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1. Introduction. Let E/Q be an elliptic curve given by y2 = x3+ax+b,
ED a quadratic twist Dy2 = x3 +ax+ b, and Sel(2)(ED) the 2-Selmer group
of ED. In this paper, we prove

Theorem 1.1 (1). Let E/Q be an elliptic curve with no nontrivial ra-
tional 2-torsion points. Then

#{|D| < X : D square-free, dim Sel(2)(ED) ≤ 1} � X/(logX)α

for some 0 < α < 1.

This result will follow from [1, Theorem 1.2] once we prove the existence
of D such that dim Sel(2)(ED) ≤ 1. Let X(ED)[2] and rankED(Q) denote
the 2-part of the Tate–Shafarevich group and the Mordell–Weil rank, re-
spectively. Since Sel(2)(ED) ∼= ED(Q)/2ED(Q) ⊕X(ED)[2], our theorem
implies the obvious distribution results for #X(ED)[2] and rankED(Q).
The distribution result for rankED(Q) = 0 is also obtained in [9] and [8] by
establishing the nonvanishing of L-functions, but the one for #X(ED)[2]
seems new when E has no nontrivial rational 2-torsion points.

Corollary 1.2. Assume the finiteness of the Tate–Shafarevich group
of all elliptic curves over Q. Let E/Q be an elliptic curve with no nontrivial
rational 2-torsion points such that E has multiplicative reduction at v - 6∞.
Then

#{|D| < X : D square-free, rankED(Q) = 1 and dim X(ED)[2] = 0}

� X/(logX)α

for some 0 < α < 1 which depends on E.
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If we assume the finiteness of the Tate–Shafarevich group, the parity
conjecture for elliptic curves over Q can be proved using the 2-parity con-
jecture which was proved in [7], and our corollary follows from this result
and the assumption. The proof is given at the end of Section 4.

Our original goal was to (unconditionally) prove the existence of D with
dim Sel(2)(ED) = 0, but we were not able to push our method to obtain
such a result. In fact, the finiteness of the Tate–Shafarevich group and the
nondegeneracy of the Cassels–Tate pairing imply that our method of twist-
ing by large primes will fail to produce a D such that dim Sel(2)(E) = a
and dim Sel(2)(ED) = b where a+ b = 1. Our current goal is to remove the
finiteness hypothesis in the corollary.

In [2], for E : y2 = x3 − x and a positive integer n, Heath-Brown com-
putes the proportion of D up to X as X →∞, for which dim Sel(2)(ED) = n,
and in [11], Sir Peter Swinnerton-Dyer obtains a similar result for far more
general elliptic curves with full 2-torsion points as the number of prime fac-
tors of D approaches infinity. In [13], using the 2-Selmer groups of quadratic
twists of E where E is any elliptic curve with full rational 2-torsion points,
Yu proves conditional and unconditional results on the existence of a pos-
itive proportion of D up to X with rankED(Q) = a where a ≤ 1, and in
[12], using a result of [13], Xing and Zaharescu compute the average size of
# X(ÊD)[φ̂] where ÊD is the dual 2-isogeny of E considered in [13]. Via the
modularity of elliptic curves over Q and Kolyvagin’s result, James and Ono
in [4] obtain results about the distribution of D with the trivial p-Selmer
group of ED where p ≥ 3 and E is a fairly general elliptic curve. Our method
is rather direct and similar to [11]. Using Schaefer’s framework [10], we nat-
urally identify each Sel(2)(ED) with a subgroup of L∗/(L∗)2 where L is an
étale algebra over Q that does not depend on D, and we do a rather explicit
computation in this fixed space L∗/(L∗)2.

In Section 2, we briefly summarize Schaefer’s description of a Selmer
group, and sketch the proof of our result. Section 3 consists of rather tech-
nical lemmas which will be used to choose a prime number with properties
required in the proof of our theorem. The phenomena of the quadratic reci-
procity law and the Chebotarev density theorem are the main tools for the
proof of the lemmas in that section. In Section 4, we prove our theorem and
corollary.

2. Computing the 2-Selmer group. Recall that E/Q is given by
y2 = x3 + ax + b, and does not have nontrivial rational 2-torsion points.
Let z1, z2, and z3 be the x-coordinates of the 2-torsion points in Q, i.e., the
roots of x3 + ax + b. Let L = LE be the field extension Q(z1). For each
place p, let us denote by np the number of places of OL lying over p. Let SE
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be the set of places of Q consisting of ∞ and 2, and places of bad reduction
of E/Q. By [10, Proposition 3.4], we have the following isomorphism:

(1) H1(Q, E[2])SE
∼= ker(NL/Q : L(SE , 2)→ Q(SE , 2)).

We refer to [10] for the definition of L(SE , 2). For each finite or infinite
place p, let Lp := L ⊗ Qp. Then, we also have an isomorphism for the
completion Qp:

(2) H1(Qp, E[2]) ∼= ker(NLp/Qp
: L∗p/(L

∗
p)

2 → Q∗p/(Q∗p)2).

These isomorphisms are defined with a choice of representatives of
Gal(Q/Q)-orbits or Gal(Qp/Qp)-orbits in E[2]. With certain choices of rep-
resentatives, restriction maps resp : H1(Q, E[2]) → H1(Qp, E[2]) extend to
the natural maps L∗/(L∗)2 → L∗p/(L

∗
p)

2 which we also denote by resp (see
[1, Proposition 2.4]). Since Lp ∼=

∏
P|p LP, later in our calculation, the map:

L∗/(L∗)2 → L∗p/(L
∗
p)

2 shall be interpreted as

(3) [α] 7→ ([α] : P | p).
The 2-Selmer group can be described as follows:

(4) Sel(2)(E) ∼= {α ∈ L(SE , 2) : NL/Q(α) = 1, resp(α) ∈ Im δp

for all p ∈ SE}
where δp is the coboundary map E(Qp)/2E(Qp)→ L∗p/(L

∗
p)

2 induced by the
map H1(Qp, E[2])→ L∗p/(L

∗
p)

2 in (2).
Let us identify the cohomology group H1(Q, E[2])SE

with the kernel
in (1). Let q0 =∞, and q1 = 2, and write SE := {q0, q1, . . . , qn}. Denote by
W−1 = WE

−1 the subgroup H1(Q, E[2])SE
of L(SE , 2). For each k = 0, . . . , n,

let Wk be the subgroup of Wk−1 consisting of α such that resqk(α) ∈ Im δqk .
Then the 2-Selmer group is isomorphic to Wn. Throughout the paper, by
“applying the local condition at qk” we shall mean the process of obtaining
Wk−1 from Wk. Note that

(5) dimWn = dimW−1 −
n∑
k=0

(dimWk−1 − dimWk).

Note also that resqk(Wk−1) is a subgroup of H1(Qqk , E[2]), and we can
write resqk(Wk−1) = resqk(Wk) ⊕ T for some subgroup T of resqk(Wk−1).
Since T intersects Im δqk trivially, it follows that dimT + dim Im δqk ≤
dim H1(Qqk , E[2]), and hence

(6) dimT = dimWk−1 − dimWk ≤ dim H1(Qqk , E[2])− dim Im δqk .

By [10, Corollary 3.6], we have the following possibilities for the upper
bounds in (6): for all odd prime numbers p, we have dim Im δp = np − 1,
and dim H1(Qp, E[2]) = 2(np − 1). When p = 2, we have dim Im δ2 = n2,
dimL∗2/(L

∗
2)2 = 2n2 + 3, and dim Q∗2/(Q∗2)2 = 3. By (2), examining each
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case of n2, we find that the description (2) implies dim H1(Q2, E[2]) = 2n2.
Throughout the paper, we let ε := 0 if L has a complex embedding, and
ε := 1 if not. When p =∞, we have dim H1(R, E[2]) = 2ε and dim δ∞ = ε.
Hence,

(7) dim H1(Qp, E[2])− dim Im δp =


np − 1, p odd,
n2, p = 2,
ε, p =∞.

