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Pair correlation of lattice points with prime constraint
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1. Introduction. Let Ω be a star-shaped region in the plane (i.e., for
any (x, y) ∈ Ω, the line segment joining (0, 0) to (x, y) is contained in Ω) and
suppose Ω is bounded by a curve C, parametrized by x = ρΩ(α) cosα, y =
ρΩ(α) sinα, where ρΩ is continuous and piecewise C1 on [0, 2π]. For each
large integer X, the dilated region

ΩX = {(x, y) ∈ R2 : (x/X, y/X) ∈ Ω}
has area X2Area(Ω) and is bounded by the curve CX = {(x, y) ∈ R2 :
(x/X, y/X) ∈ C}. Given a pair of coprime integers a and b, we are interested
in the set Ω(a,b)

X of lattice points in ΩX defined by

Ω
(a,b)
X = {(x, y) ∈ Z2 ∩ΩX : ax+ by is a prime}.

Here the primes may be positive or negative.
A natural way of studying the distribution of points in Ω(a,b)

X is to look at
the angles of straight lines joining the origin to points of Ω(a,b)

X . This is the set
of lines through all the lattice points in Ω(a,b)

X , taken without multiplicities.
In this paper we consider the pair correlation of these angles as Ω and a, b
are fixed and X → ∞. Our goal is to prove the existence of a limiting pair
correlation function and to provide an explicit formula for it.

Without the constraint that ax + by is a prime, the problem has been
considered for the set of lattice points in ΩX which are visible from the
origin, i.e., the set

F(Ω,X) = {(x, y) ∈ Z2 ∩ΩX : gcd(x, y) = 1},
and it was proved in [1] that as X goes to ∞, the limiting “nearest neighbor
spacing distribution” of the angles of straight lines from the origin to the
points of F(Ω,X) exists, and it was computed explicitly. For Ω a unit square,
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the correlations of directions, i.e., the angles of straight lines from the origin
or other base point to the points of the set ΩX have also been considered
in [2]. The results of [1] imply a very strong repulsion between these angles,
even stronger than in the GUE model studied by Random Matrix Theory,
which is also believed to describe the distribution of the imaginary parts of
zeros of primitive L-functions (see the fundamental papers of Montgomery
[9], Rudnick and Sarnak [10], and Katz and Sarnak [8]). By contrast, the pair
correlation of the angles formed by the points of ΩX with prime constraint
is very close to the Poissonian model, and only depends on the shape of the
region. We will see that the pair correlation is Poissonian if the region Ω is
a disk.

To formulate the problem precisely, let 0 < θ1 < · · · < θN < 2π be
the angles that correspond to elements from Ω

(a,b)
X , where N = N(Ω,X).

We normalize them to 0 < θ1/2π < θ2/2π < · · · < θN/2π < 1. The pair
correlation function measures the density of the differences between pairs of
elements of a given sequence. Thus for the sequence (θn/2π)n≤N in [0, 1],
the limiting pair correlation function R2(Ω(a,b), λ) is given, if it exists, by

lim
N→∞

1

N
#

{
1 ≤ n1 6= n2 ≤ N :

θn1

2π
− θn2

2π
∈ 1

N
I

}
=

�

I

R2(Ω(a,b), λ) dλ

for any interval I ⊂ R. In the Poissonian model the pair correlation function
R2(Ω(a,b), λ) is identically equal to 1. Our main result is the following.

Theorem 1.1. As X goes to ∞, the limiting pair correlation function
R2(Ω(a,b), λ) of the angles of straight lines from the origin to the points of
the set Ω(a,b)

X exists, is independent of a, b and is identically equal to the
constant

π

2A(Ω)2

2π�

0

ρΩ(θ)4 dθ,

where A(Ω) is the area of the region Ω.

Since A(Ω)2 = 1
4(
	2π
0 ρΩ(θ)2 dθ)2 ≤ π

2

	2π
0 ρΩ(θ)4 dθ, we have R2(Ω(a,b), λ)

≥ 1 for any λ, and equality holds if and only if Ω is a disk. This shows
that the pair correlation density we obtained for general Ω corresponds to a
Poisson process with non-uniform density.

