1 — 23) =
ordg(ze — 23) is even where pOy, = PP’ and f(P/p) = 2. Then, changing
the variables over Q,, we find a Z,-model y* = z(z — a)(z — B3) where
(x — a)(x — () is an irreducible polynomial over Q,, and « and [ are unit
integers. Since n, = 2, the quadratic polynomial remains irreducible over I,
and hence it has good reduction at p. If n, = 3, then either ' or the twist
Ep with D = p has a totally ramified local coboundary image at p. This
can be easily shown by considering the cases of the triples of parities of

@
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ordy(z1 — 22), ordp(z2 — 23), and ord,(z3 — z1) and using Lemma So, let
us assume without loss of generality Property [£.1]1.

Note that we may as well assume that CI(L)[2] is generated by prime
ideals ‘B dividing primes p with n, = 3 at which E has bad reduction. We
always have such primes p as argued in the proof of Corollary and after
twisting £ with the product of these primes p, it has Property [£.1] 2.

Let x be an element of &} representing a nontrivial element in
HY(Q, E[2]). Then L(y/z) is linearly disjoint with M over L since M =
L(v/A) with A € Q. Using the Chebotarev density theorem and the non-
trivial automorphism in Gal(LM (y/x)/M), we can find a prime p splitting
completely in L, i.e., pOr, = P1P2P3, such that (z /PP1) = —1. Recall that
given an elliptic curve E/Q, we denote by Sg the set of 2, 0o, and places p of
bad reduction of E/Q with n, > 1. Since H}(Q, E[2])s is finite, we can find k
distinct prime numbers p & Sg with n, = 3, where k = # HY(Q, E[2])s — 1,
such that each nontrivial element z € HY(Q, E[2])s represented by an ele-
ment x of L* is a nonsquare unit integer in some L,,. Let D be the product
of these k primes. Then, by Lemma the local coboundary images of
Ep at these primes p are totally ramified, and each nontrivial element z of
HY(Q, E[2])s is mapped to a nontrivial element of H(Q,, Ep|[2])unr at some
of these primes p as illustrated in Figure 1,

HYQ ER)s Tm 57

Fig. 1

where Im (5}? denotes the image of the local coboundary map at p for Ep.

Hence, Sel®(Ep) intersects H'(Q, E[2])s trivially; see Property 3. In
particular, Se|(2)(ED) does not contain an element represented by x € L*
such that x5 is a square. Thus, we can assume that if x € & repre-
sents an element in Se|(2)(E), then the square-free part of x 07y, is necessarily
supported by a prime ideal outside S.

Let us recall Lemma Lemma , and Remark Given an odd
ramified prime ¢ with n, = 2 and ¢07, = PBIPo, we can find a prime number
p such that (a1ag /P1) = —1, and (a1 /PB) = 1 for all other places P
lying over 2, co or a prime number r of bad reduction of E with n, > 1 where
a1 and ap are as defined in Lemmas [3.4] and For each of these primes g,
let p, denote the prime number p, and we renew our elliptic curve E with
the twist Fp where D is the product of the p,’s. Then, as we apply the
local conditions at odd primes q € S to H'(Q, E[2])s,, some elements ajag
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of HY(Q, Ep[2]) are mapped to the nontrivial element of H'(Qy, F[2])unr
under res, as in Figure 1, and hence at odd primes ¢ € S, the dimension
drops by 1 if Imé, is (totally) ramified; see and Property 4. This
twisting step possibly changes the local coboundary images everywhere, but
satisfied are the properties which are discussed in the previous paragraphs,
and stated in Property [£.1] as the first three items. Note that Property .13
remains true since after twisting, Im 6qD may be different from Imd,, but
remains totally ramified. If Im ¢, is unramified when ¢ € S is odd, then
Im &, = {(a)) where a is a unit integer of Q, and no elements in H!(Q, E[2])
which are ramified at ¢ will be mapped to Im ¢, under res,. This means that,
to compute Sel(Q)(E), we may apply the local conditions to H'(Q, E[2])7y-
Since CI(L)[2] is generated by prime ideals over primes p with n, = 3, at
which F has bad reduction, by , we have

dim H'(Q, E[2])1, = dimH'(Q, E)s,, — #(S5 \Tk)-

More importantly, since the o;aj defined in this paragraph are still contained
in HY(Q, E)7,, the fourth item in Property is satisfied for odd primes
q € SNTg. By Remark when L has three real embeddings, we have
a version of Lemmas and for ¢ = oo, and can find a prime number
Poo such that (ajas) — HY(R, E[2]) is surjective. By Corollary we may
assume Property [£.1]5.