Let ClSE
(L)[2] denote the 2-part of the SE-class group of L. Then, by

the generalized Dirichlet unit theorem,

dimW−1 = dim H1(Q, E[2])SE
(8)

= (1 + ε) +
( n∑
k=1

nqk − 1
)

+ dim ClSE
(L)[2].

If the equality in (6) holds for all k= 0, . . . , n, then dimWn = dim ClSE
(L)[2],

and hence dim Sel(2)(E) = dim ClSE
(L)[2]. Our goal in this paper is to find

a twist ED such that dim ClSED
(L)[2] = 0 and dimWED

k−1 − dimWED
k (for

ED) is maximized for each k = 0, . . . , n.
By [1, Proposition 3.1], dim H1(Q, E[2])SE

= dim H1(Q, E[2])S′E where
S′E := {p ∈ SE : np > 1} ∪ {2,∞}. Moreover, H1(Qp, E[2]) = 0 if p is an
odd prime number with np = 1. So, let us redefine SE to be the set of places
consisting of ∞, 2, and places p of bad reduction of E with np > 1.

Now we describe the image of the local coboundary map in Lp. First,
we fix an embedding Q → Qp. Let p be a prime number, and suppose that
[Qp(z1) : Qp] ≥ [Qp(zi) : Qp] for i = 2, 3. Then

Lp ∼=


Qp ×Qp ×Qp, np = 3,
Qp(z1)×Qp, np = 2,
Qp(z1), np = 1.

Hence, if p is an odd prime number, then

(9) H1(Qp, E[2]) ∼=


Q∗p/(Q∗p)2 ×Q∗p/(Q∗p)2, np = 3,
Qp(z1)∗/(Qp(z1)∗)2, np = 2,
0, np = 1.

In practice, these products are interpreted as in (3). If p = 2 with np > 1,
then the description of H1(Qp, E[2]) is the same as above. To give the de-
scription for the case p = 2 with np = 1, let F := Qp(z1). Let UF be the
group of unit integers in F , and UQp be the group of unit integers in Qp.
Then H1(Qp, E[2]) is isomorphic to the kernel of the norm from U∗F /(U

∗
F )2

to U∗Qp
/(U∗Qp

)2. Since this norm map is surjective, and dimU∗F /(U
∗
F )2 = 4

and dimU∗Qp
/(U∗Qp

)2 = 2, we have dim H1(Qp, E[2]) = 2.
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If H1(Qp, E[2]) is identified as in (9), then by [10, Theorem 2.3], for each
prime number p, the local coboundary map E(Qp)/2E(Qp)→ H1(Qp, E[2])
is given as follows:

(x, y) 7→ (x− zi : i = 1, . . . , np − 1)

provided that x 6= zi for i = 1, . . . , np − 1.

Lemma 2.1. If np = 3, then under the local coboundary map at p,

(z1, 0) 7→ ((z1 − z2)(z1 − z3), z1 − z2),
(z2, 0) 7→ (z2 − z1, (z2 − z1)(z2 − z3)).

If np = 2 and z3 ∈ Qp, then (z3, 0) 7→ (z3 − z1).

Proof. The proof is left to the reader.

Let us conclude this section by sketching the proof of our main result.
Recall that E[2](Q) is trivial. Then the cohomology groups H1(Q, ED[2])
for all D are naturally identified in L∗/(L∗)2 where the étale algebra L/Q
is a field extension of degree 3, and similarly the local cohomology groups
H1(Qq, ED[2]) for all D are identified in L∗q/(L

∗
q)

2 where Lq = L ⊗ Qq;
see (10) below. Moreover, we have the natural maps L∗/(L∗)2 → L∗q/(L

∗
q)

2

which restrict to the maps resq : H1(Q, ED[2])→ H1(Qq, ED[2]) for all D:

(10)

H1(Q, ED[2]) //

resq

��

L∗/(L∗)2

resq

��
H1(Qq, ED[2]) // L∗q/(L

∗
q)

2

For each D, let SD denote the set of places consisting of∞, 2, and places
of bad reduction of ED, and let S = S1. We find D such that S ⊂ SD, which
implies

(11) H1(Q, E[2])S ⊂ H1(Q, ED[2])SD

as subgroups of L∗/(L∗)2, and such that for each q ∈ S, the local coboundary
images for E and ED identified in the space L∗q/(L

∗
q)

2 are equal to each other
(see [1, Proposition 2.5]). By (11) and the description (4), what survives in
H1(Q, ED[2])SD

after applying local conditions over S is a subgroup WD of
L∗/(L∗)2 containing Sel(2)(E) because of the second condition we impose
above on D (see (26) in Section 4). At each stage of applying local conditions
as illustrated in (26), the size of the subgroups surviving is decreased by at
most the numbers given in (7). We find such D as a product of two primes
p and r, where p splits completely and r remains prime in L, and

(12) dim H1(Q, E[2])S + 2 = dim H1(Q, ED[2])SD
,
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(see (8)). The role of the prime r will be explained in the following para-
graph. Putting more conditions on D, we shall have, at some intermediate
step of applying local conditions over S, the size of a subgroup surviv-
ing in H1(Q, ED[2])SD

decreased by at least one more dimension than in
H1(Q, E[2])S ; this is served by an element α contained in H1(Q, ED[2])SD

\
H1(Q, E[2])S . Then it follows from (12) that

(13) dimWD ≤ dim Sel(2)(E) + 1.

To compute dim Sel(2)(ED), we only need to apply the local condition at
p to WD since H1(Qr, E[2]) = 0. With more conditions imposed on D,
we can map, via resp, the subgroup Sel(2)(E) of WD outside the local
coboundary image, and it follows that dimWD−2 ≤ (dim Sel(2)(E)+1)−2,
provided that dim Sel(2)(E) ≥ 2 (see Figure 1 in Section 4). That is,
dim Sel(2)(ED) < dim Sel(2)(E). By induction, we prove that there is some
D such that dim Sel(2)(ED) ≤ 1.

It gets very technical to show that there is a D satisfying all the prop-
erties we want, but the main tool is the generalized Dirichlet theorem. Re-
call that H1(Q, ED[2]) → H1(Qq, ED[2]) extends to the map L∗/(L∗)2 →
L∗q/(L

∗
q)

2, the essence of which is the Legendre symbol over places of L ly-
ing over q. Let us remark here that the “quadratic residue properties” of
the element α, which serves (13), over the places q ∈ S more or less de-
termine the image of Sel(2)(E) in H1(Qp, E[2]), via a quadratic reciprocity
law; see Lemma 3.7 below—this lemma is proved easily by Hecke’s version
of quadratic reciprocity for a number field [3, Theorem 167]. In the previous
paragraph, we claimed that Sel(2)(E) lands outside the local coboundary im-
age of ED at p, and it turns out that via quadratic reciprocity this property
pleasantly follows from the condition imposed on D and hence on α, which
serves (13). Recall that D = pr. In this very technical context, the inert
prime r serves to keep all local coboundary images of E and ED over q ∈ S
being equal to each other, and this prime does not contribute to the size of
H1(Q, ED[2])SD

; see (8). When E[2](Q) 6= 0, we do not have this prime, and
it posed the main difficulty to extending our proof to the general case.