The angles of straight lines from the origin to the points of Ω(a,b)
X are

related to Farey fractions with prime denominators, whose pair correlation
function was obtained in [11]. However, in order to translate from one set
to the other by using a deformation lemma ([12, Theorem 2]), it is essential
to first obtain a local version, that is, the pair correlation of Farey fractions
in short intervals with prime denominators. This is a more subtle problem



Pair correlation of lattice points 31

than the one investigated in [11], and it is treated in Section 2. As in [1],
the machinery of Kloosterman sums plays a crucial role. The main difficulty
comes, of course, from the constraint that ax + by is a prime. In order to
overcome this difficulty, a key role in our proof will be played by the powerful
estimates for bilinear forms with Kloosterman fractions developed by Duke,
Friedlander and Iwaniec in [4].

It is interesting that present day techniques allow us to solve the pair
correlation problem for the angles of lines from the origin to the points of
Ω

(a,b)
X . By contrast, the local spacing distribution of the sequence of prime

numbers is not well understood. The spectacular work by Goldston, Pintz
and Yildirim [6] establishes the existence of small gaps between consecutive
primes. But the problem of existence of the pair correlation measure, or other
local spacing measures, is still wide open. The distribution is conjectured to
be Poissonian, and this was proved by Gallagher [5] under the assumption
of a uniform version of the k-tuple conjecture for prime numbers.

2. Farey fractions with prime denominators in short intervals.
For each positive integer Q, let

MQ = {a/p : 1 ≤ a < p ≤ Q, p is a positive prime number}

be the set of Farey fractions of order Q with prime denominators. The lim-
iting pair correlation measure of MQ on [0, 1] as Q→∞ was established by
the authors in [11]. Here we will need a short interval version of this result.
We adapt the method of [11] with some necessary modifications. Similar
ideas were originated in [3] and have been used in [12].

Let I be a subinterval of [0, 1] and let |I| denote its length. Define
MI(Q) := MQ ∩ I and denote by NI(Q) the cardinality of the set MI(Q).
By the prime number theorem,

NI(Q) =
∑
p≤Q

∑
a/p∈I

1 = |I| Q2

2 logQ
(1 +O(log−1Q)) +O(Q log−1Q).

Hence

N =
NI(Q)

|I|
=

Q2

2 logQ
(1 +O(log−1Q)) +O(|I|−1Q log−1Q).

Our objective is to estimate, for any positive real number Λ, the quantity

SQ,I(Λ) := #

{
(x, y) ∈MI(Q)2 : x 6= y, x− y ∈ (0, Λ)

N
+ Z

}
,

as Q → ∞. We prove a more general result. Denote by Supp f the support
of a function f .
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Lemma 2.1. Suppose H,G ∈ C1(R) with SuppG ⊂ (0, 1) and SuppH
⊂ (0, Λ) for some Λ > 0. Define

h(y) =
∑
n∈Z

H(N(y + n)), g(y) =
∑
n∈Z

G(y + n),

and
SQ,I,H,G =

∑
γ,γ′∈MQ

h(γ − γ′)g(γ)g(γ′).

Then

SQ,I,H,G =
Q2

2 logQ

( 1�

0

G(z)2 dz
) Λ�

0

H(x) dx+OH,G

(
Q2

log2Q

)
.

Note that assuming Lemma 2.1 and using the fact that the error term is
of order Q2 log−2Q, we have

lim
Q→∞

SQ,I,H,G
NI(Q)

=

	1
0G(z)2 dz

|I|
·
Λ�

0

H(x) dx.

Letting the smooth function G approach χI, the characteristic function of
the interval I, we have 	1

0G(z)2 dz

|I|
→ 1,

and letting H approach χ(0,Λ), by a standard approximation argument we
obtain

Theorem 2.2. As Q goes to ∞, the limiting pair correlation function of
MQ on any subinterval I ⊂ [0, 1] exists, is independent of the location and
length of I, and is identically equal to 1.