We shall show that if (E satisfies Property and) dim Sel®(E) > 2,
then dim Sel®® (Ep) < dim Sel® (E) for some D. Suppose that dim Sel? (E)
> 2. Then, by Property 37 the subgroup SeI(Q)(E) contains two elements
represented by x and y in L* such that the square-free part of each x0f,
and yOy, is supported by ideals lying over splitting primes ¢; and g» out-
side S, which are not necessarily distinct. To compute Sel® (E), we shall
apply to HY(Q, E[2])7,, the local conditions at ¢ € S first, and then at the
remaining places, in an order such that the local conditions at ¢; and gy are
applied at the very end as shown in . Recall from Sectionthe definition
of Wy’s:

HL(Q. B[2]) < <l el gy, ey s
(17) TeSoo i/ resg; \L resqgy i/
Im b Im d4, Im &,

Of course, the value of dim Sel® (E) does not depend on the order we ap-
ply local conditions, but we use this order to make our later argument
work. Note that by Property [£.1}4-5, there must be a place ¢* € Sg with
ng<~ = 3 at which the dimension does not drop by 2 as we apply the local
conditions in an order described above; otherwise, dim Se|(2)(E) would be
Zero.
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LEMMA 4.2. Suppose that dimSel®(E) > 2. Then there are x and y
in S~e|(~2)(E) and q1 and qo outside S with 101 = P1PoPs and 01, =
P1 P2 B3 such that ¢* = q2, or q* is not equal to q1 or qa2, and that

(18)  z0p = P1Po(PI PRV )a, b2,  yOr = PrPa (P P52 §3)ay512,7

where a, and a, are square-free ideals, d; and e; are 0 or1, Y d;i =) e, =0
mod 2, dids # 1, and ejes # 1, or

(19) 20 = P1Paasbl,  yOL = PaPaay, b,
where a, and a, are square-free ideals supported by S.

Proof. Let us prove the assertion that ¢* = ¢o, or ¢* is not equal to ¢
or ¢go. Suppose that ¢* = g and g1 # ¢o. This means that the dimension
drops by 2 at all places prior to q; and g2; otherwise, we could choose ¢* not
equal to ¢ or g2. Note that if dim W, _; — dim W,, < 2, then we can choose
q* = ¢o, and we are done. So, assume that dim W, _1—dim W,, = 2, which
means resq, (W,—1) = V &T where V is the maximal subgroup contained in
Im 64, and dim T" = 2. Note that since W,,_1 C W),_2, we have resq, (Wy,—1) C
resg, (Wp—2). This means that if we apply the local condition at g earlier
than at g1, then V@& T C resy, (W, —2), and hence the dimension of W,_
drops by 2 after applying the local condition at ¢s. Thus, ¢* = ¢; must be
the case. So, we may assume that the local conditions at ¢; are applied first,
and ¢* = go.

Suppose that we can choose ¢q1 # g2, so we have the factorization in .
If for all such ¢; and ¢o, we have dids = 1 and ejes = 1, then we must have
ry € HY(Q, E[2])s, which contradicts Property 3. So, we have dyds # 1
or ejeo # 1 for some choice of distinct ¢; and go. Suppose that dido = 1 and
eres # 1. Then

1 1 20,2 o 2
ryOp = Pi PP TIPP e b20),  yOL = PrPa(PT P PS5 )a,by.
If ' = 2y and 3/ = y, then for all possibilities of e, e, and e3, the factor-
ization of 2’ and y satisfies the conditions stated for (18).

It is clear that if we cannot choose distinct ¢; and go, then (19) must be
the case. =

Our goal here is to find a prime number p with p& = ajasas0, such
that Property [£.3] below is satisfied:

PROPERTY 4.3.

1. (a1ag, agas) — Hl(Qq*,E[2])um is surjective.
2. (z,y) — HY(Qp, E[2])unr is surjective.
3. {109, asa3) — HY(Qy, E[2)) is the trivial map for all other places q
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Using this prime p, we will find a twist such that dimSeI(Q)(ED) <
dim Sel® (E).