3. Lemmas. In this section, we introduce several lemmas which will be
used in the proof of Theorem 1.1, and a slight generalization of the Legendre
symbol. Let L be a field extension of Q with degree 3, and let M be the
Galois closure of L over Q. Let K/Q denote the quadratic extension in M if
L/Q is not Galois. For an odd prime ideal p of OM and an element α of OM

relatively prime to p, we denote the Legendre symbol by (α/ p), and for an
odd element β relatively prime to α, denote the Jacobi symbol by (α/β). If
v is a real embedding of M , then (α/ v) is defined to be 1 if v(α) > 0, and
−1 if not.
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We define an extension of the Legendre symbol over even primes as
follows: Let p be a prime ideal dividing 2OM . For α ∈ OM coprime to p, we
define the symbol (α/ p) to be the class of α in Up/(Up)2 where Up is the
group of unit integers in the completion of M at p. Suppose that p and p′ are
prime ideals dividing 2OM and µp′ = p for some µ ∈ Gal(M/Q). Then there
is a canonical isomorphism Up′/(Up′)2 → Up/(Up)2 such that the following
diagram is commutative:

(OM/(p′)n)∗
µ //

��

(OM/(p)n)∗

��
Up′/(Up′)2 // Up/(Up)2

where the vertical maps are surjective for sufficiently large n, and given by
the Legendre symbols. Let us denote by (α/ p′)µ the image of (α/ p′) in
Up/(Up)2. This definition is consistent with the usual Legendre symbol over
an odd prime ideal p since U∗p /(U

∗
p )2 ∼= Z/2Z, and (α/ p)(α/ p′)µ can be

simply denoted by (α/ p)(α/ p′).
Suppose that L/Q is not Galois. If P is an even prime of L, and Q ⊂ OM

is an unramified prime over P with residue degree f(Q/P) = 1, then we have
a canonical isomorphism UP/(UP)2 → UQ/(UQ)2. Under this isomorphism,
we may write (α/Q) = (α/P) for α ∈ L∗, and this abuse of notation is
used in Lemma 3.4.

Lemma 3.1. Let T be the set consisting of 2 and the prime divisors
of the square-free part of ∆K/Q = (z1 − z2)2(z2 − z3)2(z3 − z1)2. Let R =
{ri : i = 1, . . . ,m} and {ti : i = 1, . . . ,m} be a sequence of prime numbers
and a sequence of ±1, respectively, such that R does not intersect T . Then
there is an odd prime number p such that np = 1 and (p / ri) = ti for
i = 1, . . . ,m, and such that (p / q) = 1 for all q ∈ T .

Proof. Suppose that L/Q is not Galois. Let K be the quadratic exten-
sion in the Galois closure of L, and let K ′ := K(

√
q,
√
−1 : q ∈ T ). Let F/K ′

be the field extension K ′(
√
ri : i = 1, . . . ,m). Then, since R intersects T

trivially, Gal(F/K ′) =
⊕m

i=1 Z/2Z. Write T = {2, q1, . . . , qs}. Note that K is
Q(
√
±d) where d is 2

∏s
i=1 qi or

∏s
i=1 qi, and that LK ′/K ′ and F/K ′ are lin-

early disjoint and Galois. Hence, Gal(LF/K ′) ∼= Gal(LK ′/K ′)⊕Gal(F/K ′).
Let Fi := K ′(

√
ri). Then there is an automorphism τ in Gal(LF/K ′) such

that resLK′(τ) is a generator of Gal(LK ′/K ′) and such that resFi(τ) ∼= 〈ti〉
for each i = 1, . . . ,m. By the Chebotarev density theorem, there is a prime
number p 6= 2 whose Frobenius automorphism in Gal(LF/Q) is τ . Since
K ′/Q is Galois, p splits completely in K ′. By our choice of τ , it follows that
np = 1, and (ri / p) = ti for all i. Since (−1 / p) = 1 (i.e., p ≡ 1 mod 4), we
have ti = (p / ri). Moreover, 1 = (q / p) = (p / q) for all odd primes q ∈ T . If
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q = 2, then by the supplementary reciprocity law, p ≡ 1 mod 8 if and only
if (2 / p) = 1 (provided that p ≡ 1 mod 4). Since 2 is contained in T , and
p splits completely in K ′, we have (2 / p) = 1, and hence (p / 2) = 1. The
proof of the case that L/Q is Galois is similar, and rather simpler.

Remark 3.2. Let T be a finite set of infinite or finite places of M . It
is well-known that for any modulus m and a prime power decomposition
m =

∏
Q∈T mQ,

(14) Mm/Mm,1
∼=
⊕
Q∈T

MmQ
/MmQ,1

where Mn = {α ∈M∗ coprime to n}, and Mn,1 denotes the ray mod n (i.e.,
{α ∈ Mn : α ≡∗ 1 mod n}). If H is the Hilbert class field of M , then by
the class field theory, Gal(R/H) ∼= (Mm/Mm,1)/O∗M , as shown below, where
O∗M is identified with its image in Mm/Mm,1:

(15)

1 // Gal(R/H) // Gal(R/M) // Gal(H/M) // 1

1 // J //
��

OO

Im/Pm,1
//

��

OO

I/P //
��

OO

1

where J = (Mm/Mm,1)/O∗M , Im is the group of fractional ideals of OM

coprime to m, Pm,1 is the group of principal fractional ideals βOM such that
β ≡∗ 1 mod m, and I/P is the ideal class group of OM .

Lemma 3.3. Let M , H, and m be as above. Then there is a prime ele-
ment ρ of OM lying over a prime number p which splits completely in M
such that ρ belongs to any class in Mm/Mm,1.

Proof. Let R be the ray class field of M mod m, and R′ be the Galois
closure of R over Q, so Gal(R′/M) ⊂ Gal(R′/Q). Let α be a number in Mm

belonging to an arbitrary class in Mm/Mm,1, and let σ be an automorphism
in Gal(R/H) corresponding to the class [α] ∈Mm/Mm,1 via the map in (15).
Let σ′ be the automorphism in Gal(R′/Q) which restricts to σ. By the
Chebotarev density theorem, there are a prime ideal P′ of OR′ and a prime
number p such that Frob(P′/p) = σ′ ∈ Gal(R′/H). Let P := P′ ∩ OR be
the prime ideal of OR, and p := P ∩ OM , the prime ideal of OM . Then
id = Frob(P′/p)|M = Frob(p/p), and hence the residue degree f(p/p) is 1.
Thus, p splits completely in M .

Note that σ′ = Frob(P′/p) = Frob(P′/p)f(p/p) = Frob(P′/p), and hence
σ = Frob(P/p). By (15), the prime ideal p is a principal ideal ρ′OM such
that [ρ′] = [α] in (Mm/Mm,1)/O∗M . So, ρ′ ≡∗ αλ mod m for some λ ∈ O∗M .
Let ρ := ρ′λ−1. Then ρ ≡∗ α mod m.

Let T0 := {p1, . . . , pt} be the set of all places of M over 2. Let T :=
{Q1, . . . ,Qs} be a finite set of (finite or infinite) places of M outside 2, and
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let {εQ : Q ∈ T} be a sequence of ±1 indexed over T . Let m be a modulus
supported by T ∪T0 with large exponents over places in T0. By Lemma 3.3,
we can choose a prime element ρ of OM lying over a prime number p which
splits completely in M such that

(16)
(ρ /Q) = εQ for all Q ∈ T,
(ρ / p) = 1 for all p ∈ T0.

Lemma 3.4. Suppose that L/Q is not Galois. Let σ be an automorphism
in Gal(M/Q) with order 3. Let τ be the generator of Gal(M/L). Let ρ1 be
a prime element of OM over an odd prime p which splits completely in M ,
and ρ2 := σρ1 and ρ3 := σ2ρ1. Let αi := NM/L(ρi) = ρi · τρi. Let Q1 be
a prime ideal of OM over an even or odd prime q not equal to p. Suppose
that q splits completely in M , and let Q2 := σQ1 and Q3 := σ2Q1. Let
PiOM := Qi · τQi for some prime ideal Pi of OL. Then NL/Q(α1α2) and
NL/Q(α2α3) are contained in (Q∗)2, and

(α1 /P1) = (ρ1 /Q1)(ρ1 / τQ1)τ , (α2 /P1) = (ρ1 /Q3)σ(ρ1 / τQ2)τσ,
(α1 /P2) = (ρ1 /Q2)(ρ1 / τQ2)τ , (α2 /P2) = (ρ1 /Q1)σ(ρ1 / τQ3)τσ,
(α1 /P3) = (ρ1 /Q3)(ρ1 / τQ3)τ , (α2 /P3) = (ρ1 /Q2)σ(ρ1 / τQ1)τσ,

(α3 /P1) = (α2 /P3)σ(α1 /P1)(α2 /P2)σ2 ,

(α3 /P2) = (α2 /P1)σ(α1 /P2)(α2 /P3)σ2 ,

(α3 /P3) = (α1 /P1)σ(α2 /P3)(α1 /P2)σ2 .