Remark. Denote by M̃Q the set of general Farey fractions of order Q
with prime denominators, that is,

M̃Q = {a/p : a ∈ Z, p ≤ Q, p is a positive prime number}.

It will be clear that the proof of Lemma 2.1 can be extended to the set M̃Q,
and consequently, as Q goes to ∞, the limiting pair correlation function of
M̃Q on any finite interval I ⊂ R exists, is independent of the location and
length of I, and is identically equal to 1. This observation will be used in
Section 4.

3. Proof of Lemma 2.1. In what follows, p, q stand for (positive) prime
numbers, and for simplicity, all the constants in the proof implied by the big
“O” and “�” notations may depend on the functions H and G.
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3.1. Fourier series expansion and Poisson summation. Suppose
that the Fourier series expansions of the functions h and g are given by

h(y) =
∑
n∈Z

cne(ny) and g(y) =
∑
n∈Z

ane(ny),

where e(ny) = exp(2πiny) for y ∈ R. Then we have

SQ,I,H,G =
∑

γ,γ′∈MQ

∑
m

cme(m(γ − γ′))
∑
n

ane(nγ))
∑
r

are(rγ
′)

=
∑
m,n,r

cmanar
∑
γ∈MQ

e((m+ n)γ)
∑

γ′∈MQ

e((r −m)γ′).

Changing the summation index so that m + n = m′, r −m = n′, m = r′,
hence m = r′, n = m′ − r′, r = n′ + r′, and using the formula∑

x∈MQ

e(rx) =
∑
p≤Q

p−1∑
a=1

e(ra/p) =
∑

p≤Q, p|r

p− π(Q), r ∈ Z,

where π(Q) is the number of prime numbers in the interval [1, Q], we have

SQ,I,H,G

=
∑

m′,n′,r′

cr′am′−r′an′+r′

( ∑
p,q≤Q
p|m, q|n

pq+π(Q)2−π(Q)
( ∑
p≤Q, p|m

p+
∑

q≤Q, q|n

q
))
.

We can rewrite this equality as

SQ,I,H,G = S1 + S2 − S3,

where

S1 =
∑
p,q≤Q

pq
∑

m,n,r∈Z
crapm−raqn+r,

S2 = π(Q)2
∑

m,n,r∈Z
cram−ran+r,

S3 =
∑
p≤Q

p
∑

m,n,r∈Z
crapm−ran+r +

∑
q≤Q

q
∑

m,n,r∈Z
cram−raqn+r.

Similar to the computation in [12], by considering the Fourier transform of
the function

Gr,d(x) =
1

d
G

(
x

d

)
e

(
rx

d

)
, x ∈ R,

and applying the Poisson summation formula, we obtain∑
n∈Z

adn+r =
∑
n∈Z

Ĝ−r,d(n) =
∑
n∈Z

G−r,d(n) =
∑
n∈Z

1

d
G

(
n

d

)
e

(
−rn
d

)
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for any integers d > 0 and r. It follows that∑
r∈Z

cr
∑
m∈Z

apm−r
∑
n∈Z

aqn+r

=
1

pq

∑
m,n

G

(
m

p

)
G

(
n

q

)∑
r

cre

((
m

p
− n

q

)
r

)
.

From the Fourier expansion of h(y) we derive∑
r

cre

((
m

p
− n

q

)
r

)
= h

(
m

p
− n

q

)
=
∑
r

H

(
N

(
r +

m

p
− n

q

))
.

Therefore we may write S1 as

S1 =
∑

1≤p,q≤Q

∑
m,n∈Z

G

(
m

p

)
G

(
n

q

)∑
r∈Z

H

(
N

(
r +

m

p
− n

q

))
.