By Lemma we have the following possibilities: (a) g1, g2, and ¢* are
all distinct; (b) ¢1 # @2 = ¢%; (¢) @1 = ¢2 = ¢*; (d) @1 = ¢2 # ¢*. Since the
proofs of (a) and (b), and of (c) and (d) are very similar to each other, we
present the proofs of (a) and (c) in this paper.

Suppose that L/Q is not Galois. Let us consider the case that ¢1 = g2
= ¢*. By Lemma we have the factorization . We claim that there
are prime elements a; of & for i = 1,2,3 lying over a prime p such that
aiay’s represent elements in H(Q, E[2]), and

(20) (a0 /P) =1
for all places P dividing places contained in Sg, not equal to ¢*, and
1) (araz /P1) =1, (a2a3/P1) =1,
(a1az /PB2) =1, (azas /Pa) = 1.

By Lemma [3.4]

(azasg /P1) = (a2 / Par) (a2 / Ps) (e / Br) (a2 / PB2),

(azas /Pa) = (o2 / Pa)(az / P1) (a1 / Ba) (o2 / Bs).
Recall from Remark 3.6 the (only) constraint on the values of Legendre sym-
bols above, and use the Chebotarev density theorem as in to choose a
totally positive prime element p; such that (a1 /B1) = —1, (a2 /PBs) = —1,
(a; /B;) = 1 for all other pairs (4, ), and (p1 /B) =1 for all places P di-
viding places contained in Sg not equal to ¢*, so that and are
satisfied. Then, by Lemma and the reciprocity law (Lemma , we
have

(22) @/a)=(/p)=[[(r/Q= [ (nn/9Q
Qlm, Q%P1 P2 O
= (p1/21)(p1 /721)(p1/ Q2)(p1 / TQ2)
= (a1 /PB1)(a1 /PB2) = -1,
(23) (@/og)=(z/p2)= [ (/)= [ (p2/9Q)

O|m, QIP1 P2 O
= JI (/o)
Q%P1 P2 O
= (p1/Q3)(p1/7Q2)(p1 / Q1)(p1 / TQ3)
= (a2 /P1)(a2 /PB2) = 1.
Similarly, we find
(y/a1) = (a1 /Pa)(a1 /Ps) = 1,

24 (y/as) = (a ) Pa) @ / Pa) = —1.
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Let us consider the case that ¢*, ¢1, and g9 are all distinct. Let ¢*0, =
PIP3P5 be the factorization into prime ideals. By Lemma we may
assume

2O = Pr1Pa (BT P PE ) (B (B3)°2(B3)*)as b3,

yOr, = TP (BT PSP ) (B (B3)" (P3)" )y by
where Y d; = > e; = Zsi => 't = 0 mod 2, and dyds # 1 and ejes # 1.
Let T = (ci /By), Tij = (s /By), and Tj; := (e /Pj). Then, as in
7, we have
/1) = TuTia(THTETE)(
© / az) = Ton Too (T3 T35 T3 (
y/ar) =TT (THTHETE) (TH)" (T15) " (Ti)"),
(y/ a2) = T Too (T3 T35 T3 ) (T51) " (T32) "™ (T33)").
Recall that describes the map (ajag, asas) — Hl(Qq*,E[Q])um, and it

is clear that there are values of TZ; such that this map is surjective. Now,
with these values, let us treat T{; as constants in the above system where Tj;

(T71)" (T12) ™ (T33)™),
(T51)

T51)" (T52)™ (T23)™),

(
(
25
(25) (

and Tij are variables. If all d; and e; are zeros, then the above system has
rank 4. If all e; are zeros, but some d; is not, then it is clear that the system
has rank 4. Say e; = 0, and e; = e3 = 1, and treat Tij as constants. Then
the rank of the system is greater than or equal to the rank of the vectors

TiTha, To1T52, Ti2T13, TooT3

where ThoTh3 = T11T12T13T%1, and the five variables T;; # Tb3 are free. The
set of these four vectors has rank 4. Similarly, when eo = 0 and e; = e3 = 1,
it turns out that the system has rank 4. This proves that we could choose p
such that (z,y) — HY(Qp, E[2])unr is surjective.