Suppose that q has nq = 2, i.e., qOL = P2
1P2 or qOL = P1P2 with

f(P1/q) = 2. Hence, P1OM = Q1 · τQ1 and P2OM = Q2
2 or P2OM = Q2.

Then{
(α1 /P1) = (ρ1 /Q1)(ρ1 / τQ1)τ
(α2 /P1) = (ρ1 /Q3)σ(ρ1 /Q1)

or
{

(α1 /P1) = (ρ1 /Q1)(ρ1 / τQ1)τ
(α2 /P1) = (ρ1 /Q3)σ(ρ1 /Q2)

if σQ1 = τQ1 or σQ1 = Q2, respectively.

Proof. Note that

NL/Q(α1α2) =
3∏
i=1

σi(α1α2) =
3∏
i=1

σi(ρ1 · τρ1)
3∏
i=1

σi(σρ1 · τσρ1)

=
( ∏
µ∈Gal(M/Q)

µ(ρ1)
)2

= p2.

Similarly, NL/Q(α2α3) is a square in Q∗.
Since (α1 /P1) = (α1 /Q1), it follows that

(α1 /P1) = (ρ1 /Q1)(τρ1 /Q1) = (ρ1 /Q1)(ρ1 / τQ1)τ .
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As the proof of the other results is very similar, we leave the details to the
reader.

The relationship between the Legendre symbols for the case of L/Q being
Galois is simpler, and we state it below without proof.

Lemma 3.5. Suppose that L/Q is Galois, i.e., M = L. Let σ be a non-
trivial automorphism (of order 3) in Gal(L/Q). Let α1 be a prime element
of OL over an odd prime p which splits completely in L, and α2 := σα1 and
α3 := σ2α1. Let P1 be a prime ideal of OL over an even or odd prime q not
equal to p. Suppose that q splits completely in L, and let P2 := σP1 and
P3 := σ2P1. Then NL/Q(α1α2) and NL/Q(α2α3) are contained in (Q∗)2, and

(α1 /P1) = (α2 /P2)σ2 = (α3 /P3)σ,
(α1 /P2) = (α2 /P3)σ2 = (α3 /P1)σ,
(α1 /P3) = (α2 /P1)σ2 = (α3 /P2)σ.

Remark 3.6. If L/Q is not Galois, the symbols (ρ1 /Qi) and (ρ1 / τQi)
in Lemma 3.4 can be treated as free variables as explained in (16). Then the
matrix over Z/2Z associated with the system of the first six equations in
Lemma 3.4 has rank 5, and

∏2
i=1

∏3
j=1(αi /Pj) = 1 is the (only) constraint.

Thus, the five variables (αi /Pj) for i < 2 or j < 3 can be treated as free
variables.

If L/Q is Galois, by Lemma 3.5, (α1 /Pj) for j = 1, 2, 3 can be treated
as free variables.

A similar result is available for real places of L if there are three real
embeddings of L. Suppose that L has three real embeddings, and that
Gal(M/Q) = 〈σ, τ〉 where σ has order 3, and τ has order 2. Then M must
have six real embeddings, and we let v be a real embedding of M . All six
embeddings are in the form of vµ for some µ ∈ Gal(M/Q). It is clear that
(x / vµ) = (µ(x) / v) for all µ ∈ Gal(M/Q), and if u is a real embedding of
M and u′ is the restriction of u to L, then (x /u) = (x /u′) for all x ∈ L. It
follows that

(α1α2 / v) = (ρ1 / v)(ρ1 / vτ)(ρ1 / vσ)(ρ1 / vτσ).

Likewise, (αiαj / u), where u is a real embedding of M , are written in terms
of the Legendre symbols of ρ1 over real embeddings, and we can obtain,
by imposing values on (ρ1 / u)’s, the desired values of (αiαj / u) which are
required for the proof of our theorem. The case M = L (with three real
embeddings) is simpler. When there is only one real embedding of L, the
restriction map H1(Q, E[2])→ H1(R, E[2]) is trivial as H1(R, E[2]) is trivial
by (2).

Lemma 3.7 (Reciprocity law). Let M/Q be a Galois extension. Let x
and y be elements of OM such that xOM = Q1 · · ·Qsa

2 and yOM =
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Q′1 · · ·Q′tb2 where Qi and Q′j are primes, and such that xyOM is not a
square. Let mx be the product of Qi which are odd, for i = 1, . . . , s, and my

the product of Q′i which are odd, for i = 1, . . . , t. If ρ is a totally positive
prime element ρ ∈ OM , coprime to xy, lying above an odd prime number p
splitting completely in M such that ρ ≡∗ 1 mod 8∞OM , then

(x / ρ) =
∏

Q|mx

(ρ /Q), (y / ρ) =
∏

Q|my

(ρ /Q).

Proof. Let m be the lcm of mx and my, and α be any integer in M
coprime to m such that

α ≡∗ 1 mod 8∞OM .

Then sgn(σα) = 1 for all real embeddings σ : M → R, and by [3, The-
orem 167], we have

(x /α) = (α/mx), (y /α) = (α/my).

Note that L ⊗ Q2 is a product of local fields. Let H1(Q2, E[2])0 denote
the subgroup generated by tuples in L⊗Q2 whose entries are unit integers
of the local fields.

Proposition 3.8. There are totally positive elements β1, . . . , βt in L∗

lying over primes p with np = 3, representing elements in H1(Q, E[2]) such
that 〈β1, . . . , βt〉 surjects down to H1(Q2, E[2])0 under the restriction map.

Proof. Suppose that n2 > 1, and that L/Q is not Galois. Using Lem-
ma 3.4, we have

1. if 2OM = P1P2P3, then

(α1α2 /P1) = (ρ1 /Q1)(ρ1 / τQ1)τ (ρ1 /Q3)σ(ρ1 / τQ2)τσ,
(α1α2 /P2) = (ρ1 /Q2)(ρ1 / τQ2)τ (ρ1 /Q1)σ(ρ1 / τQ3)τσ;

2. if 2OM = P2
1P2 or P1P2, then

(α1α2 /P1) =
{

(ρ1 / τQ1)τ (ρ1 /Q3)σ,
(ρ1 /Q1)(ρ1 / τQ1)τ (ρ1 /Q3)σ(ρ1 /Q2).

Note that (OM/P
n)∗ → U∗P/(U

∗
P)2 is surjective for n sufficiently large.

Consider the modulus m = 2n∞OM , and the isomorphism

Mm/Mm,1
∼=
⊕
P|m

MPne/MPne,1 ⊕
⊕
v|∞

Mv/Mv,1.

Suppose that 2 splits completely in L. As mentioned earlier in Remark 3.6,
all (ρ1 /Qi) and (ρ1 / τQi) can be treated as free variables. Moreover, ρ1 can
be chosen to be a totally positive prime element lying over a prime number
with np = 3. So, recall the case 1 above, and let

(ρ1 /Q1) = (ρ1 / τQ2) = 1.
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Then

(α1α2 /P1) = (ρ1 / τQ1)τ (ρ1 /Q3)σ,
(α1α2 /P2) = (ρ1 /Q2)(ρ1 / τQ3)τσ,

and it is clear that we can impose any pair of values on (α1α2 /P1) and
(α1α2 /P2). Recall that α1α2 represents an element in H1(Q, E[2]), and
also recall the description (3) and (9). Then it can hit an arbitrary element
in H1(Q2, E[2])0 by choosing values of the Legendre symbols on ρ1. Thus, we
can find the βi’s claimed in the proposition. The proof of case 2 is similar.