Similarly for S2 and S3 we have

S2 = π(Q)2
∑
m,n∈Z

G(m)G(n)
∑
r∈Z

H(N(r +m− n)),

S3 = 2π(Q)
∑

1≤p≤Q

∑
m,n∈Z

G

(
m

p

)
G(n)

∑
r∈Z

H

(
N

(
r +

m

p
− n

))
.

Since we assume that SuppG ⊂ (0, 1), S2 = S3 = 0. It suffices to treat S1.

3.2. Further reductions. First, using the facts that SuppG ⊂ (0, 1),
SuppH ⊂ (0, Λ), p, q ≤ Q, and N ∼ Q2/2 logQ when Q is sufficiently large,
we obtain H(N(r + m/p − n/q)) = 0 if r 6= 0 or p = q. Now for r = 0 and
p 6= q, since (p, q) = 1, there is a unique integer q̄ such that 0 < q̄ < p, q̄q ≡ 1
(mod ptp). Take a = (1−q̄q)/p, so that ap+q̄q = 1. Changing the summation
index to

m′ = qm− pn, n′ = am+ q̄n,

we have
m = q̄m′ + pn′, n = −am′ + qn′.

Therefore S1 can be rewritten as

S1 =
∑

p 6=q≤Q

∑
m,n∈Z

G

(
m

p

)
G

(
n

q

)
H

(
N

(
m

p
− n

q

))

=
∑

p 6=q≤Q

∑
m,n∈Z

G

(
q̄m

p
+ n

)
G

(
−am
q

+ n

)
H

(
Nm

pq

)
.

Since SuppH ⊂ (0, Λ), to get a non-zero contribution from the term
H(Nm/pq) we must have

0 <
Nm

pq
< Λ.
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This implies

0 < m <
pqΛ

N
≤ Q2Λ

N
� logQ,(3.1)

and

p >
Nm

qΛ
>

N

QΛ
� Q

logQ
.

On the other hand, since SuppG ⊂ (0, 1), to get a non-zero contribution
from the term G(q̄m/p+ n), we need

0 < q̄m/p+ n < 1.(3.2)

There is at most one integer n with this property for each m. Notice that

G

(
−am
q

+ n

)
= G

(
q̄m

p
+ n− m

pq

)
= G

(
q̄m

p
+ n

)
+O

(
m

pq

)
.

Using (3.1) and the remark after (3.2) we obtain

S1 =
∑
m,n∈Z

∑
p 6=q≤Q

G

(
q̄m

p
+ n

)2

H

(
Nm

pq

)
+O(log5Q).

For any fixed integers m,n that satisfy (3.1) and (3.2), define

f(x) = fm,n(x) =G(mx+ n)2, h(x, y) = hm(x, y) =H

(
Nm

xy

)
, x, y ∈ R.

It is enough to estimate

Sm,n =
∑

p 6=q≤Q
f(q̄/p)h(p, q).

It is clear that

|f(x)| � 1, |f ′(x)| � logQ, x ∈ R.

Let K be a large positive integer which will be chosen later. We can rewrite
Sm,n as

Sm,n =

k−1∑
i=0

∑
p 6=q≤Q
q̄∈Ip,i

(f(i/K) +O(logQ/K))h(p, q),

where Ip,i is the closed interval with endpoints pi/k and p(i + 1)/k. This
gives

Sm,n =

k−1∑
i=0

f(i/K)
∑

p 6=q≤Q
q̄∈Ip,i

h(p, q) +O(Q2/K).(3.3)
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3.3. Kloosterman sums with prime entries. For each i, the above
inner sum over p, q can be written as

I =
∑
p≤Q

∑
q≤Q
q̄∈Ip,i

h(p, q) =
∑
p≤Q

∑
q≤Q

h(p, q)
∑
y∈Ip,i

1

p

∑
|l|<p/2

e(l(q̄ − y)/p).

The term corresponding to l = 0 is the main term, which gives

I1 =
∑
p≤Q

∑
q≤Q

h(p, q)
1

p
(|Ip,i|+O(1)) =

1

K

∑
p,q≤Q

h(p, q) +O(Q).