The case that L/Q is Galois can be handled in a similar way. In fact,
we considered the system to compute the image of (z,y) under the
restriction map at p in Fy x Fo 2 HY(Q,, Ep[2])un:. For the Galois case, we
have only three free variables Ty, Th2, and T3 (see Lemma . For the
case g1 = g2 = ¢*, as in , the restriction map at p is given by

((x /a1), (v /ag)) = (T11Th2, T21T32),

((y /o), (y/ az)) = (T12Ths, TosTos)
where T21 = T13, T22 = T11, and T23 = T12. By a similar analysis to that
in the non-Galois case, it turns out that for all cases, with these three free
variables for each prime, the restriction map at p is surjective.

Suppose we have Property Recall that we chose p; using in

Section [3] which determined the «;’s above. Note that using a higher power
modulus m in , we can choose p; which yields the a;’s with the same
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property given above. Let K" = M(\/q : ¢ < o0, ¢ € S). Then, using a
modulus m of high exponents, we may assume that K’ is contained in the
ray class field Ry of M mod m. Recall that we choose py in My /My 1 such
that p; =* 1 mod m’ where m’ is the “greatest divisor” of m supported only
by S as in . As p denotes the rational prime over which p; lies, Frob(p;)
in Gal(Rm/M) restricts trivially to K'/M, i.e., p splits completely in K,
which means that (¢/p) = 1 for all finite primes ¢ € S. Since 2 € S, we
have p = 1 mod 8, and hence (p/q) = 1 for all finite primes g € S. Then,
by Lemma there is an inert prime Dy such that for all finite primes
r € Sg, we have (p/r) = (Do /), i.e., (pDo/r) = 1. Now let D = pDj.
Then, at each r contained in Sg, the local coboundary image of Ep is equal
to that of E at r (see [I, Proposition 2.5]). Let T, be Tg U {p}. Then
dimHY(Q, E[2])1,, + 2 = dimHY(Q, Ep[2])1,, , and the following diagram

illustrates the computation of Sel(®) (Ep):

HY(Q, B[2))r, ——H'(Q. Ep[2])1s,

122 vl
Sel®(E) indl WED

v’ w’D

1% indl Sel®(Ep)

where the maps WP and ¥F denote the process of applying the local con-
dition at v, and n is a positive integer. Note that if v # p is contained in
Tk, then Im¥F C Im¥FP since Im P = Im 6, and that (21) makes the
dimension drop by 2 at ¢*. Since Im Wf C Im WED, at each step, the di-
mension drops by more or the same dimension for HY(Q, Ep 2])7, than for

HY(Q, E[2])7, - Especially, at ¢*, it necessarily drops by more dimension for
HY(Q, Ep 2])7,, - Recall from Section [2| Then, if hp and h denote the

sums of dimension-drops over T for HY(Q, Ep 2])1;,, and HYQ, E[2]) 7y,
respectively, we have

dim WEP = dim HY(Q, Ep[2])7,,. — hp = dimHY(Q, E[2])1, +2 — hp
< dim HY(Q, [])TE+2—h dim Sel® (E) + 2.

Thus, dim WP < dimSel® (E) + 1. Since Im 60 is totally ramified and
(z,y) maps onto H(Qp, Ep[2])unr, the dimension drops by 2 at p. Therefore,
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dim Sel®(Ep) = dim W2p —2 < dim Sel®® (E)—1, and hence dim Sel® (Ep)
< dim Sel®(E). This concludes the proof of the existence of such D.

When ¢* is not equal to ¢q; or ¢o, the order of applying the local con-
ditions, which was specified earlier (see (17))), matters for our argument.
By , the elements ;o satisfy all the local conditions of Ep and E at
all places in Sg \ {¢*, q1, ¢2}, and as a result, the dimension drops by 2 at ¢*
as the local condition at ¢* precedes the ones at ¢ or g2 (see ) In order
to have the desired values of (z/«;) and (y/«;) as in and (23), we
require nontrivial values of some («; /B) for some P dividing g; or go. Thus,
if the local condition at g or g2 preceded the one at ¢*, some a;c; might
not survive the local condition at ¢; or g2, and the dimension may not drop
by 2 at ¢*.