Suppose that L/Q is Galois, and that 2OM splits completely. In this
case, we have only three free variables as shown in Lemma 3.5, and

(α1α2 /P1) = (α1 /P1)(α1 /P3)σ, (α1α2 /P2) = (α1 /P2)(α1 /P1)σ.

So, let (α1 /P1) = 1. Then it is clear that any pair of values can be imposed
on (α1α2 /P1) and (α1α2 /P2), which proves the result for the case of Galois
extensions.

Suppose that n2 = 1. Note that there are only two extensions of Q2 of
degree 3, namely, L1 := Q2[x]/(x3 − 2) and L2 := Q2[x]/(x3 − x+ 1). The
local field L1 corresponds to the case where 2 is totally ramified in L, and
L2 to the case where 2 is inert in L. Consider the case 2OL = P. Regardless
of whether or not L/Q is Galois, the completion LP is Galois over Q2, and it
is L2. Let POM = Q·τQ be the factorization of P in M if L/Q is not Galois.
Then an automorphism σ ∈ Gal(M/Q) of order 3 acts trivially on {Q, τQ},
and it can be considered as one in Gal(L2/Q2). Note that σ ∈ Gal(L2/Q2)
acts on UP/U

2
P
∼= UQ/U

2
Q while this was not the case for n2 > 1. Since

n2 = 1, the kernel of the map NL2/Q2
: L ∗

2 /(L
∗
2 )2 → Q∗2/(Q∗2)2 is the

kernel of
NL2/Q2

: UP/U
2
P → U2/U

2
2 ,

which we denote by V , and dimV = 2. We claim that σ acts nontrivially
on V , and hence nontrivially on the corresponding subgroup of UQ/U

2
Q,

which we denote by V ′. Suppose that σ acts trivially on V so that for each
α ∈ UP representing an element of V , there is some x ∈ UP such that
σα = αx2. Then since [α] ∈ V , there is y ∈ U2 such that y2 = α · σα · σ2α
= α ·αx2 ·αx2σ(x)2, and hence α = (y(αx2σ(x))−1)2 ∈ U2

P. This proves the
claim. Note that

(α1α2 /P) =
{

(ρ1 /Q)(ρ1 / τQ)τ (ρ1 /Q)σ(ρ1 / τQ)τσ if L/Q is not Galois,
(α1 /P)(α1 /P)σ if L/Q is Galois.

Recall that we can treat (ρ1 /Q), (ρ1 / τQ), and (α1 /P) as free variables on
UQ/U

2
Q or on UP/U

2
P. If we write these vector spaces over F2 additively, the

tranformation 1 + σ is invertible on V ′ since σ(1 + σ) = σ + σ2 = −1 = 1.
This means that each of (ρ1 /Q)(ρ1 /Q)σ and (ρ1 / τQ)τ (ρ1 / τQ)τσ can
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assume any value in V ′, and so does (α1 /P)(α1 /P)σ in V . Thus, using the
Chebotarev density theorem as in (16), we obtain the result.

Consider the case 2OL = P3. As in the previous case, for H1(Q2, E[2]),
we only need to consider the kernel, denoted also by V , of

NL1/Q2
: UP/U

2
P → U2/U

2
2 .

Then dimV = 2. Note that POM = Q, and that the natural map UP/U
2
P →

UQ/U
2
Q is not injective. It has kernel of dimension 1, which is the subgroup

of UP/U
2
P generated by the class represented by −3 as UQ has a primitive

third root of unity. Since UP/U
2
P = V ⊕ 〈[−3], [3]〉, it follows that V injects

into UQ/U
2
Q; we denote by V ′ the image of V . Let M be the completion of

M at Q. Let Gal(M /Q2) be generated by σ of order 3 and τ which generates
Gal(M /L1). Note that Gal(M /Q2) acts on UQ/U

2
Q. As in the previous case,

involved in computing (α1α2 /P) is the transformation 1 + τ + σ + τσ on
UQ/U

2
Q. Note that 1 + τ +σ+ τσ restricted to V ′ is 1 + 1 +σ+σ2 = σ+σ2

since τ acts trivially on V ′. As in the previous case, it turns out that σ
acts nontrivially on each of the three nontrivial elements of V ′, and hence
σ + σ2 = −1 = 1 on V ′. Therefore, if we choose a totally positive prime
element ρ1 of OM such that (ρ1 /Q) is any value z in V ′ ⊂ UQ/U

2
Q, then

(α1α2 /Q) = (ρ1 /Q)(ρ1 /Q)τ (ρ1 /Q)σ(ρ1 /Q)τσ = z.

Since V is naturally isomorphic to V ′ and [α1α2] ∈ V , it means that
(α1α2 /P) can be any value in V ⊂ UP/U

2
P.

Corollary 3.9. There is a set S consisting of ∞, 2, and primes p
with np = 3 such that H1(Q, E[2])S surjects down to H1(Q2, E[2]) under the
restriction map.

Proof. Let P be a prime ideal of OL. If L/Q is not Galois, then M/L
is ramified, and hence the Hilbert class field H of L and M/L are lin-
early disjoint. It follows that Gal(HM/M) ∼= Gal(H/L), which is true for
the case M = L, as well. Then, by choosing a Frobenius automorphism in
Gal(HM/M), we can find a prime ideal p1 of OL representing the class of
P in Cl(OL) such that the prime number p := p1 ∩Z splits completely in L.
From pOL = p1p2p3, it follows that Pp2p3 is a principal ideal.

Suppose that 2OL = P1P2P3. Then there are prime numbers p and
p′ splitting completely in L, i.e., pOL = p1p2p3 and p′OL = p′1p

′
2p
′
3, such

that P1p2p3 and P2p
′
2p
′
3 are generated by α and β, respectively. Note that

NL/Q(αβ) = ±(2pp′)2. So, either of x := ±αβ represents an element of
H1(Q, E[2]) since [L : Q] = 3. Then it is clear that we can find an ele-
ment y representing an element in H1(Q, E[2]) such that yOL = P2P3a
where a is square-free and supported only by prime ideals lying over primes
splitting completely. The two elements res2(x) and res2(y) together with
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H1(Q2, E[2])0 generate H1(Q2, E[2]), and by the previous proposition, we
get the result. The proof for the other cases of splitting of 2OL is similar.

4. Proof. We prove Theorem 1.1 in this section. Let E and L be as in
Section 2. From now on, when q is an odd prime number, we say that Im δq
is unramified if Im δq is contained in H1(Qq, E[2])unr = Lq(∅, 2), and totally
ramified if Im δq contains no nontrivial elements of Lq(∅, 2). For example, if
np = 3, then a subgroup 〈(pa, b), (c, pd)〉 in H1(Qp, E[2]) as identified in (9)
is totally ramified where a, b, c, d are unit integers, while 〈(pa, b), (pc, d)〉 is
not totally ramified. Let S be the set consisting of 2, ∞, and places q of
bad reduction of E/Q such that q is ramified in L with nq = 2. This set
S depends only on L. In this section, our elliptic curve is replaced by its
twists several times, but the set S is not replaced, and fixed to be the one
just described here, once and for all . Let TE be the set of places consisting
of ∞, 2, and places p of bad reduction of E with np > 1, except for the odd
primes q ∈ S such that Im δq is unramified.

First, we shall argue that there is a quadratic twist E′ with the following
properties:

Property 4.1.

1. E′ has good reduction at odd places p with np = 2 which are unramified
in L, and Im δp is totally ramified at odd places p of bad reduction with
np = 3.

2. Cl(L)[2] is generated by prime ideals over primes p with np = 3 at
which E′ has bad reduction.

3. Sel(2)(E′) intersects H1(Q, E′[2])S trivially.
4. As we apply the local conditions to H1(Q, E′[2])TE′ over ∞, 2, and all

odd primes q ∈ S, the dimension drops by ε at ∞, and by 1 at odd
primes q ∈ S if Im δq is ramified.