The terms corresponding to l 6= 0 give

I2 =
∑
p≤Q

1

p

∑
06=|l|<p/2

∑
y∈Ip,i

e(−ly/p)
∑
q≤Q

h(p, q)e(lq̄/p).

Using the bound ∣∣∣ ∑
y∈Ip,i

e(−ly/p)
∣∣∣� p

|l|
,

and defining δl,p to be the complex number, depending only on l and p, such
that ∣∣∣∑

q≤Q
h(p, q)e(lq̄/p)

∣∣∣ =
∑
q≤Q

h(p, q)e(lq̄/p)δl,p,

we obtain

|I2| �
∑
p≤Q

1

p

∑
06=|l|<p/2

p

|l|
∑
q≤Q

h(p, q)e(lq̄/p)δl,p

=
∑

06=|l|≤Q/2

1

|l|
∑

2|l|≤p≤Q
q≤Q, q 6=p

h(p, q)e(lq̄/p)δl,p.

To deal with the inner sum, we apply Theorem 2 of [4] which states:

Consider general bilinear forms of the type

BF (M,N) =
∑

gcd(m,n)=1

αmβne

(
a
m̄

n

)
F (m,n),

where a is a fixed positive integer and αm, βn are arbitrary complex numbers
for M < m ≤ 2M , N < n ≤ 2N , respectively, and mm̄ ≡ 1 (mod ptn), and
F is a smooth function whose partial derivatives satisfy

F (j, k)(m,n)� ηj+km−jn−k(3.4)

for 0 ≤ j, k ≤ 2 and some η ≥ 1. Then

BF (M,N)� η2‖α‖ ‖β‖(a+MN)3/8(M +N)11/48+ε,

where ‖ · ‖ denotes the l2 norm and the implied constant depends only on ε.



Pair correlation of lattice points 37

Denote

α(l)
n =

{
δl,m, 2|l| ≤ n ≤ Q is a prime,
0, otherwise,

β(l)
m =

{
1, m ≤ Q is a prime,
0, otherwise.

Then
‖α(l)‖ ‖β(l)‖ ≤ π(Q).

It is also easy to see that the function h satisfies the property (3.4) with
η = 1. By dividing the interval [1, Q] into dyadic intervals for both p, q and
applying Theorem 2 of [4], we obtain∑
2|l|≤p≤Q
q≤Q, q 6=p

h(p, q)e(lq̄/p)δl,p�ε π(Q)(|l|+Q2)3/8Q11/48+ε log2Q�ε Q
2−1/48+ε.

Hence
I2 � Q2−γ

for some sufficiently small γ such that 0 < γ < 1/50, which may be differ-
ent at each occurrence. Combining the results for I1 and I2 we obtain the
estimate

I =
1

K

∑
p,q≤Q

h(p, q) +O(Q2−γ).

3.4. Completion of the proof of Lemma 2.1. Returning to (3.3) we
have

Sm,n =

k−1∑
i=0

f(i/K)

(
1

K

∑
p,q≤Q

h(p, q) +O(Q2−γ)

)
+O(Q2/K).

Choosing K = Qγ/2 and noting that by the simple formula

1

K

k−1∑
i=0

f(i/K) =

1�

0

f(x) dx+O(K−1),

we obtain

Sm,n =

1�

0

f(x) dx
∑
p,q≤Q

h(p, q) +O(Q2−γ)

for some sufficiently small number γ > 0. Since S2 = S3 = 0 for Q sufficiently
large, by using the definition of f and h we have

SQ,I,H,G = S1 =
∑
m,n∈Z

Sm,n +O(log5Q)

=
∑
m,n∈Z

1�

0

G(mx+ n)2 dx
∑
p,q≤Q

H

(
Nm

pq

)
+O(Q2−γ).
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Observe that
1�

0

G(mx+ n)2 dx =
1

m

( n+1�

n

G(z)2 dz + · · ·+
n+m�

n+m−1

G(z)2 dz
)
.