Let us add a few words on using unramified primes with n, = 2. The ad-
vantage of using this prime is that dimH}(Q, E)s, + 1 = dim H(Q, Ep)s,
where D = p, and that our technique yields a nontrivial map Sel® (E)
— HY(Qy, E[2])unr especially if dimSel® (E) = 1. This would result in
dim Sel®® (Ep) = 0. First of all, if L/Q is Galois, then we do not have such a
prime available. Suppose that L/Q is not Galois. Our technique is basically
to throw all the local conditions into a one ray class field R of L, and use the
Chebotarev density theorem and the law of quadratic reciprocity to choose
p and figure out what happens at p. The following lemma summarizes the
difficulty of choosing such p with n, = 2; recall that M is the Galois closure
of L, and suppose that (1) = Gal(M/L) and (o, 7) = Gal(M/Q).

LEMMA 4.4. Let R be a finite abelian extension of L, and a an auto-
morphism in Gal(R/L). Let Q represent a prime ideal in R, and B a prime
ideal in L. Then there is Frob(Q/P) in Gal(R/L) such that Frob(Q/PB) = «
and f(B/p) = 2 if and only if there are a Galois extension F/Q containing
RM and an automorphism u in Gal(F/Q) such that resy(u) is 7o or 702
and resg(p?) = a.

It seems to us that resg(u?) = « is a very difficult condition to meet!

Proof of Corollary [1.3 By Theorem there is a quadratic twist
of Ep, for which dim Sel(2)(EDO) is 0 or 1 and Dg is odd. Suppose that
dim Sel(2)(ED0) = 0. Using [7], the parity conjecture of elliptic curves over
Q can be proved under the assumption on the finiteness of the Tate—Shafare-
vich group. Since we construct a Dy as a product of large odd primes, the
quadratic twist Ep, has multiplicative reduction at v. Let E' := Ep,, and
let 75 (n) be the Dirichlet character associated with the quadratic extension
Q(v/Q). Recall that the root number w(EY})) is equal to w(E') - #p(—Ngr)
if the conductors Ng/ and Ny, are coprime to each other, where N, = D
if D =1 mod 4. Recall that if D = 1 mod 4, then %D(_NE’) = %D(NE’)
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Note that if n, = 1, then E’ must have good or additive reduction at v.
So, we consider only the two cases: n, = 2 or 3. Suppose that n, = 2 or
3 where v is unramified in L. Use Lemma to choose a prime number
r with n, = 1, (r /v) = —1, and (r /q) = 1 for all other primes ¢ of bad
reduction of E’. Since dim Sel® (E") = 0, after we apply the local conditions
of all ¢ # v, the dimension of the following subgroup is (n, — 1):

(27) C(E' v) :={a e H(Q,E'[2]) : @ € Im§,, for all w # v}

where d,, are the local coboundary maps for E'. Let D = r. Then ¢ (E},,v) =
% (F',v), and hence dim Sel® (E})) < n, — 1. Note that since E has multi-
plicative reduction at v, #p(—Ng/) = —1. It follows that w(E},) = —1, and
by [7], rank(E},(Q)) is odd, which means that it is 1. On the other hand, the
finiteness of the Tate—Shafarevich group implies the nondegeneracy of the
Cassels-Tate pairing, from which it follows that dim III(E,)[2] # 1. Thus,
dim Sel®(E%) = 1.

Suppose that n, = 2 and v is ramified in L. Consider the field ex-
tension F' = L(v/—1,/q : q|6S’) where S’ is the product of all places of
bad reduction of E’. Let Frob(*B/p) be a Frobenius automorphism of F/Q
which trivially restricts to L(v/—1) and L(,/q) for all ¢ # v, but nontriv-
ially to L(y/v)/L. So, Frob(/p) nontrivially restricts to M/L, and hence
ny, = 2. Moreover, via the quadratic reciprocity, this means that (p /v) = —1
and (p/q) = 1 for all ¢ # v. Let D = p. Then D = 1 mod 4, and hence
Hp(—Ng) = Hp(Ng) = —1. Since dim€(E',v) = 1, dimG(E),p) <
1+ (n, — 1) = 2, and hence dim Sel®(E},) < 2. As in the previous cases,
dim Sel®® (E%,)) = 1 follows from w(E},) = —1. The result of the corollary is
a consequence of [I, Theorem 1.2]. m
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