5. H1(Q, E′[2])TE′ surjects onto H1(Q2, E
′[2]).

Let us first show that if p is an odd prime number unramified in L such
that np = 2 then either E or the quadratic twist Ep has good reduction
at p. Note that a twist ED can be given by y2 = x3 +aD2x+ bD3. Twisting
by p, if necessary, we may assume that x3 + ax+ b = ((x− z3))((x− z3)−
(z1 − z3))((x− z3)− (z2 − z3)) where z3 ∈ Qp is such that ordP(z1 − z3) =
ordP(z2 − z3) is even where pOL = PP′ and f(P/p) = 2. Then, changing
the variables over Qp, we find a Zp-model y2 = x(x − α)(x − β) where
(x − α)(x − β) is an irreducible polynomial over Qp, and α and β are unit
integers. Since np = 2, the quadratic polynomial remains irreducible over Fp,
and hence it has good reduction at p. If np = 3, then either E or the twist
ED with D = p has a totally ramified local coboundary image at p. This
can be easily shown by considering the cases of the triples of parities of
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ordp(z1− z2), ordp(z2− z3), and ordp(z3− z1) and using Lemma 2.1. So, let
us assume without loss of generality Property 4.1.1.

Note that we may as well assume that Cl(L)[2] is generated by prime
ideals P dividing primes p with np = 3 at which E has bad reduction. We
always have such primes p as argued in the proof of Corollary 3.9, and after
twisting E with the product of these primes p, it has Property 4.1.2.

Let x be an element of OL representing a nontrivial element in
H1(Q, E[2]). Then L(

√
x) is linearly disjoint with M over L since M =

L(
√
∆) with ∆ ∈ Q. Using the Chebotarev density theorem and the non-

trivial automorphism in Gal(LM(
√
x)/M), we can find a prime p splitting

completely in L, i.e., pOL = P1P2P3, such that (x /P1) = −1. Recall that
given an elliptic curve E/Q, we denote by SE the set of 2,∞, and places p of
bad reduction of E/Q with np > 1. Since H1(Q, E[2])S is finite, we can find k
distinct prime numbers p 6∈ SE with np = 3, where k = # H1(Q, E[2])S − 1,
such that each nontrivial element z ∈ H1(Q, E[2])S represented by an ele-
ment x of L∗ is a nonsquare unit integer in some Lp. Let D be the product
of these k primes. Then, by Lemma 2.1, the local coboundary images of
ED at these primes p are totally ramified, and each nontrivial element z of
H1(Q, E[2])S is mapped to a nontrivial element of H1(Qp, ED[2])unr at some
of these primes p as illustrated in Figure 1,

Fig. 1

where Im δDp denotes the image of the local coboundary map at p for ED.

Hence, Sel(2)(ED) intersects H1(Q, E[2])S trivially; see Property 4.1.3. In
particular, Sel(2)(ED) does not contain an element represented by x ∈ L∗
such that xOL is a square. Thus, we can assume that if x ∈ OL repre-
sents an element in Sel(2)(E), then the square-free part of xOL is necessarily
supported by a prime ideal outside S.

Let us recall Lemma 3.4, Lemma 3.5, (16), and Remark 3.6. Given an odd
ramified prime q with nq = 2 and qOL = P2

1P2, we can find a prime number
p such that (α1α2 /P1) = −1, and (α1α2 /P) = 1 for all other places P
lying over 2,∞ or a prime number r of bad reduction of E with nr > 1 where
α1 and α2 are as defined in Lemmas 3.4 and 3.5. For each of these primes q,
let pq denote the prime number p, and we renew our elliptic curve E with
the twist ED where D is the product of the pq’s. Then, as we apply the
local conditions at odd primes q ∈ S to H1(Q, E[2])SE

, some elements α1α2
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of H1(Q, ED[2]) are mapped to the nontrivial element of H1(Qq, E[2])unr

under resq as in Figure 1, and hence at odd primes q ∈ S, the dimension
drops by 1 if Im δq is (totally) ramified; see (7) and Property 4.1.4. This
twisting step possibly changes the local coboundary images everywhere, but
satisfied are the properties which are discussed in the previous paragraphs,
and stated in Property 4.1 as the first three items. Note that Property 4.1.3
remains true since after twisting, Im δDq may be different from Im δp, but
remains totally ramified. If Im δq is unramified when q ∈ S is odd, then
Im δq = 〈(a)〉 where a is a unit integer of Qq, and no elements in H1(Q, E[2])
which are ramified at q will be mapped to Im δq under resq. This means that,
to compute Sel(2)(E), we may apply the local conditions to H1(Q, E[2])TE

.
Since Cl(L)[2] is generated by prime ideals over primes p with np = 3, at
which E has bad reduction, by (8), we have

dim H1(Q, E[2])TE
= dim H1(Q, E)SE

−#(SE \TE).

More importantly, since the αiαj defined in this paragraph are still contained
in H1(Q, E)TE

, the fourth item in Property 4.1 is satisfied for odd primes
q ∈ S ∩ TE . By Remark 3.6, when L has three real embeddings, we have
a version of Lemmas 3.4 and 3.5 for q = ∞, and can find a prime number
p∞ such that 〈α1α2〉 → H1(R, E[2]) is surjective. By Corollary 3.9, we may
assume Property 4.1.5.

We shall show that if (E satisfies Property 4.1, and) dim Sel(2)(E) ≥ 2,
then dim Sel(2)(ED) < dim Sel(2)(E) for some D. Suppose that dim Sel(2)(E)
≥ 2. Then, by Property 4.1.3, the subgroup Sel(2)(E) contains two elements
represented by x and y in L∗ such that the square-free part of each xOL

and yOL is supported by ideals lying over splitting primes q1 and q2 out-
side S, which are not necessarily distinct. To compute Sel(2)(E), we shall
apply to H1(Q, E[2])TE

the local conditions at q ∈ S first, and then at the
remaining places, in an order such that the local conditions at q1 and q2 are
applied at the very end as shown in (17). Recall from Section 2 the definition
of Wk’s:

(17)
H1(Q, E[2])TE

W0
incloo

res∞ ��

· · ·incloo Wn−1
incloo

resq1 ��

Wn = Sel(2)(E).
incloo

resq2 ��
Im δ∞ Im δq1 Im δq2

Of course, the value of dim Sel(2)(E) does not depend on the order we ap-
ply local conditions, but we use this order to make our later argument
work. Note that by Property 4.1.4–5, there must be a place q∗ ∈ SE with
nq∗ = 3 at which the dimension does not drop by 2 as we apply the local
conditions in an order described above; otherwise, dim Sel(2)(E) would be
zero.
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Lemma 4.2. Suppose that dim Sel(2)(E) ≥ 2. Then there are x and y
in Sel(2)(E) and q1 and q2 outside S with q1OL = P1P2P3 and q2OL =
P̃1P̃2P̃3 such that q∗ = q2, or q∗ is not equal to q1 or q2, and that

(18) xOL = P1P2(P̃d1
1 P̃d2

2 P̃d3
3 )axb2

x, yOL = P̃1P̃2(Pe1
1 Pe2

2 Pe3
3 )ayb2

y,

where ax and ay are square-free ideals, di and ei are 0 or 1,
∑
di ≡

∑
ei ≡ 0

mod 2, d1d2 6= 1, and e1e2 6= 1, or

(19) xOL = P1P2axb
2
x, yOL = P2P3ayb

2
y,

where ax and ay are square-free ideals supported by S.

Proof. Let us prove the assertion that q∗ = q2, or q∗ is not equal to q1
or q2. Suppose that q∗ = q1 and q1 6= q2. This means that the dimension
drops by 2 at all places prior to q1 and q2; otherwise, we could choose q∗ not
equal to q1 or q2. Note that if dimWn−1 − dimWn < 2, then we can choose
q∗ = q2, and we are done. So, assume that dimWn−1−dimWn = 2, which
means resq2(Wn−1) = V ⊕T where V is the maximal subgroup contained in
Im δq2 and dimT = 2. Note that sinceWn−1 ⊂Wn−2, we have resq2(Wn−1) ⊂
resq2(Wn−2). This means that if we apply the local condition at q2 earlier
than at q1, then V ⊕ T ⊂ resq2(Wn−2), and hence the dimension of Wn−2

drops by 2 after applying the local condition at q2. Thus, q∗ = q1 must be
the case. So, we may assume that the local conditions at q1 are applied first,
and q∗ = q2.