Consequently,∑
n∈Z

1�

0

G(mx+ n)2 dx =
1

m

∑
n∈Z

( n+1�

n

G(z)2 dz + · · ·+
n+m�

n+m−1

G(z)2 dz
)

=

1�

0

G(z)2 dz.

On the other hand, the term
∑

m∈Z
∑

p,q≤QH(Nm/pq) has been handled in
the computation of the pair correlation function of MQ over the interval [0, 1]
([11, Lemma 4]), which yields the estimate∑

m∈Z

∑
p,q≤Q

H

(
Nm

pq

)
=

Q2

2 logQ

�

R

H(x) dx+O

(
Q2

log2Q

)
.

Therefore we obtain the desired result

SQ,I,H,G =
Q2

2 logQ

( 1�

0

G(z)2 dz
) Λ�

0

H(x) dx+O

(
Q2

log2Q

)
.

This completes the proof of Lemma 2.1.

4. Proof of Theorem 1.1. Since gcd(a, b) = 1, we can find integers
c, d such that ad − bc = 1. We may assume, via a linear transformation of
the xy-plane, that a = 1, b = 0. For each large integer X we consider the set

Ω
(1,0)
X = {(x, y) ∈ Z2 ∩ΩX : x is a prime number}.

4.1. The case when Ω is a triangle. For 0 ≤ α < β < π/4 andm > 0,
we first consider the case Ω = Tα,β,m, the triangle bounded by y = x tanα,
y = x tanβ and x = m. For each large integer X, denote

M (Tα,β,m, X) := {(x, y) ∈ Z2 : (x/X, y/X) ∈ Tα,β,m
and x is a prime number}.

The map (x, y) 7→ y/x identifies M (Tα,β,m, X) with the set MI(mX), the
set of Farey fractions of order mX with prime denominators in the interval
I = [tanα, tanβ]. By the prime number theorem, the set M (Tα,β,m, X) has
cardinality

N(X) = Nα,β,mX ∼ (tanβ − tanα)
(mX)2

2 logX
=

X2

logX
A(Tα,β,m),(4.1)

as X →∞.
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For each p ∈ M (Tα,β,m, X), denote by θ(p) ∈ [α, β] the angle between
the x-axis and the ray formed by joining p to the origin 0. It is clear that
the map

f : MI(mX) ⊂ I→ {θ(p) : p ∈M (Tα,β,m, X)} ⊂ [α, β](4.2)

given by y/x 7→ arctan(y/x) is a one-to-one correspondence between the two
sets. We consider, for any λ > 0,

R2(Tα,β,mX ;λ) =
1

N(X)
#

{
(p,q)∈ T 2

α,β,mX : 0 <
θ(p)−θ(q)

β − α
≤ λ

N(X)

}
,

R2(MI(mX);λ) =
1

N(X)
#

{
(γ1, γ2) ∈MI(mX)2 : 0 <

γ1−γ2

|I|
≤ λ

N(X)

}
,

which are the pair correlation measures of {θ(p) : p ∈ M (Tα,β,m, X)} and
MI(mX), respectively. As for the latter, by Theorem 2.2, as X goes to ∞,
the limiting pair correlation function of M (mX) on any subinterval I ⊂ [0, 1]
exists, is independent of the location and length of I and is identically equal
to 1. Hence

lim
X→∞

R2(MI(mX);λ) = λ =

λ�

0

1 dx.

Because of the correspondence (4.2), the two functions R2(Tα,β,mX ;λ) and
R2(MI(mX);λ) are naturally related, and the relation between their limit-
ing behavior as X goes to ∞ is revealed by Theorem 2 of [12], which states,
roughly speaking, that if one limit exists, so does the other, and there is a sim-
ple explicit deformation formula relating the two limiting functions. In our
case, this theorem implies that as X →∞, the limit limX→∞R2(Tα,β,mX ;λ)
exists and is given by

lim
X→∞

R2(Tα,β,mX ;λ) =
(β − α)λ

(tanβ − tanα)2

tanβ�

tanα

(1 + t2) dt.(4.3)

One can easily show that this is consistent with Theorem 1.1 for Ω = Tα,β,m.

4.2. Proof of Theorem 1.1 for a general region Ω. For any region
Ω ⊂ R2, we denote by M (Ω) the set of lattice points from Ω such that the
x-coordinate is a prime number. As a = 1, b = 0, we consider the set

M (ΩX) = Ω
(1,0)
X = {(x, y) ∈ Z2 ∩ΩX : x is a prime number}.

For the number of elements of M (ΩX), the prime number theorem yields

N(Ω,X) = #M (ΩX) ∼ X2

logX
A(Ω),(4.4)

where A(Ω) is the area of the region Ω. A sharp estimate for N(Ω,X) can
be obtained by employing the work of Huxley and Nowak [7]. For λ > 0
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denote

RΩ,X(λ) =
1

N(Ω,X)
#

{
(p,q) ∈M (ΩX)2 : 0 <

θ(p)− θ(q)

2π
≤ λ

N(Ω,X)

}
.

To establish Theorem 1.1 for Ω, we need to prove convergenceof RΩ,X(λ)
as X → ∞, for all λ > 0. For this purpose, we decompose the region Ω
into eight regions Ω1, . . . , Ω8, where Ωk contains the points from Ω with
argument between (k− 1)π/4 and kπ/4. For simplicity, we first consider the
case where Ω (= Ω1) ⊂ {(x, y) ∈ R2 : 0 ≤ y ≤ x}.

For such a region Ω (= Ω1), we fix a large integer L > 0 and denote

α =
π

4L
, αi = iα, 0 ≤ i ≤ L.

Assume that ξi, ηi ∈ [αi, αi+1], 0 ≤ i ≤ L − 1, are chosen so that xΩ(ξi) =
mi = minα∈[αi,αi+1] xΩ(α) and xΩ(ηi) = Mi = maxα∈[αi,αi+1] xΩ(α). Denote
4i = Tαi,αi+1,mi , 4′i = Tαi,αi+1,Mi and

Ni(X) = #M (4i,X), N ′i(X) = #M (4′i,X).

Fix a sufficiently small real ε > 0 and assume that γi ∈ [αi−ε, αi+ε], 1 ≤
i ≤ L−1, are chosen so that xΩ(γi) = M ′i = maxα∈[αi−ε,αi+ε] xΩ(α). Denote

4(ε)
i = Tαi−ε,αi+ε,M ′

i
and N

(ε)
i (X) = #M (4(ε)

i,X).

Now for each i and λ > 0 we define

Ri,X(λ) =
1

Ni(X)
#

{
(p,q) ∈M (4i,X)2 : 0 <

θ(p)− θ(q)

2π
≤ λ

N(Ω,X)

}
,

R′i,X(λ) =
1

N ′i(X)
#

{
(p,q) ∈M (4′i,X)2 : 0 <

θ(p)− θ(q)

2π
≤ λ

N(Ω,X)

}
,

R(ε)
i,X(λ) =

1

N
(ε)
i (X)

#

{
(p,q) ∈M (4(ε)

i,X)2 : 0 <
θ(p)− θ(q)

2π
≤ λ

N(Ω,X)

}
,

Since Ω is star-shaped with respect to the origin, the slice of Ω between the
lines y = x tanαi and y = x tanαi+1 contains 4i, hence

L−1∑
i=0

Ni(X)

N(Ω,X)
Ri,X(λ) ≤ RΩ,X(λ).(4.5)

On the other hand, the slice of Ω between the lines y = x tanαi and y =
x tanαi+1 is contained in 4′i, and the slice of Ω between the lines y =

x tan(αi−ε) and y = x tan(αi+ε) is contained in4(ε)
i . Since limX→∞N(Ω,X)

=∞, if X is sufficiently large, we obtain

RΩ,X(λ) ≤
L−1∑
i=0

N ′i(X)

N(Ω,X)
Ri,X(λ) +

L−1∑
i=1

N
(ε)
i (X)