Suppose that we can choose q1 6= q2, so we have the factorization in (18).
If for all such q1 and q2, we have d1d2 = 1 and e1e2 = 1, then we must have
xy ∈ H1(Q, E[2])S , which contradicts Property 4.1.3. So, we have d1d2 6= 1
or e1e2 6= 1 for some choice of distinct q1 and q2. Suppose that d1d2 = 1 and
e1e2 6= 1. Then

xyOL = Pe1+1
1 Pe2+1

2 Pe3
3 axayb

2
xb

2
y, yOL = P̃1P̃2(Pe1

1 Pe2
2 Pe3

3 )ayb2
y.

If x′ = xy and y′ = y, then for all possibilities of e1, e2, and e3, the factor-
ization of x′ and y′ satisfies the conditions stated for (18).

It is clear that if we cannot choose distinct q1 and q2, then (19) must be
the case.

Our goal here is to find a prime number p with pOL = α1α2α3OL such
that Property 4.3 below is satisfied:

Property 4.3.

1. 〈α1α2, α2α3〉 → H1(Qq∗ , E[2])unr is surjective.
2. 〈x, y〉 → H1(Qp, E[2])unr is surjective.
3. 〈α1α2, α2α3〉 → H1(Qq, E[2]) is the trivial map for all other places q

in SE.
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Using this prime p, we will find a twist such that dim Sel(2)(ED) <

dim Sel(2)(E).
By Lemma 4.2, we have the following possibilities: (a) q1, q2, and q∗ are

all distinct; (b) q1 6= q2 = q∗; (c) q1 = q2 = q∗; (d) q1 = q2 6= q∗. Since the
proofs of (a) and (b), and of (c) and (d) are very similar to each other, we
present the proofs of (a) and (c) in this paper.

Suppose that L/Q is not Galois. Let us consider the case that q1 = q2
= q∗. By Lemma 4.2, we have the factorization (19). We claim that there
are prime elements αi of OL for i = 1, 2, 3 lying over a prime p such that
αiαj ’s represent elements in H1(Q, E[2]), and
(20) (αiαj /P) = 1
for all places P dividing places contained in SE , not equal to q∗, and

(21)
(α1α2 /P1) = −1,

(α1α2 /P2) = 1,

(α2α3 /P1) = 1,

(α2α3 /P2) = −1.
By Lemma 3.4,

(α2α3 /P1) = (α2 /P1)(α2 /P3)(α1 /P1)(α2 /P2),
(α2α3 /P2) = (α2 /P2)(α2 /P1)(α1 /P2)(α2 /P3).

Recall from Remark 3.6 the (only) constraint on the values of Legendre sym-
bols above, and use the Chebotarev density theorem as in (16) to choose a
totally positive prime element ρ1 such that (α1 /P1) = −1, (α2 /P3) = −1,
(αi /Pj) = 1 for all other pairs (i, j), and (ρ1 /P) = 1 for all places P di-
viding places contained in SE not equal to q∗, so that (20) and (21) are
satisfied. Then, by Lemma 3.4, and the reciprocity law (Lemma 3.7), we
have

(x /α1) = (x / ρ1) =
∏

Q|mx

(ρ1 /Q) =
∏

Q|P1P2OM

(ρ1 /Q)(22)

= (ρ1 /Q1)(ρ1 / τQ1)(ρ1 /Q2)(ρ1 / τQ2)
= (α1 /P1)(α1 /P2) = −1,

(x /α2) = (x / ρ2) =
∏

Q|mx

(ρ2 /Q) =
∏

Q|P1P2OM

(ρ2 /Q)(23)

=
∏

Q|P1P2OM

(ρ1 / σ
2Q)

= (ρ1 /Q3)(ρ1 / τQ2)(ρ1 /Q1)(ρ1 / τQ3)
= (α2 /P1)(α2 /P2) = 1.

Similarly, we find

(24)
(y/α1) = (α1 /P2)(α1 /P3) = 1,
(y/α2) = (α2 /P2)(α2 /P3) = −1.
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Let us consider the case that q∗, q1, and q2 are all distinct. Let q∗OL =
P∗1P

∗
2P
∗
3 be the factorization into prime ideals. By Lemma 4.2, we may

assume

xOL = P1P2(P̃d1
1 P̃d2

2 P̃d3
3 )((P∗1)s1(P∗2)s2(P∗3)s3)axb2

x,

yOL = P̃1P̃2(Pe1
1 Pe2

2 Pe3
3 )((P∗1)t1(P∗2)t2(P∗3)t3)ayb2

y

where
∑
di ≡

∑
ei ≡

∑
si ≡

∑
ti ≡ 0 mod 2, and d1d2 6= 1 and e1e2 6= 1.

Let Tij := (αi /Pj), T̃ij := (αi / P̃j), and T ∗ij := (αi /P∗j ). Then, as in
(22)–(24), we have

(25)

(x /α1) = T11T12(T̃ d111 T̃
d2
12 T̃

d3
13 )((T ∗11)s1(T ∗12)s2(T ∗13)s3),

(x /α2) = T21T22(T̃ d121 T̃
d2
22 T̃

d3
23 )((T ∗21)s1(T ∗22)s2(T ∗23)s3),

(y /α1) = T̃11T̃12(T e111T
e2
12T

e3
13 )((T ∗11)t1(T ∗12)t2(T ∗13)t3),

(y /α2) = T̃21T̃22(T e121T
e2
22T

e3
23 )((T ∗21)t1(T ∗22)t2(T ∗23)t3).

Recall that (21) describes the map 〈α1α2, α2α3〉 → H1(Qq∗ , E[2])unr, and it
is clear that there are values of T ∗ij such that this map is surjective. Now,
with these values, let us treat T ∗ij as constants in the above system where Tij
and T̃ij are variables. If all di and ej are zeros, then the above system has
rank 4. If all ei are zeros, but some dj is not, then it is clear that the system
has rank 4. Say e1 = 0, and e2 = e3 = 1, and treat T̃ij as constants. Then
the rank of the system is greater than or equal to the rank of the vectors

T11T12, T21T22, T12T13, T22T23

where T22T23 = T11T12T13T21, and the five variables Tij 6= T23 are free. The
set of these four vectors has rank 4. Similarly, when e2 = 0 and e1 = e3 = 1,
it turns out that the system has rank 4. This proves that we could choose p
such that 〈x, y〉 → H1(Qp, E[2])unr is surjective.

The case that L/Q is Galois can be handled in a similar way. In fact,
we considered the system (25) to compute the image of 〈x, y〉 under the
restriction map at p in F2 × F2

∼= H1(Qp, ED[2])unr. For the Galois case, we
have only three free variables T11, T12, and T13 (see Lemma 3.5). For the
case q1 = q2 = q∗, as in (25), the restriction map at p is given by

((x /α1), (x /α2)) = (T11T12, T21T22),
((y /α1), (y /α2)) = (T12T13, T22T23)

where T21 = T13, T22 = T11, and T23 = T12. By a similar analysis to that
in the non-Galois case, it turns out that for all cases, with these three free
variables for each prime, the restriction map at p is surjective.