N(Ω,X)
R(ε)
i,X(λ).(4.6)
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By using (4.1) and (4.4) we have

lim
X→∞

Ni(X)

N(Ω,X)
=
A(4i)

A(Ω)
=
m2
i (tanαi+1 − tanαi)

2A(Ω)
,

lim
X→∞

N ′i(X)

N(Ω,X)
=
A(4′i)
A(Ω)

=
M2
i (tanαi+1 − tanαi)

2A(Ω)
,

lim
X→∞

N
(ε)
i (X)

N(Ω,X)
=
A(4(ε)

i )

A(Ω)
=
M ′2i (tan(αi + ε)− tan(αi − ε))

2A(Ω)
.

Moreover, applying (4.3) for Ω = 4i we obtain

lim
X→∞

Ri,X(λ) =
(αi+1 − αi)λ̃

(tanαi+1 − tanαi)2

tanαi+1�

tanαi

(1 + t2) dt,

where

λ̃ = lim
X→∞

2πλNi(X)

(αi+1 − αi)N(Ω,X)
=

2πλA(4i)

(αi+1 − αi)A(Ω)
.

By a simple calculation, we conclude that

lim
X→∞

Ri,X(λ) =
πλm2

i

A(Ω)

(
1 +

tan2 αi+1 + tan2 αi + tanαi+1 tanαi
3

)
.

Similarly for Ω = 4′i and 4
(ε)
i respectively we obtain

lim
X→∞

R′i,X(λ) =
πλM2

i

A(Ω)

(
1 +

tan2 αi+1 + tan2 αi + tanαi+1 tanαi
3

)
and

lim
X→∞

R(ε)
i,X(λ)

=
πλM ′2i
A(Ω)

(
1 +

tan2(αi + ε) + tan2(αi − ε) + tan(αi + ε) tan(αi − ε)
3

)
.

It is clear from the above that

lim
ε→0+

lim
X→∞

L−1∑
i=1

N
(ε)
i (X)

N(Ω,X)
R(ε)
i,X(λ) = 0.

Therefore by letting X →∞ and then ε→ 0+ in (4.5) and (4.6) we obtain

L−1∑
i=0

πλm4
i

2A(Ω)
(tan3 αi+1 − tan3 αi) ≤ lim inf

X→∞
RΩ,X(λ)

≤ lim sup
X→∞

RΩ,X(λ) ≤
L−1∑
i=0

πλM4
i

2A(Ω)
(tan3 αi+1 − tan3 αi),
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where αi = iπ/4L, mi = xΩ(ξi), Mi = xΩ(ηi), ξi, ηi ∈ [αi, αi+1] for 0 ≤
i ≤ L− 1. The above inequalities hold true for any large positive integer L.
By letting L → ∞, and using polar coordinates xΩ(α) = ρΩ(α) cosα, we
conclude that the limit limX→∞RΩ,X(λ) exists and is given by

lim
X→∞

RΩ,X(λ) =
πλ

2A(Ω)2

π/4�

0

ρΩ(θ)4 dθ.

Taking the derivative with respect to λ, we see that the limiting pair corre-
lation function exists for the region Ω and is given by the desired formula.
This completes the proof of Theorem 1.1 for Ω = Ω1.

For a general Ω, noting that for m > 0 and 0 ≤ α < β < 2π such
that ±π/2 6∈ [α, β], the set M (Tα,β,mX) of lattice points from the triangle
Tα,β,mX with x-coordinate a prime number corresponds naturally to the set
M̃I(mX) of general Farey fractions of order mX in the finite subinterval
I = [tanα, tanβ] ⊂ R2 with prime denominators, for which Theorem 2.2
holds true (see Remark after Theorem 2.2). In other words the limiting pair
correlation function of M̃I(mX) exists as X → ∞ and is identically equal
to 1. By using a similar argument to the case of Ω = Ω1, we can see that
Theorem 1.1 also holds for a general region Ω.
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