Suppose we have Property 4.3. Recall that we chose ρ1 using (14) in
Section 3, which determined the αi’s above. Note that using a higher power
modulus m in (14), we can choose ρ1 which yields the αi’s with the same
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property given above. Let K ′ = M(
√
q : q < ∞, q ∈ S). Then, using a

modulus m of high exponents, we may assume that K ′ is contained in the
ray class field Rm of M mod m. Recall that we choose ρ1 in Mm/Mm,1 such
that ρ1 ≡∗ 1 mod m′ where m′ is the “greatest divisor” of m supported only
by S as in (20). As p denotes the rational prime over which ρ1 lies, Frob(ρ1)
in Gal(Rm/M) restricts trivially to K ′/M , i.e., p splits completely in K ′,
which means that (q / p) = 1 for all finite primes q ∈ S. Since 2 ∈ S, we
have p ≡ 1 mod 8, and hence (p / q) = 1 for all finite primes q ∈ S. Then,
by Lemma 3.1, there is an inert prime D0 such that for all finite primes
r ∈ SE , we have (p / r) = (D0 / r), i.e., (pD0 / r) = 1. Now let D = pD0.
Then, at each r contained in SE , the local coboundary image of ED is equal
to that of E at r (see [1, Proposition 2.5]). Let TED

be TE ∪ {p}. Then
dim H1(Q, E[2])TE

+ 2 = dim H1(Q, ED[2])TED
, and the following diagram

illustrates the computation of Sel(2)(ED):

(26)

H1(Q, E[2])TE

incl //

ΨE
∞

��

H1(Q, ED[2])TED

Ψ
ED∞

��
...
ΨE

q

��

...

Ψ
ED
q

��
Sel(2)(E)

incl //

Ψ
ED
p

��

WED
n

Ψ
ED
p

��
V

incl // Sel(2)(ED)

where the maps ΨED
v and ΨEv denote the process of applying the local con-

dition at v, and n is a positive integer. Note that if v 6= p is contained in
TED

, then ImΨEv ⊂ ImΨED
v since Im δDv = Im δv, and that (21) makes the

dimension drop by 2 at q∗. Since ImΨEv ⊂ ImΨED
v , at each step, the di-

mension drops by more or the same dimension for H1(Q, ED[2])TED
than for

H1(Q, E[2])TE
. Especially, at q∗, it necessarily drops by more dimension for

H1(Q, ED[2])TED
. Recall (5) from Section 2. Then, if hD and h denote the

sums of dimension-drops over TE for H1(Q, ED[2])TED
and H1(Q, E[2])TE

,
respectively, we have

dimWED
n = dim H1(Q, ED[2])TED

− hD = dim H1(Q, E[2])TE
+ 2− hD

< dim H1(Q, E[2])TE
+ 2− h = dim Sel(2)(E) + 2.

Thus, dimWED
n ≤ dim Sel(2)(E) + 1. Since Im δDp is totally ramified and

〈x, y〉 maps onto H1(Qp, ED[2])unr, the dimension drops by 2 at p. Therefore,
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dim Sel(2)(ED) = dimWED
n −2 ≤ dim Sel(2)(E)−1, and hence dim Sel(2)(ED)

< dim Sel(2)(E). This concludes the proof of the existence of such D.
When q∗ is not equal to q1 or q2, the order of applying the local con-

ditions, which was specified earlier (see (17)), matters for our argument.
By (20), the elements αiαj satisfy all the local conditions of ED and E at
all places in SE \{q∗, q1, q2}, and as a result, the dimension drops by 2 at q∗

as the local condition at q∗ precedes the ones at q1 or q2 (see (17)). In order
to have the desired values of (x /αi) and (y /αj) as in (22) and (23), we
require nontrivial values of some (αi /P) for some P dividing q1 or q2. Thus,
if the local condition at q1 or q2 preceded the one at q∗, some αiαj might
not survive the local condition at q1 or q2, and the dimension may not drop
by 2 at q∗.

Let us add a few words on using unramified primes with np = 2. The ad-
vantage of using this prime is that dim H1(Q, E)SE

+ 1 = dim H1(Q, ED)SD

where D = p, and that our technique yields a nontrivial map Sel(2)(E)
→ H1(Qp, E[2])unr especially if dim Sel(2)(E) = 1. This would result in
dim Sel(2)(ED) = 0. First of all, if L/Q is Galois, then we do not have such a
prime available. Suppose that L/Q is not Galois. Our technique is basically
to throw all the local conditions into a one ray class field R of L, and use the
Chebotarev density theorem and the law of quadratic reciprocity to choose
p and figure out what happens at p. The following lemma summarizes the
difficulty of choosing such p with np = 2; recall that M is the Galois closure
of L, and suppose that 〈τ〉 = Gal(M/L) and 〈σ, τ〉 = Gal(M/Q).

Lemma 4.4. Let R be a finite abelian extension of L, and α an auto-
morphism in Gal(R/L). Let Q represent a prime ideal in R, and P a prime
ideal in L. Then there is Frob(Q/P) in Gal(R/L) such that Frob(Q/P) = α
and f(P/p) = 2 if and only if there are a Galois extension F/Q containing
RM and an automorphism µ in Gal(F/Q) such that resM (µ) is τσ or τσ2

and resR(µ2) = α.

It seems to us that resR(µ2) = α is a very difficult condition to meet!

Proof of Corollary 1.2. By Theorem 1.1, there is a quadratic twist
of ED0 for which dim Sel(2)(ED0) is 0 or 1 and D0 is odd. Suppose that
dim Sel(2)(ED0) = 0. Using [7], the parity conjecture of elliptic curves over
Q can be proved under the assumption on the finiteness of the Tate–Shafare-
vich group. Since we construct a D0 as a product of large odd primes, the
quadratic twist ED0 has multiplicative reduction at v. Let E′ := ED0 , and
let HQ(n) be the Dirichlet character associated with the quadratic extension
Q(
√
Q). Recall that the root number w(E′D) is equal to w(E′) ·HD(−NE′)

if the conductors NE′ and NHD
are coprime to each other, where NHD

= D
if D ≡ 1 mod 4. Recall that if D ≡ 1 mod 4, then HD(−NE′) = HD(NE′).
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Note that if nv = 1, then E′ must have good or additive reduction at v.
So, we consider only the two cases: nv = 2 or 3. Suppose that nv = 2 or
3 where v is unramified in L. Use Lemma 3.1 to choose a prime number
r with nr = 1, (r / v) = −1, and (r / q) = 1 for all other primes q of bad
reduction of E′. Since dim Sel(2)(E′) = 0, after we apply the local conditions
of all q 6= v, the dimension of the following subgroup is (nv − 1):

(27) C (E′, v) := {α ∈ H1(Q, E′[2]) : α ∈ Im δw for all w 6= v}

where δw are the local coboundary maps for E′. LetD = r. Then C (E′D, v) =
C (E′, v), and hence dim Sel(2)(E′D) ≤ nv − 1. Note that since E′ has multi-
plicative reduction at v, HD(−NE′) = −1. It follows that w(E′D) = −1, and
by [7], rank(E′D(Q)) is odd, which means that it is 1. On the other hand, the
finiteness of the Tate–Shafarevich group implies the nondegeneracy of the
Cassels–Tate pairing, from which it follows that dim X(E′D)[2] 6= 1. Thus,
dim Sel(2)(E′D) = 1.

Suppose that nv = 2 and v is ramified in L. Consider the field ex-
tension F = L(

√
−1,
√
q : q | 6S′) where S′ is the product of all places of

bad reduction of E′. Let Frob(P/p) be a Frobenius automorphism of F/Q
which trivially restricts to L(

√
−1) and L(

√
q) for all q 6= v, but nontriv-

ially to L(
√
v)/L. So, Frob(P/p) nontrivially restricts to M/L, and hence

np = 2. Moreover, via the quadratic reciprocity, this means that (p / v) = −1
and (p / q) = 1 for all q 6= v. Let D = p. Then D ≡ 1 mod 4, and hence
HD(−NE′) = HD(NE′) = −1. Since dim C (E′, v) = 1, dim C (E′D, p) ≤
1 + (np − 1) = 2, and hence dim Sel(2)(E′D) ≤ 2. As in the previous cases,
dim Sel(2)(E′D) = 1 follows from w(E′D) = −1. The result of the corollary is
a consequence of [1, Theorem 1.2].
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